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Summary. This paper is motivated by the use of data 
from the British Household Panel Survey (BHPS) to 
study attitudes to gender roles and their relation to 
demographic and economic variables. Such household 
surveys often use a complex sampling design to select 
the sample to be followed up over time. It is well 
known that complex sampling schemes may inflate the 
variances of estimators, especially as a result of 
clustering. The design effect measures the inflation of 
the sampling variance of an estimator as a result of the 
use of a complex sampling scheme. There is some 
empirical evidence that this impact may be less the 
more complex the analysis and this may sometimes be 
used to justify ignoring the complex sampling scheme 
in analysis. The aim of this paper is to show that design 
effects for longitudinal analyses can be greater than for 
corresponding cross-sectional analyses, implying that 
more caution is required before ignoring the complex 
design in standard error estimation. A possible 
theoretical explanation is provided. 
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1. Introduction 
 

This paper develops methodology for the analysis of 
complex survey data (Skinner, Holt and Smith, 1989) 
to address longitudinal aspects of regression analyses 
of British Household Panel Survey (BHPS) data on 
attitudes to gender roles and their relation to 
demographic and economic variables. The general 
question of interest in this paper is: is the impact of the 
complex sampling design on variance estimation for 
analyses of these longitudinal data greater or less than 
for corresponding cross-sectional analyses? Kish and 
Frankel (1974) presented empirical work which 
suggested that the impacts of complex designs on 
variances are reduced for more complex analytical 
statistics and so one might conjecture that the impact 
on longitudinal analyses might also be reduced. We 
shall provide evidence in the opposite direction that, at 
least for the specific analyses considered, the impact on 
longitudinal analyses tends to be greater. Given that an 
impact does exist, the second question addressed is 
how to undertake variance estimation. We shall focus 
in the paper on the clustering impact of the sampling 
design by adopting survey sampling variance 
estimation procedures (Skinner et al, 1989). 
 

When asking how an analysis should take account of 
complex sampling, it is natural first to ask whether the 
parameters of interest should depend on the design, via 
the population structure underlying the sampling 
(Skinner et al., 1989). In this paper we shall assume 
this is not the case, since the primary sampling units in 

the BHPS are postcode sectors, determined by the 
needs of the British postal system and assumed here 
not to be relevant to the definition of parameters of 
scientific interest. A second question which might be 
asked is how the sampling impacts on point estimation, 
e.g. via the use of sampling weights. We shall refer to 
this question briefly, but we shall largely suppose that 
point estimation is unaffected by the design.  Our main 
focus will be on the impact of the design on variance 
estimation. 
 

The impact on variance estimation will be measured 
here by the ‘misspecification effect’, denoted meff 
(Skinner, 1989a), which is the variance of a point 
estimator divided by the expectation of the variance 
estimator. This is a measure of relative bias of the 
variance estimator, analogous to the ‘design effect’ or 
deff of Kish (1965), which measures the impact of a 
design on a variance, defined as the variance of the 
point estimator under the given design divided by its 
variance under simple random sampling with the same 
sample size. In the application in this paper, estimated 
meffs  may be treated as equivalent to estimated deffs 
when the variance estimator ignores the complex 
design. 
 

One reason for studying meffs for variance 
estimators which ignore the design is that analysts of 
longitudinal survey data face many difficult 
methodological challenges and they may be tempted to 
view the impact of complex sampling on standard 
errors as a relatively minor issue which, if ignored, is 
unlikely to lead to misleading inferences. Indeed, in 
cases where the survey documentation indicates that 
the design effect of the mean of the analyst’s outcome 
variable of interest is not much larger than one, the 
analyst might justify ignoring the design when 
estimating standard errors by appealing to the 
observation of Kish and Frankel (1974, p.13) that 
“design effects for complex statistics tend to be less 
than those for means of the same variables”. 
 

The paper is motivated by a regression analysis of 
five waves of BHPS data, based upon work of 
Berrington (2002) and described in Section 2. After a 
description of models and estimation methods in 
Section 3, the paper proceeds in Section 4 to provide 
evidence that meffs for longitudinal analyses can be 
greater than for corresponding cross-sectional analyses, 
implying that more caution is required before ignoring 
the complex design in standard error estimation.  
 

We ignore the effects of stratification and weighting 
in the empirical work in section 4 in order to isolate the 
source of potential misspecification effects and to 
avoid introducing the more complex weighting issues 
arising with multilevel models (Pfeffermann et al., 
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1998). We make brief remarks on these effects in the 
concluding discussion in Section 5. 
 
2 The motivating application to BHPS data  
 

Recent decades have witnessed major changes in the 
roles of men and women in the family in many 
countries. Social scientists are interested in the relation 
between changing attitudes to gender roles and changes 
in behaviour, such as parenthood and labour force 
participation (e.g. Morgan and Waite, 1987; Fan and 
Marini, 2000). A variety of forms of statistical analysis 
are used to provide evidence about these relationships. 
In this paper we consider a longitudinal regression 
analysis, based upon a model considered by Berrington 
(2002), with a measure of gender role attitude as the 
dependent variable. We also consider some simpler 
versions of this analysis to facilitate understanding of 
the methodological issues outlined in Section 1. The 
models will be set out formally in Section 3. 
 

The data come from waves 1, 3, 5, 7 and 9 (collected 
in 1991, 1993, 1995, 1997, and 1999 respectively) of 
the BHPS, when respondents were asked whether they 
‘strongly agreed’ , ‘agreed’ , ‘neither agreed nor 
disagreed’ , ‘disagreed’  or ‘strongly disagreed’  with a 
series of statements concerning the family, women’ s 
roles, and work out of the household. Responses were 
scored from 1 to 5.  Factor analysis was used to assess 
which statements could be combined into a gender role 
attitude measure. The attitude score considered here is 
the total score for six selected statements. Higher 
scores signify more egalitarian gender role attitudes. 
Berrington (2002) provides further discussion of this 
variable.  
 

Covariates for the regression analysis were selected 
on the basis of discussion in Berrington (2002) but 
reduced in number to facilitate a focus on the 
methodological issues of interest. The covariate of 
primary scientific interest is economic activity, which 
distinguishes in particular between women who are at 
home looking after children (denoted ‘family care’ ) 
and women following other forms of activity in 
relation to the labour market. Variables reflecting age 
and education are also included since these have often 
been found to be strongly related to gender role 
attitudes (e.g. Fan and Marini, 2000). All these 
covariates may change values between waves. A year 
variable is also included. This may reflect both 
historical change and the general ageing of the women 
in the sample.  
 

The BHPS is a household panel survey of individuals 
in private domiciles in Great Britain (Taylor et al., 
2001). Given the interest in whether women’ s primary 
labour market activity is ‘caring for a family’ , we 
define our study population as women aged 16-39 in 
1991. This results in a subset of data on n = 1340 
women. This subset consists of those women in the 
eligible age range for whom full interview outcomes 
(complete records) were obtained in all the five waves. 
We comment further on the treatment of nonresponse 
in section 3. 

The initial (wave one) sample of the BHPS in 1991 
was selected by a stratified multistage design in which 
households had approximately equal probabilities of 
inclusion. As primary sampling units (PSUs), 250 
postcode sectors were selected, with replacement and 
with probability of selection proportional to size using 
a systematic procedure. Addresses were selected as 
secondary sampling units, with the adoption of an 
analogous systematic procedure. In addresses with up 
to 3 households present, all households were included, 
and in those with more than 3 households, a random 
selection procedure, using a Kish grid, was used for the 
selection of 3 households. Then, all resident household 
members aged 16 or over were selected. All adults 
selected at wave one, were followed from wave two 
and beyond. A consequence of this design is that 
inclusion probabilities of adults vary little. The impact 
of weighting is considered briefly in section 5. The 
1340 women represented in the data are spread fairly 
evenly across the 250 postcode sectors. The small 
average sample size of around five per postcode sector 
combined with the relatively low intra-postcode sector 
correlation for the attitude variable of interest leads to 
relatively small impacts of the design, as measured by 
meffs. Since our aims are methodological ones, to 
compare meffs for different analyses, we have chosen 
to group the postcode sectors into 47 geographically 
contiguous clusters, to create sharper comparisons, less 
blurred by sampling errors which can be appreciable in 
variance estimation. The meffs in the tables we present 
therefore tend to be greater than they are for the actual 
design. The latter results tend to follow similar 
patterns, although the patterns are less clear-cut as a 
result of sampling error.  
 
3.  Regression model and inference procedures 
 

Let ity  denote the value of the attitude score for 
woman i at wave t (coded t = 1, … , T = 5 to 
correspond to 1991, 1993, …,1999) and let 

1( ,..., ) ’i i iTy y y=  be the vector of repeated measures.  
We consider linear models of the following form to 
represent the expectation of iy  given the values of 
covariates: 

( )i iE y x β= ,    (1) 

where 
1( ’,..., ’) ’i i iTx x x= , 

itx  is a 1×q vector of 
specified values of covariates for woman i at wave t,  
β  is the q×1 vector of regression coefficients and the 
expectation is with respect to a superpopulation model 
(Goldstein, 2003, p. 164). A more sophisticated 
analysis might include a measurement error model for 
attitudes (e.g. Fan and Marini, 2000), with each of the 
five-point responses to the six statements treated as 
ordinal variables. Here, we adopt a simpler approach, 
treating the aggregate score 

ity  and the associated 

coefficient vector β  as scientifically interesting, with 
the measurement error included in the error term of the 
model. 
 

We consider estimation of β  based on data from the 
‘longitudinal sample’ , Ts , i.e. the sample for which 
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observations are available for each of 1,...,t T= . We 
did not attempt to use data observed only at a subset of 
the five waves, partly for simplicity but also because 
our primary interest is clustering and we did not wish 
differences in clustering effects over time to be 
confounded with differences in incomplete data effects. 
A concern with the use of the longitudinal sample Ts  
is that the underlying attrition process may lead to 
biased estimation of β . One possible way of 
attempting to correct for this potential biasing effect is 
via the use of longitudinal survey weights, 

,iTw i s∈ (Lepkowski, 1986).  

The most general estimator of β  we consider is 
1

1 1ˆ ' '
T T

iT i i iT i i
i s i s

w x V x w x V yβ
−

− −

∈ ∈

 = ∑ ∑ 
 

,  (2) 

where V is a ‘working’  variance matrix of iy  (Diggle et 
al. 2002, p.70), taken as the exchangeable variance 
matrix with diagonal elements 2σ  and off-diagonal 
elements 2ρ̂σ , and ρ̂  is an estimator of the intra-
individual correlation, obtained by iterating between 
generalised least squares estimation of β  and survey-
weighted moment-based estimation of the intra-
individual correlation (Liang and Zeger, 1986; Shah et 
al., 1997). Note that 2σ  cancels out in (2) and hence 
does not need to be estimated for β̂ . 
 

This variance matrix, V, would arise if 
ity  obeyed 

the multilevel (mixed linear) model:  
 it it i ity x u vβ= + + ,   (3) 

with independent random effects 
iu  and 

itv  with 

variances 2 2
uσ ρσ=  and 2 2(1 )vσ ρ σ= −  respectively. 

We find that this model provides a first approximation 
to the variance structure for the regression models 
fitted in section 4.  For illustration, we find ρ̂ = 0.59 in 
the most elaborate regression model implying a fairly 
substantial between-woman component in the attitude 
scores unexplained by the chosen covariates. It is not 
necessary, however, for the error structure to follow the 
specific model in (3) exactly for β̂  to be consistent.  
 

To estimate the covariance matrix of β̂  allowing for 
the complex sampling design, we may use the 
linearization estimator (Skinner, 1989b, p.78): 

1 1

-1 2 -1ˆ( ) 'V /( 1) ( ) 'V
T T

iT i i h h ha h iT i i
i s h a i s

v w x x n n z z w x xβ
− −

∈ ∈

    = − −        
∑ ∑ ∑ ∑

,     

    (4) 
where h denotes stratum, a denotes area (primary 
sampling unit, PSU),  hn  is the number of PSUs in 

stratum h,  1’iha iT i i
z w x V e−= ∑ , /ah ha h

z z n= ∑  and 

ˆ
i i ie y x β= − . Note that this variance estimator requires 

use of the stratum and primary sampling unit 
identifiers. See Lavange et al. (1996) and Lavange et 
al. (2001) for applications of a similar approach to 
allowing for complex sampling designs in regression 
analyses of repeated measures data from different 
longitudinal studies.  

In order to assess the impact of the complex design 
on variance estimation, we also consider a linearization 
variance estimator which ignores the complex design, 
denoted 0

ˆ( )v β , given by expression (4) where the 

PSUs become the same as women so that 
haz  is 

replaced by 1’iT i iw x V e−  and there is only a single 

stratum so that 
hn n=  is the overall sample size and 

the term 
hz  disappears. Ignoring the weights and the 

term /( 1)n n − , this is the ‘robust’  variance estimator 
presented by Liang and Zeger (1986) as consistent 
when (1) holds, but where the working variance matrix, 
V, may not reflect the true variance structure. See also 
Diggle et al. (2002, section 4.6). 
 

Following Skinner (1989a, p.24), we refer to 

0
ˆ ˆ( ) / ( )k kv vβ β , the ratio of these two variance 

estimators for the thk  element of β̂ , as an estimated 
misspecification effect and denote it meff. This ratio 
may be viewed as an estimator of the misspecification 
effect, defined as 

0
ˆ ˆvar( ) / [ ( ]k kE vβ β , on the 

assumption that ˆ( )v β  is a consistent estimator of 
ˆvar( )β . This quantity is a measure of the relative bias 

of the ‘incorrectly specified’  variance estimator 0
ˆ( )kv β  

as an estimator of ˆvar( )kβ . This concept is closely 
related to that of the design effect of Kish (1965) which 
is more relevant to the choice of design than to the 
choice of standard error estimator.  
 

In general, meffs will reflect the impact of weighting, 
clustering and stratification. In order to disentangle 
these effects, we shall first in section 4 only consider 
the impact of clustering. We thus treat the weights as 
constant and ignore stratification.  

 
4.  Misspecification effects: the impact of ignoring 
clustering in longitudinal analyses 
 

In this section we explore the impact of ignoring 
clustering in standard error estimation for various 
longitudinal analyses. To provide theoretical 
motivation for the kind of impact we may expect, 
consider converting the two-level model in (3) into a 
simple three-level model (Goldstein, 2003) as: 

ait ait a ai aity x u vβ η= + + + ,     (5) 
where an additional subscript a has been added to 
denote area (cluster) and an additional random term 

aη  

with variance 2
ησ  represents the area effect (assumed 

independent of 
aiu  and 

aitv ). We now let 2
uσ  and 2

vσ  

denote the variances of 
aiu  and 

aitv  respectively. Let us 
use this model to consider first the expected nature of 
misspecification effects in the case of cross-sectional 
analyses, where t is kept fixed as t=1 . In this case, if 
we suppose for simplicity that 1aitx ≡  and β  is the 

mean of 
aity  in (5) and that there is a common sample 

size m per cluster, the misspecification effect is 
approximately equal to 1 ( 1)m τ+ − , where 
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2 2 2 2/( )u vη ητ σ σ σ σ= + +  is the intracluster correlation 

(Skinner, 1989b, p. 38). If the sample sizes per cluster 
are unequal a common approximation is to replace m in 
this formula by m , the average sample size per 
cluster.  
 

Turning to the longitudinal case, where again 1aitx ≡  

and now β  is a longitudinal mean of aity  for t=1,…,T , 
the same theory for misspecification effects will apply, 
but where τ is now the intracluster correlation for aη  

and ai aitu v+  averaged over the waves., i.e. 
2 2 2 2/( / )u v Tη ητ σ σ σ σ= + + . Hence, under this model, 

the misspecification effect increases as T increases, if 
02 >vσ .  

 

Let us now compare this expected theoretical pattern 
with the empirical findings. Using data from just the 
first wave and setting 1aitx ≡ , the meff for this cross-
sectional mean is given in Table 1 as about 1.5. This 
value is plausible since the average sample size per 
cluster is 1340 / 47 29m = ≈ and using the 1 ( 1)m τ+ −  
formula, the implied value of τ is about 0.02 and such 
a small value is in line with other estimated values of 
τ  found for attitudinal variables in British surveys 
(Lynn and Lievesley, 1991, App. D).  
 

To assess the impact of the longitudinal aspect of the 
data, we re-estimate the meff using data for waves 
1,…,t for t=2, 3, …  5. Table 1 suggests a tendency for 
the meff to increase with the number of waves, as 
anticipated from the theoretical reasoning. These meffs 
are certainly subject to sampling error and there 
appears to be some genuine variation in 
misspecification effects for cross-sectional estimates at 
different waves but this variation does not appear to be 
sufficient to explain this trend. 
 

To pursue the theoretical rationale for this finding 
further, note that  model (5) is likely to be an 
oversimplification because the area effects are likely to 
display some variation over time, in which case we 
write atη  rather than 

aη . In this case, τ  becomes 

var( ) /[var( ) var( )]a a a au vτ η η= + + , where 

/a att Tη η= ∑  and ( ) /a a ai aittu v u v T+ = +∑ .  Now, 
it seems plausible that the  average level of egalitarian 
attitudes in an area will vary less from year to year than 
the attitude scores of individual women, since the latter 
will be affected both by measurement error and 
genuine changes in attitudes, so that var( )aη  may be 
expected to decline more slowly with T than 
var( )a au v+ . We may therefore expect τ , and 
consequently the meff, to increase as T increases, as we 
observe in Table 1. 
 

We next elaborate the analysis by including indicator 
variables for economic activity as covariates. The 
resulting regression model has an intercept term and 
four covariates representing contrasts between women 
who are employed full-time and women in other 
categories of economic activity. The meffs are 

presented in Table 2. The intercept term is a domain 
mean and standard theory for a meff of a mean in a 
domain cutting across clusters (Skinner, 1989b, p.60) 
suggests that it will be somewhat less than the meff for 
the mean in the whole sample, as indeed is observed 
with the meff for the cross-section domain mean of 
1.13 in Table 2 being less than the value 1.51 in Table 
1. As before, there is some evidence in Table 2 of 
tendency for the meff to increase, from 1.13 with one 
wave to 1.50 with five waves, albeit with lower values 
of the meffs than in Table 1. The meffs for the contrasts 
in Table 2 vary in size, some greater than and some 
less than one. These meffs may be viewed as a 
combination of the traditional variance inflating effect 
of clustering in surveys together with the familiar 
variance reducing effect of blocking in an experiment. 
The main feature of these results of interest here is that 
there is again no tendency for the meffs to converge to 
one as the number of waves increases. If there is a 
trend, it is in the opposite direction. For the contrast of 
particular scientific interest, that between women who 
are full-time employed and those who are ‘at home 
caring for a family’ , the meff is consistently well below 
one. 
 

We next elaborate the model further by including, as 
additional covariates, age group, year and 
qualifications. The results for meffs are given in Table 
3. The meffs for the economic activity covariates again 
vary, some being above one and some below one. 
There is again some evidence of a tendency for these 
meffs to diverge away from one as the number of 
waves increases. A comparison of Tables 1 and 3 
confirms the observation of Kish and Frankel (1974) 
that meffs for regression coefficients tend not to be 
greater than meffs for the means of the dependent 
variable. 
 
5. Discussion 
 

We have presented some theoretical arguments and 
empirical evidence that the impact of ignoring 
clustering in standard error estimation for certain 
longitudinal analyses can tend to be larger than for 
corresponding cross-sectional analyses. The 
implication is that it is, in general, at least as important 
to allow for clustering in standard error estimation for 
longitudinal analyses as for cross-sectional analyses. 
Thus, the expectation from the finding of Kish and 
Frankel (1974) that complex sampling has less of an 
impact on variances for more complex analytical 
statistics was not borne out in this case.  
 

The longitudinal analyses considered in this paper 
are of a certain kind and we should emphasise that the 
patterns observed for meffs in these kinds of analyses 
may well not extend to other kinds of longitudinal 
analyses.  To speculate about the class of models and 
estimators for which the patterns observed in this paper 
might apply, we conjecture that increased meffs for 
longitudinal analyses will arise when the longitudinal 
design enables temporal ‘random’  variation in 
individual responses to be extracted from between-
person differences and hence to reduce the component 
of standard errors due to these differences, but provides 
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less ‘explanation’  of between cluster differences, so 
that the relative importance of this component of 
standard errors becomes greater.  
 

The empirical work presented in this paper has also 
been restricted to the impact of clustering. We have 
undertaken corresponding work allowing for weighting 
and stratification and found broadly similar findings. 
Stratification tends to have a smaller effect than 
clustering. The sample selection probabilities in the 
BHPS do not vary greatly and the impact of weighting 
by the reciprocals of these probabilities on both point 
and variance estimates tends not to be large. There is 
rather greater variation among the longitudinal 
weights, iTw , which are provided with BHPS data for 
analyses of sets of individuals who have responded at 
each wave up to and including a given year, T. The 
impact of these weights on point and variance 
estimates is somewhat greater. As T increases and 
further attrition occurs, the weights, iTw , tend to 
become more variable and lead to greater inflation of 
variances. This tends to compound the effect we have 
described of meffs increasing with T. 
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Table 1 – Estimates of Longitudinal Means 
 point 

estimate s.e. meffs 

Waves 1-9  1-9  1 1,3 1,3,5 1-7 1-9 
 19.83 0.12 1.51 1.50 1.68 1.81 1.84 

 

 

Table 2 – Estimates by Economic Activity 

 β̂  s.e. meffs 

Waves 1-9  1-9  1 1,3 1,3,5 1-7 1-9 
        

Intercept 20.58 0.11 1.13 1.01 1.09 1.38 1.50 
        
Contrasts for        
PT employed -1.03 0.10 0.93 0.91 0.93 1.00 0.89 
Other inactive -0.80 0.15 0.60 0.96 0.68 0.76 0.81 
FT student 0.41 0.24 1.10 1.32 1.14 1.48 1.44 
Family care -2.18 0.10 0.72 0.49 0.58 0.66 0.60 

 
Note:  intercept is mean for women full-time employed 

contrasts are for other categories of economic activity 
relative to full-time employed 

 

 

 

Table 3 – Estimates of Regression Coefficients 
 β̂  s.e. meffs 

Waves 1-9  1-9  1 1,3 1,3,5 1-7 1-9 
        

Intercept 20.20 0.30 0.95 0.87 0.87 1.04 1.07 
        
Year, t -0.04 0.01 - 0.86 0.69 0.59 0.96 
        
Age Group        
16-21 0.00 -      
22-27 -0.71 0.25 1.22 1.37 1.44 1.73 1.64 
28-33 -0.89 0.27 1.38 1.40 1.46 1.68 1.59 
34+ -1.03 0.27 0.94 1.10 1.13 1.26 1.34 
        
Econ. Activity        
FT employed 0.00 -      
PT employed -0.93 0.10 0.97 0.95 0.96 1.06 0.91 
Other inactive -0.75 0.15 0.60 0.96 0.68 0.77 0.81 
FT student 0.17 0.24 0.93 1.32 1.23 1.39 1.32 
Family care -2.09 0.10 0.77 0.59 0.70 0.78 0.67 
        
Qualification        
Degree 0.00 -      
QF -0.52 0.21 0.77 0.64 0.75 0.87 0.85 
A-level -0.61 0.24 0.98 0.87 0.94 0.94 1.01 
O-level -0.44 0.20 0.62 0.62 0.59 0.69 0.73 
Other -1.16 0.22 0.83 0.83 0.78 0.80 0.82 
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