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Introduction 
 

Parameter estimation is often presented in a form of 
confidence interval. When data is gathered from a 
complex survey, confidence interval is usually 
computed under a normality assumption. However, 
when the parameter of interest is a proportion, and the 
estimate of proportion is extremely small or large 
(closed to zero or to one), this approach shows lack of 
coverage. Alternatively, different approaches have 
been suggested, such as binomial approach, exact 
confidence interval, Poisson approach, Logit 
transformation approach, and Wilson methods. Our 
paper will evaluate the performance of these methods 
under a complex survey setting. Application of these 
methods will be demonstrated with data from the 
quarterly Health Care Survey of DoD Beneficiaries 
(HCSDB). Comparison will be done, and a simulation 
will be performed to investigate the performance of 
each method in term of coverage probability. 
 
Confidence Interval Methods 

 
A standard confidence interval for a parameter θ  is 
usually constructed using the formula 

{ }1/ 2 1/ 2ˆ ˆ ˆ ˆ(1 / 2) var( ) , (1 / 2) var( )d dt tθ α θ θ α θ⎡ ⎤ ⎡ ⎤− − + −⎣ ⎦ ⎣ ⎦

where θ̂  is the estimate of θ , ˆvar( )θ  is the estimate 

of variance of θ̂ , and (1 / 2)dt α−  is the (1 / 2)α−  
quantile of a t distribution with degrees of freedom d. 
If the parameter of interest is a proportion p , similar 

construction can be done with ˆ p̂θ =  and ˆvar( )θ  = 

ˆvar( )p . When the sample is a random sample of size 

n, the degrees of freedom is computed as 1d n= − . 
When sample size is large, (1 / 2)dt α−  may be 

replaced by (1 / 2)z α− , which is the (1 / 2)α−  
quantile of a standard normal distribution.  For a 
sample from complex survey data, similar construction 

is generally used with θ̂  and ˆvar( )θ  computed 
through proper estimation method for complex survey 

data, and d  is the number of sampled Primary 
Sampling Units (PSUs) minus the number of strata1.  
 
Construction of the above confidence interval is based 
on normality assumption that relies on large sample 
size. When the sample size is small or the estimate of 
proportion is extremely small (closed to zero) or large 
(closed to one), however, this approach shows lack of 
coverage (Korn and Graubard 1998, Kott, Andersson 
and Nerman 2001). In addition, this formula may 
produce confidence interval that lies outside the 
permitted 0–1 range.  
 
In this paper we look at some alternative methods of 
confidence interval construction for a complex survey 
data. We evaluate and perform comparison of the 
following methods: 

(1) Poisson (Breeze) approach, 
(2) Logit transformation, 
(3) Binomial approach, 
(4) Ad-hoc Quadratic/Wilson method, 
(5) Andersson-Nerman method, 
(6) Model-based Wilson method, 
(7) t-adjusted Andersson-Nerman method. 

 
These seven methods were presented in Korn and 
Graubard (1998), and Kott, Andersson and Nerman 
(2001). The next sections will present detail formulas 
for each of confidence intervals above. 
 
Let p̂  and ˆvar( )p , respectively, denote the estimate 
of proportion and its estimate of variance computed 
through proper estimation method for complex survey 
data. The effective sample size n∗  is defined as  
 

ˆ ˆ(1 )
ˆvar( ) ˆvar( )

ˆ ˆ(1 ) /

n n p p
n

pdeff p
p p n

∗ −= = =

−

, 

 
where deff  denotes design effect due to complex 
sample design. With a complex survey data, it is 
expected2 that 1deff > , so that n n∗ < . Additionally, 

                                                 
1 If the sample design did not implement 

clustering, then d is the number of sample minus the 
number of strata. 

2 Analysis based on a complex survey data is 
commonly done through the weighted analysis, where 
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the degrees-of-freedom adjusted effective sample size 
is defined as  

2

1ˆ ˆ (1 / 2)(1 )
ˆvar( ) (1 / 2)

n
df

d

tp p
n

p t

α
α

∗ −⎛ ⎞−−= ⎜ ⎟−⎝ ⎠
. 

 
 
Poisson (Breeze) Approach 
 
The interval is developed based on the (1 )α−  
confidence interval for a Poisson random variable. For 
data from a complex survey the Breeze approach 
confidence interval can be constructed as follows 
(Korn and Graubard 1998): 
 

{ }ˆ ˆ( ) / , ( ) /L Upo pn n po pn n∗ ∗ ∗ ∗  

where 

1

2

2

2

( ) 0.5 ( / 2),

( ) 0.5 (1 / 2),

L v

U v

po x

po x

χ α

χ α

=

= −
 

1 2v x= ,  2 2( 1)v x= + , 
 

and 2 ( )vχ β  denotes β  quantile of a chi-square 
distribution with v  degrees of freedom.  When 

n n∗ > , one can just use n  in place of n∗ . 
 
Logit Transformation 

 
The lower and upper bounds of this confidence 
interval are obtained by using logit transformation as 
follows: 

log
1

p
y

p

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

 

 
and then put bounds on y  as follows: 

[ ]1/ 2
(1 / 2) var( )dy t yα± − , 

 
where  

[ ]

2

2

ˆvar( )
ˆvar( ) var( )

ˆ ˆ ˆ(1 )

y p
y p

p p p

⎡ ⎤∂= =⎢ ⎥∂ −⎣ ⎦
. 

So that 

[ ]1/ 2
ˆvar( )ˆ

log (1 / 2)
ˆ ˆ ˆ1 (1 )d

pp
t

p p p
α⎛ ⎞

± −⎜ ⎟− −⎝ ⎠
. 

 
The confidence interval for p  is then obtained by 

inverting back from y to p as follows: 

                                                 
(continued) 
the weights account for unequal probability sampling, 
nonresponse adjustment, and/or post-stratification 
adjustment. 

exp( )

1 exp( )

y
p

y
=

+
. 

 
Thus, the logit transformation confidence interval can 
be expressed as: 
 

1 1
,

1 exp( ) 1 exp( )LLOGIT ULOGIT

⎧ ⎫
⎨ ⎬+ − + −⎩ ⎭

, 

 
where 

1/ 2

1/ 2

ˆ ˆ[var( )]
log (1 / 2) ,

ˆ ˆ ˆ1 (1 )

ˆ ˆ[var( )]
log (1 / 2) .

ˆ ˆ ˆ1 (1 )

d

d

p p
LLOGIT t

p p p

p p
ULOGIT t

p p p

α

α

= − −
− −

= + −
− −

 

 
When n n∗ > , one can just use ˆ ˆ(1 ) /p p n−  in place of 

ˆvar( )p . 
 

Binomial Approach 
 

The interval is developed based on the binomial 
distribution approach. Korn and Graubard (Korn and 
Graubard 1998) developed similar approach for data 
from a complex survey by replacing n  with dfn∗  and 

the number of positive count x  with ˆ dfpn∗  as follows: 

 

{ }ˆ ˆ( , ), ( , )L df df U df dfp pn n p pn n∗ ∗ ∗ ∗  

 
where 

1 3

1 3

2 4

2 4

1 ,

3 1 ,

2 ,

4 2 ,

( / 2)
( , )

( / 2)

(1 / 2)
( , )

(1 / 2)

v v

L
v v

v v
U

v v

v F
p x n

v v F

v F
p x n

v v F

α
α

α
α

=
+

−
=

+ −

 

 

1 2v x= , 2 2( 1)v x= + , 3 2( 1)v n x= − + , 

4 2( )v n x= − , 
 

and 
1 2, ( )d dF β  denotes β  quantile of  F-distribution 

with 1 2( , )d d  degrees of freedom. 
 
Ad-hoc Quadratic/Wilson Method 

 
The confidence interval is derived by solving the 
quadratic function 

[ ] [ ]22ˆ| | (1 / 2) (1 ) /p p z p p nα− ≤ − −  

 
for p , resulting in lower and upper limits:  
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2

2 2

22

ˆ(1 2 ) ˆ ˆ(1 )2ˆ 1
(2 )

1

z
p

z p p znp z
n nnz
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−
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. 

 
Simplifying the above bounds by dropping the terms 

3 / 2( )pO n− , the expression becomes 

 
2 2

2

ˆ ˆ(1 )
ˆ ˆ(1 2 )

2 (2 )

z z p p
p p z

n nn

−+ − ± + .  

 
For a complex survey data the method replaces n  with 
n∗  and the model-based variance ˆ ˆ(1 ) /p p n−  with a 

variance from complex data ˆ( )v p  as follows: 
 

2 2

2
ˆ ˆ ˆ(1 2 ) ( )

2 (2 )

z z
p p z v p

n n∗ ∗+ − ± + . 

 
 
Andersson-Nerman Method 
 
This method replaces the n∗  in the ad-hoc Wilson 
confidence interval with 'n  as follows  

 
2 2

2
ˆ ˆ ˆ(1 2 ) ( )

2 ' (2 ')

z z
p p z v p

n n
+ − ± + ,  

 
where 
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'
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k
k

k
s

w

w
π =

∑
, 

and kw is the survey weight for sample unit k, and  j is 
the index for PSUs. 
 
Model-based Wilson Method 
 
Kott, et al. (2001) developed a Wilson-based 
confidence interval by using model-based variance 
estimator ˆ ˆ(1 ) / Mp p n−  in place of ˆ( )v p  as follows: 
 

2 2

2

ˆ ˆ(1 )
ˆ ˆ(1 2 )

2 (2 )M MM

z z p p
p p z

n nn

−+ − ± + ,  

 
where 

2

1
M

k
s

n
π

=
∑

. 

 
t-adjusted Method 
 
This method replaces the z  quantile in the Andersson-
Nerman confidence interval with the corresponding t-
distribution quantile with td  degrees of freedom, 
where 

2 2

2 4 3 2 2

ˆ ˆ2 (1 )( )

ˆ(1 2 ) [ ( ) / ]

k
s

t
k k k

s s s

p p
d

p

π

π π π

−
=

− −

∑

∑ ∑ ∑
. 

 
HCSDB Data 
 
The methods above were implemented to a data from 
the Health Care Survey of the Department of Defense 
Beneficiaries (HCSDB), a quarterly survey that 
collects data on the military health system’s 
beneficiaries’ opinions about their Department of 
Defense health care benefits. The HCSDB sample 
selection implements a stratified random sampling 
method, where the beneficiaries are partitioned into 
sampling strata based on enrollment type (enrolled in 
TRICARE Prime or not), beneficiary type (active duty, 
active duty family members, retirees and family 
members under age 65, and non-active duty 
beneficiaries and their family members age 65 and 
over), and geographic areas. 
 
Many statistics of interest are expressed in proportions; 
for instances, proportion of beneficiaries who would 
rate their health plan 8 or higher on a 0 to 10 scale, 
proportion of beneficiaries who would have no 
problem to get a referral to see a specialist, etc. 
Currently published statistics are based on quarterly 
survey data as well as annual combined data. Due to 
sample size limitation, however, estimates based on 
quarterly data for the smallest geographical area based 
on Military Treatment Facility (MTF catchment area) 
are produced based on annual combined data. The 
estimates based on quarterly data for this fine level of 
domain face the small- or large-proportion problem.  
 
In this paper, we focus on a catchment-area level 
estimate of proportion for a selected HCSDB variable 
HP_SMOKH (“proportion of smokers under HEDIS 
definition”) from the Quarter 1 of the 2003 survey 
data. In this particular catchment area, the sample size 
for proportion of smokers is 155 across 5 strata. The 
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weighted estimate of the proportion is 9% with 
standard error3 2.3%. This leads to a coefficient of 
variation of 25.6%. Table 1 presents the confidence 
intervals based on the eight methods described in the 
previous sections. 
 

Table 1.  Lower and upper bounds of confidence 
interval for proportion of smokers by the 
confidence interval method 

Confidence interval method 
Lower 
bound 

Upper 
bound 

   
Normal approximation 4.5% 13.6% 
Poisson (Breeze) 5.0% 15.2% 
Logit transformation 5.4% 14.8% 
Binomial approach 5.1% 14.7% 
Ad-hoc Quadratic/Wilson 5.4% 14.7% 
Andersson-Nerman 5.4% 14.7% 
Model-based Wilson 5.4% 14.8% 
t-adjusted Andersson-Nerman 5.4% 14.7% 
   

Source: The HCSDB data, Quarter 1, 2003 
 
The normal-based method resulted in a confidence 
interval that is shorter than that of other methods. The 
lower and upper bounds based on other methods are 
consistent to each other. We will investigate the 
coverage probability of these methods using a 
simulation.  
 
Simulation 
 
We generate data to simulate population proportions 
of, respectively, 0.08p =  and 0.60p = , under several 

sample designs below. For each p  and each design, 
we generate data through Bernoulli random number 
generators with sample of size 100. We replicate data 
generation for a total of 10,000 times. We then 
evaluate the coverage probability of confidence 
intervals and their average lengths. Statistical software 
SUDAAN (RTI 2004) is used to estimate p̂  and 

ˆ( )v p . 
 
Design 1: Simple Random Sample 
 
A binary variable is generated using Bernoulli random 
number generator with parameter p . Two sample are 

generated with, respectively, 0.08p =  and 0.60p = . 

An equal sampling weight of 95 is assigned to every 
case. To simulate weighting adjustment to account for 
nonresponses, the sampling weights are further inflated 
by factors:  0%, 5%, 10%, 15% or 20%, where these 
factors reflect differential nonresponse rates within 
five adjustment cells. Membership of being in the 
adjustment cells is randomized with probabilities 0.4, 

                                                 
3 The point and variance estimates were 

computed using SUDAAN (RTI 2004). 

0.25, 0.15, 0.12, and 0.08, of being in the cell 1, 2, 3, 4 
and 5, respectively. 
 
Design 2: Stratified Random Sample, Proportional 
Allocation 
 
Two sets of stratified random sample from 3 strata are 
generated, where the binary variable is generated using 
the following parameters:  
 

 0.08p =  0.60p =    

Stratum hp  hp  hN  hn  

1 10% 70% 4,000 42 
2 7.5% 60% 3,500 37 
3 5% 40% 2,000 21 

 
where hN  and hn , respectively indicates the stratum 

population and sample size. An equal sampling weight of 
95 is assigned to every body. The weights are also 
inflated as in Design 1 to account for weighting 
adjustment for nonresponses. 
 
Design 3: Stratified Random Sample, Disproportionate 
Allocation 
 
Two sets of stratified sample are generated using the 
following parameters:  
 

 0.08p =  0.60p =     

Stratum hp  hp  hN  hn  hw  

1 10% 70% 4,000 20 200 
2 7.5% 60% 3,500 30 117 
3 5% 40% 2,000 50 40 

 
The notation hw  denotes sampling weight for stratum 
h. The weights are also inflated as in Design 1 to 
account for weighting adjustment for nonresponses.  
 
Design 4: Stratified Random Sample, Disproportionate 
Allocation, Unequal Weights 
 
Two sets of stratified sample are generated using the 
same parameters (disproportional sample) as used in 
the Design 3 above. However, to simulate weighting 
adjustment through the use of individual inverse 
propensity scores, the individual weight is generated 
using a lognormal distribution with mean 4.31 and 
variance 0.49, and then post-stratified by stratum 
population size. 
 
Table 2.1 and 2.2 present results of the simulation. 
 
Conclusion and Discussion 
 
Tables 2.1 shows that the normal-based confidence 
interval can be misleading for small proportion. It is 
obvious that the coverage probability is lower than the 
nominal level. The coverage probability is worst when 
variability of the weights is large, as shown in 
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simulation with Design 4. All other alternative 
methods provide better coverage probability.  
 
Table 2.1 also shows that when the variability of the 
weights is small, all alternative methods are 
conservative where the coverage probability is a little 
bit larger than the nominal level. On the other hand, 
when the variability of the weights is large, some 
methods such as the Binomial approach, Ad-hoc 
Wilson, and Andersson-Nerman confidence intervals 
have coverage probability lower than the nominal 
level. 
 

In terms of computation, some methods are simpler 
than the others. The methods require computation of 
weighted proportion and/or its variance (or standard 
error) based on proper estimation technique for a 
complex survey data. They also require quantile value 
of certain distributions. Having these values, some 
methods then only require simple calculation that can 
be done using a simple calculator, while other methods 
require aggregating values of weights, weight squares, 
etc, which require more computation. Note that some 
methods will not produce confidence bounds when the 
value of estimate proportion is exactly 0 or 1. 

 
 

Table 2.1.  Simulated coverage probability and average length of the 95% confidence intervals by sample design and method: 
for p = 0.08  

 Design 1 Design 2 Design 3 Design 4 

Confidence interval method Coverage 
Average 
length Coverage 

Average 
length Coverage 

Average 
length Coverage 

Average 
length 

         
Normal approximation 92.0% 10.6% 92.8% 10.7% 90.1% 12.9% 87.1% 13.9% 
Poisson (Breeze) 97.6% 12.3% 97.8% 12.3% 95.6% 15.6% 95.0% 17.1% 
Logit transformation 96.4% 11.3% 96.5% 11.3% 94.9% 14.3% 94.5% 15.6% 
Binomial approach 97.4% 11.5% 97.5% 11.6% 94.4% 14.5% 93.2% 15.7% 
Ad-hoc Quadratic (Wilson) 96.2% 11.2% 96.2% 11.2% 93.5% 14.3% 92.7% 15.6% 
Andersson-Nerman 96.2% 11.2% 96.2% 11.3% 94.2% 14.7% 92.8% 16.5% 
Model-based Wilson 96.2% 11.2% 96.2% 11.2% 95.2% 13.6% 96.0% 15.4% 
t-adjusted Andersson-Nerman 96.2% 11.2% 96.2% 11.3% 95.1% 14.9% 96.7% 18.9% 
         

 
  

Table 2.2.  Simulated coverage probability and average length of the 95% confidence intervals by sample design and method: 
for p = 0.6 

 Design 1 Design 2 Design 3 Design 4 

Confidence interval method Coverage 
Average 

length Coverage 
Average 

length Coverage 
Average 

length Coverage 
Average 

length 
         
Normal approximation 95.1% 19.5% 94.9% 19.0% 94.5% 22.3% 93.5% 24.8% 
Poisson (Breeze) 99.8% 31.6% 99.9% 31.5% 99.9% 36.5% 99.7% 40.7% 
Logit transformation 95.7% 19.2% 95.8% 19.2% 95.5% 22.0% 94.5% 24.3% 
Binomial approach 96.4% 20.0% 96.0% 19.4% 96.1% 23.0% 95.3% 25.5% 
Ad-hoc Quadratic (Wilson) 96.2% 19.6% 95.8% 19.1% 96.0% 22.6% 95.3% 25.3% 
Andersson-Nerman 96.1% 19.6% 96.3% 19.2% 97.4% 27.2% 96.2% 32.2% 
Model-based Wilson 96.0% 19.5% 96.3% 19.5% 97.1% 23.5% 97.1% 26.3% 
t-adjusted Andersson-Nerman 96.0% 19.6% 96.1% 19.2% 97.4% 27.2% 96.2% 32.2% 
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