Using Standard Statistical Software Packages to Make Statistical Inferences About a Linear Combination of Regression Parameters

Bruce Bowerman ${ }^{1}$, J. B. Orris ${ }^{2}$
Richard T. Farmer School of Business Administration, Miami University, Oxford, OH 45056^{1}
College of Business Administration, Butler University, Indianapolis, IN 46208^{2}

Abstract

In regression analysis, sophisticated statistical software packages such as SAS can make statistical inferences about both mean responses and about a linear combination of regression parameters. Other packages -- such as Minitab and Excel add-in packages -- make statistical inferences about mean responses but not about a linear combination of regression parameters. In this paper we show how to use a statistical software package that makes statistical inferences about mean responses to also make statistical inferences about a linear combination of regression parameters. This will be demonstrated by writing the regression model in a special way.

Keywords: Regression, MegaStat, linear combination, statistical inference

1. Introduction

Consider the multiple regression model: $Y=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}+\varepsilon$. Standard statistical software packages such as MINITAB and Excel add-in packages such as MegaStat ${ }^{\circledR}{ }^{1}$ compute a confidence interval for a mean response: $\mu=\beta_{0}+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}$ but not for a linear combination of regression parameters: $l=l_{0} \beta_{0}+l_{1} \beta_{1}+\ldots+l_{k} \beta_{k}$. These packages do, however, allow you to omit the intercept, β_{0}. If we omit the intercept and add in a "variable intercept" we can use these standard software packages to find a confidence interval for l.

1.1 The Variable Intercept Model

To use a "variable intercept" we consider the model $Y=\beta_{0} x_{0}+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}+\varepsilon$ where we set the variable x 0 to 1 when we fit the model to obtain the usual intercept. Using this model, standard software packages find the following $100(1-\alpha)$ percent confidence interval for the mean $\mu=\beta_{0} x_{0}+\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}$:

$$
\hat{y} \pm t_{\frac{\alpha}{2}} s \sqrt{X^{\prime}\left(X^{\prime} X\right)^{-1} x}
$$

Where: $\hat{y}=b_{0} x_{0}+b_{1} x_{1}+\ldots+b_{k} x_{k}$ and $x^{\prime}=\left[x_{0} x_{1} \ldots x_{k}\right]$. To obtain the confidence interval we specify the predictor values $x_{0} x_{1} \ldots x_{k}$ where $\mathrm{x} 0=1$ if we assume the usual intercept. The formula for a $100(1-\alpha)$ percent confidence interval for $l=l_{0} \beta_{0}+l_{1} \beta_{1}+\ldots+l_{k} \beta_{k}$ is:

$$
\hat{l} \pm t_{\frac{\alpha}{2}} s \sqrt{l^{\prime}\left(X^{\prime} X\right)^{-1} l}
$$

Where $\hat{l}=l_{0} b_{0}+l_{1} b_{1}+\ldots+l_{k} b_{k}$ and $l^{\prime}=\left[l_{0} l_{1} \ldots l_{k}\right]$.
This formula has exactly the same form as the formula for a confidence interval for μ. Therefore, we can obtain a confidence interval for l by specifying the predictor values $x_{0}=l_{0}, x_{1}=l_{1}, \ldots x_{k}=l_{k}$.

2. Example

Consider Table 1, which gives values of y, demand for Fresh Liquid Laundry Detergent, $x_{4}=x_{2}-x_{1}$, the difference between the average industry (competitors') price and the price for Fresh, and x_{3}, the advertising expenditure for Fresh. To ultimately increase the demand for Fresh, Enterprise Industries’ marketing department is conducting a study comparing the effectiveness of three different advertising campaigns. These campaigns are denoted as campaigns A, B, and C. Here campaign A consists entirely of television commercials, campaign B consists of a balanced mixture of television and radio commercials, and campaign C consists of a balanced mixture of television, radio, newspaper, and magazine ads. To conduct the study, Enterprise Industries has randomly selected one advertising campaign to be used in each of the 30 sales periods. Here, although logic would indicate that each of campaigns A, B. and C should be used in 10 of the 30 sales periods, Enterprise Industries has made previous commitments to the advertising media involved in the study. As a result, campaigns A, B, and C were randomly assigned to, respectively 9,11 , and 10 sales periods. Table 1 lists the campaigns used in the sales periods. To compare the effectiveness of advertising campaigns A, B, and C , we define two dummy variables. Specifically, we define D_{B} to equal 1 if campaign B is used in a sales period and 0 otherwise. Furthermore, we define the dummy variable D_{C} to equal 1 is campaign C is used in a sales period and 0 otherwise.

A possible model describing these data is then

$$
\begin{aligned}
y=\beta_{0} x_{0} & +\beta_{1} x_{4}+\beta_{2} x_{3}+\beta_{3} x_{3}^{2}+\beta_{4} x_{4} x_{3} \\
& +\beta_{5} D_{B}+\beta_{6} D_{C}+\beta_{7} x_{3} D_{B}+\beta_{8} x_{2} D_{C}+\varepsilon
\end{aligned}
$$

where we set $\mathrm{x}_{0}=1$ when we fit the model to obtain the usual intercept. In order to compare the advertising campaigns, consider comparing three means denoted $\mu_{[d, a, A]}, \mu_{[d, a, B]}$, and $\mu_{[d, a, C]}$. These means represent the mean demands for Fresh when the price difference is d, the advertising expenditure is a, and we use advertising campaigns A, B, and C , respectively. The above model implies that

$$
\begin{aligned}
& \mu_{[d, a, A]}=\beta_{0}+\beta_{1} d+\beta_{2} a+\beta_{3} a^{2}+\beta_{4} d a+\beta_{5}(0)+\beta_{6}(0)+\beta_{7} a(0)+\beta_{8} a(0) \\
& \mu_{[d, a, B]}=\beta_{0}+\beta_{1} d+\beta_{2} a+\beta_{3} a^{2}+\beta_{4} d a+\beta_{5}(1)+\beta_{6}(0)+\beta_{7} a(1)+\beta_{8} a(0) \\
& \mu_{[d, a, C]}=\beta_{0}+\beta_{1} d+\beta_{2} a+\beta_{3} a^{2}+\beta_{4} d a+\beta_{5}(0)+\beta_{6}(1)+\beta_{7} a(0)+\beta_{8} a(1)
\end{aligned}
$$

Using these equations we find that

$$
\begin{aligned}
& \mu_{[\mathrm{d}, \mathrm{a}, \mathrm{C}]}-\mu_{[\mathrm{d}, \mathrm{a}, \mathrm{~A}]}=\beta_{6}+\beta_{8} a \\
& \mu_{[\mathrm{d}, \mathrm{a}, \mathrm{C}]}-\mu_{[\mathrm{d}, \mathrm{a}, \mathrm{~B}]}=\beta_{6}-\beta_{5}+\beta_{8} a-\beta_{7} a
\end{aligned}
$$

We will now use the Excel add-in MegaStat to find the 95\% confidence intervals for:

$$
\begin{aligned}
& \text { 1. } \mu_{[\mathrm{d}, 6.2, \mathrm{C}]}-\mu_{[\mathrm{d}, 6.2, \mathrm{~A}]}=\beta_{6}+\beta_{8}(6.2) \\
& =0 \beta_{0}+0 \beta_{1}+0 \beta_{2}+0 \beta_{3}+0 \beta_{4}+0 \beta_{5}+1 \beta_{6}+0 \beta_{7}+6.2 \beta_{8}
\end{aligned}
$$

Therefore we use the following predictor values: [00000000106.2]

$$
\text { 2. } \mu_{[\mathrm{d}, 6.6, \mathrm{C}]}-\mu_{[\mathrm{d}, 6,6, \mathrm{~A}]}=\beta_{6}+\beta_{8}(6.6) .
$$

Therefore we use the following predictor values: [000000106.6]
3. $\mu_{[\mathrm{d}, 6.2, \mathrm{C}]}-\mu_{[\mathrm{d}, 6.2, \mathrm{~B}]}=\beta_{6}-\beta_{5}+\beta_{8}(6.2)-\beta_{7}(6.2)$
$=0 \beta_{0}+0 \beta_{1}+0 \beta_{2}+0 \beta_{3}+0 \beta_{4}+(-1) \beta_{5}+1 \beta_{6}+(-6.2) \beta_{7}+6.2 \beta_{8}$
Therefore we use the following predictor values: [$0000000-1$ 1-6.2 6.2]
4. $\mu_{[\mathrm{d}, 6.6, \mathrm{C}]}-\mu_{[\mathrm{d}, 6.6, \mathrm{~B}]}=\beta_{6}-\beta_{5}+\beta_{8}(6.6)-\beta_{7}(6.6)$
$=0 \beta_{0}+0 \beta_{1}+0 \beta_{2}+0 \beta_{3}+0 \beta_{4}+(-1) \beta_{5}+1 \beta_{6}+(-6.6) \beta_{7}+6.6 \beta_{8}$
Therefore we use the following predictor values: [0 00000 -1 1-6.6 6.6]
Figure 1 gives the MegaStat output of fitting the variable intercept model and the 95 percent confidence intervals.

References

1 © 2005 by J. B. Orris. Published with selected McGrawHill textbooks.

Table 1: The Fresh Detergent Demand Data

	Price	IndPrice	AdvExp	PriceDif	Demand	AdCamp
Period	x1	x2	x3	$\mathrm{x} 4=\mathrm{x} 2-\mathrm{x} 1$	y	
1	3.85	3.80	5.50	-0.05	7.38	B
2	3.75	4.00	6.75	0.25	8.51	B
3	3.70	4.30	7.25	0.60	9.52	B
4	3.70	3.70	5.50	0.00	7.50	A
5	3.60	3.85	7.00	0.25	9.33	C
6	3.60	3.80	6.50	0.20	8.28	A
7	3.60	3.75	6.75	0.15	8.75	C
8	3.80	3.85	5.25	0.05	7.87	C
9	3.80	3.65	5.25	-0.15	7.10	B
10	3.85	4.00	6.00	0.15	8.00	C
11	3.90	4.10	6.50	0.20	7.89	A
12	3.90	4.00	6.25	0.10	8.15	C
13	3.70	4.10	7.00	0.40	9.10	C
14	3.75	4.20	6.90	0.45	8.86	A
15	3.75	4.10	6.80	0.35	8.90	B
16	3.80	4.10	6.80	0.30	8.87	B
17	3.70	4.20	7.10	0.50	9.26	B
18	3.80	4.30	7.00	0.50	9.00	A
19	3.70	4.10	6.80	0.40	8.75	B
20	3.80	3.75	6.50	-0.05	7.95	B
21	3.80	3.75	6.25	-0.05	7.65	C
22	3.75	3.65	6.00	-0.10	7.27	A
23	3.70	3.90	6.50	0.20	8.00	A
24	3.55	3.65	7.00	0.10	8.50	A
25	3.60	4.10	6.80	0.50	8.75	A
26	3.65	4.25	6.80	0.60	9.21	B
27	3.70	3.65	6.50	-0.05	8.27	C
28	3.75	3.75	5.75	0.00	7.67	B
29	3.80	3.85	5.80	0.05	7.93	C
30	3.70	4.25	6.80	0.55	9.26	C

ASA Section on Statistical Education

Figure 1. MegaStat output of 95\% Confidence Intervals for the Differences.
Regression Analysis

Regression output			confidence interval				
variables		coefficients	std. error	t (df=21)	p-value	95\% lower	95\% upper
(No Intercept)	b0	28.6873	5.1285	5.594	$1.50 \mathrm{E}-05$	18.0221	39.3526
ones	b1	10.8253	3.2988	3.282	.0036	3.9651	17.6855
PriceDif	-7.4115	1.6617	-4.460	.0002	-10.8671	-3.9558	
AdvExp	b2	0.6458	0.1346	4.798	.0001	0.3659	0.9257
AdvExp	b3	-1.4156	0.4929	-2.872	.0091	-2.4406	-0.3907
PriceDif*Adv	b4	-0.4807	0.7309	-0.658	.5179	-2.0007	1.0393
DB	b5	-0.9351	0.8357	-1.119	.2758	-2.6731	0.8029
DC	b6	0.1072	0.1117	0.960	.3480	-0.1251	0.3395
AdvExp*DB	b7	0.2035	0.1288	1.580	.1291	-0.0644	0.4714
AdvExp*DC	b8						

Predicted values for: Demand

ones	PriceDif	AdvExp	AdvExp ${ }^{2}$	PriceDif*Adv	DB	DC	AdvExp*DB	AdvExp*DC
0	0.0	0.0	0.0	0.0	0	1	0.0	6.2
0	0.0	0.0	0.0	0.0	0	1	0.0	6.6
0	0.0	0.0	0.0	0.0	-1	1	-6.2	6.2
0	0.0	0.0	0.0	0.0	-1	1	-6.6	6.6
		95\% Confidence Intervals						
		Predicted	lower	upper				
	$\mu_{[d, 6,2, \mathrm{C}]}-\mu_{[\mathrm{C}, 6.2, \mathrm{~A}]}$	0.32654	0.18069	0.47240				
	$\mu_{[d, 6,6, C]}-\mu_{[d, 6,6, \mathrm{~A}]}$	0.40794	0.27668	0.53920				
	$\mu_{[d, 6.2, C]}-\mu_{[d, 6.2, \mathrm{~B}]}$	0.14245	-0.00312	0.28802				
	$\mu_{[d, 6,6, \mathrm{C}]}-\mu_{[\mathrm{C}, 6.6, \mathrm{~B}]}$	0.18095	0.04688	0.31503				

