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ABSTRACT

Statistical disclosure limitation (SDL) methods aim
to protect the privacy of individual cases by statis-
tically modifying raw data, and to release useful in-
formation for the purposes of research and decision-
making. Multiple and probabilistic swapping of cate-
gorical keys (MaPS) is a Bayesian model-based, par-
tial synthesis SDL approach. MaPS swaps the values
of the key variables between probabilistically paired
cases and releases multiple swapped data sets. MaPS
offers an alternative to the model-free data swapping
techniques with less distortion of raw information and
yet better protection of data confidentiality. Simu-
lation is used to demonstrate the implementation of
MaPS and its advantages over simple data swapping
techniques.
Key Words: statistical disclosure limitation,
Bayesian modeling, swapping odds and probability

1 Introduction

With today’s increasing collection and dissemination
of information, the techniques for protecting data con-
fidentiality are needed more than ever. Various statis-
tical disclosure limitation (SDL) methods have been
proposed for public use microdata over the last several
decades. From a statistical viewpoint, these methods
can be grouped into two categories: model-free and
model-based approaches. Techniques in the former
category are easy to implement in practice and provide
some confidentiality protection for public use micro-
data. Unfortunately, most of them offer no rigorous
control on the loss of raw information, which could re-
sult in limited statistical analysis, invalid inferences,
or additional analysis burden (such as artificial miss-
ing data) for data users.
Better choices for SDL are model-based approaches,
where data are synthesized via statistical modeling
(non-, semi- or parametric) based on the information
in the raw data. The model-based techniques can be
further categorized into full synthesis and partial syn-

thesis methods depending on the proportion of the
synthetic part in the released data. In full synthe-
sis, all the cases in the released data are pseudo cases
in the sense that all the records are model-generated
and do not necessarily correspond to any of those in
the original sample. Rubin (1993) proposes to use the
multiple imputation (MI) (Rubin,1987) technique to
impute the census population and release pseudo sam-
ples from multiply imputed populations. Raghu et.
al. (2003) develop the inferential theory for this MI-
based synthesis approach. Reiter (2005a) presents an
empirical study via this MI-based approach on the US
Current Population Survey. Feinberg et. al. (1998) list
some general steps of pseudo data generation via the
statistical simulation process and suggest to build the
information on various sources of survey error (such as
editing, matching, nonresponse, etc.) into the simula-
tion process, thus developing an integrated approach
to the release and analysis of survey data. In partial
synthesis, only part of the released data is synthe-
sized while the remaining is the same as the corre-
sponding part in the raw data set. Little (1993) lists
three possible scenarios for partial synthesis – syn-
thesizing all variables of some records, synthesizing
some variables for all records, and synthesizing some
variables on some records. In the second and third
scenarios, noises can be added only to variables with
sensitive information (such as HIV status and house-
hold income) since they are usually of central interest
to data intruders; Alternatively, perturbation can be
performed on key variables/keys (e.g. gender, race) to
put some obstacle in the way to disclosure since the
intruders usually use keys to identify records. Reiter
(2003, 2005b) develops inferential methods for partial
synthetic data including point estimate, variance es-
timate, and procedures for Wald and likelihood ratio
tests. Little & Liu (2002) propose selected multiple
imputation of keys (SMIKe) for only imputing values
of key variables of selective cases in a Bayesian frame-
work. An application of SMIKe can be found in Little
et. al. (2004), which also provides a comprehensive
discussion on MI-based synthesis methods.
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In this article, we propose a Bayesian model-based
SDL approach called multiple and probabilistic swap-
ping of categorical keys (MaPS). MaPS is for cate-
gorical keys and aimed at preserving the original cell
counts from the cross-tabulation of the categorical
keys. In the case of continuous keys or a mixture of
categorical and continuous keys, SMIKe or other syn-
thesis techniques are preferred. MaPS can be viewed
a stochastic version of the model-free data swapping
techniques to swap the values of categorical keys be-
tween paired cases in the framework of Bayesian mod-
eling. Unlike simple data swapping where relationship
between swapped and unswapped variables could get
distorted, MaPS utilizes statistical modeling to pre-
serve the relationship as well as other raw informa-
tion.
The article is organized as follows: the methodology
of MaPS and the steps to apply MaPS are described in
Section 2. Implementation of MaPS in the case with
normally distributed nonkey variables is demonstrated
in Section 3. Section 4 presents the inferential meth-
ods on MaPS-modified data and discusses disclosure
risk issues in MaPS. A simulation study is presented
in Section 5. The article ends with some discussion in
Section 6.

2 The Methodology of MaPS

Suppose in a data set with n cases, there are K key
cells formed by the categorical key variables X, and
y represents p nonkey variables. A prespecified sensi-
tivity threshold s, divides the total sample into n(sen)
sensitive cases and (n− n(sen)) nonsensitive ones. A
case is defined as sensitive if it belongs to a key cell
with size < s.
The joint distribution of X and y given parameter θ
is denoted by p(X,y|θ). By choosing a prior distri-
bution on θ, p(θ), we can derive the posterior dis-
tribution p(θ|X,y) of θ and the posterior predictive
distribution p(X̃|X,y) for X. Since p(X̃|X,y) can be
rewritten as ∫

p(X̃|θ,y) p(θ|X,y) dθ,

this indicates that to obtain multiple draws of X̃ from
p(X̃|X,y), we can first draw θ from p(θ|X,y), and
given the drawn θ, X̃ can be drawn from p(X̃|θ,y).
p(X̃|X,y) is basic in MaPS. Specifically, suppose cases
i and j are two cases with the raw keys Xi and Xj ,
respectively. The probabilities of nonswapping and
swapping between cases i and j, based on p(X̃|X,y),

can be expressed as

Pr(nonswapping)
= p(X̃i = Xi|X,y) · p(X̃j = Xj |X,y) · δ(ij)

Pr(swapping)
= p(X̃i = Xj |X,y) · p(X̃j = Xi|X,y) · δ(ij),

where δ(ij) comprises the posterior predictive proba-
bilities associated with other cases than i and j. The
swapping odds between cases i and j is given by

Oij =
Pr(swapping)

Pr(nonswapping)

=
p(X̃i = Xj |X,y) · p(X̃j = Xi|X,y)
p(X̃i = Xi|X,y) · p(X̃j = Xj |X,y)

=

(
p(X̃i = Xj |X,y)
p(X̃i = Xi|X,y)

)
·

(
p(X̃j = Xi|X,y)
p(X̃j = Xj |X,y)

)

=
oi(i, j)
oj(i, j)

,

where oi(i, j) is the posterior odds of case i falling in
cell Xj vs. in cell Xi; oj(i, j) is the same odds but
for case j. Therefore, the swapping odds Oij between
cases i and j can be envisioned as these two cases com-
peting for being in one cell against another. If Oij is
too small, or equivalently, oi(i, j) � oj(i, j), case i is
unlikely to be swapped with j and the goal of protec-
tion will not be achieved. If oi(i, j) � oj(i, j), then
i has a high probability of swapping with j, which
is good for protection, but cases within a cell tend
to get homogenized in unswapped variables y after
swapping. That is, the distribution of y within a cell
tends to be over-smoothed during the model-based
swapping process, causing inconsistent inferences be-
tween the final swapped data and the raw data. If
oi(i, j) ≈ oj(i, j), cases i and j are similar in their
odds of falling in cell j against cell i. This equivalent
odds (E-odds) rule not only helps to retain the original
relationship between X and y, but also leaves space
for introducing noises into the swapping process. To
bring this E-odds rule into play in the the construc-
tion of swapping probability, we first define a weight
function wij based on Oij :

wij = exp−|log(Oij)|,

which possesses the following properties: (1) wij ∈
(0, 1] and reaches the maximum 1 when Oij = 1;
(2) the further Oij deviates from 1, the smaller wij

is. The swapping probability pij between cases i
and j could be defined as the normalized wij : pij =
wij/(

∑
j′ wij′), where j′ is any case available to be

swapped with case i. However, there is a potential
problem with this formulation: unless the number of
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the available cases j′ is very small or a small propor-
tion of these available cases carry most of the weight,
the role of the E-odds rule could be suppressed by
the noises introduced into the swapping process. A
pre-specified cutpoint w0 can used to solve this prob-
lem by letting w∗

ij = 0 when wij < w0 and w∗
ij = wij

when wij ≥ w0. Increasing w0 results in larger number
of cases getting null weight, less noises in the swap-
ping process, and consequently less protection of con-
fidentiality but more preservation of raw information.
Therefore, w0 is actually a turning parameter that can
be used to adjust the balance between the two ends
of SDL. The final swapping probability pij between
cases i and j is presented as

pij =


w∗

ij

(1+
P

k∈Ai
w∗

ik) , if i 6= j ,
1

(1+
P

k∈Ai
w∗

ik
), if i = j ,

where Ai is a set comprising all available cases to be
swapped with case i. MaPS swaps paired cases ac-
cording to pij sequentially rather than simultaneously.
This sequential swapping consists of [≤ n(sen)] swap-
ping cycles. In each cycle, a sensitive case is randomly
picked, swapping odds and swapping probabilities of
this case being swapped with other cases are calcu-
lated, and swapping of the key values between two
cases is executed given these swapping probabilities.
During the whole swapping process, each case is al-
lowed to be swapped only once. Therefore, once two
cases are virtually swapped with each other, they will
remain in the post-swapping cells and will not be con-
sidered for future swapping.
In summary, listed below are the steps of MaPS for a
microdata set: (1) Specify s and w0. (2) Choose an
appropriate model for the data and a proper prior for
the parameters in the model. (3) Obtain the posterior
distribution for the parameters and posterior predic-
tive distribution for the key variables. (4) Draw para-
meters from their posterior distribution and key vari-
ables from their posterior predictive distribution. (5)
Run the swapping cycle on each sensitive case based
on the drawn values in step (4), including calculation
of swapping odds and probabilities and execution of
swapping. (6) Repeat steps (4) and (5) independently
for D times. (7) Steps (2)-(6) can be repeated for var-
ious choices of s and w0 to tune the tradeoff between
preservation of raw information and protection of data
confidentiality. D swapped data sets can be released
once a satisfactory tradeoff is reached.

3 MaPS with Normally Distributed y

This section presents an exemplifying implementation
of MaPS with normally distributed y. In the case of

categorical y or a mixture of continuous and categor-
ical y, MaPS can be carried out in a similar manner
with an appropriate choice of model for the data.
When y is normal or approximately so and constant
variance of y is assumed across the K key cells, the
general location (GL) model (Olkin & Tate, 1961) is a
convenient choice for modeling this kind of data. For
notation convenience, we use a one-dimensional xi to
represent the values of Xi for case i. That is, if a
case falls within key cell k (= 1, . . . ,K), then xi = k.
The GL model is defined in terms of the marginal
distribution of x and the conditional distribution of y
given x:

p(xi = k) = πk, where k = 1, . . . ,K;
∑

k

πk = 1

p(yi|xi) ∼ Np(µxi
,Σ) for i = 1, . . . , n.

The n cases compose an i.i.d. sample from the model.
p is the dimension of y (If y is nonnormally distrib-
uted but still continuous, a transformation on y or the
extended general location model proposed by Liu and
Rubin (1998) could be tried). Denote the parameters
in the model by θ = {π1, . . . , πK , µ1, . . . , µK ,Σ}, the
log-likelihood for the GL model is

L(θ) = −1
2
|Σ|n +

K∑
k=1

nklog(πk)−

1
2

K∑
k=1

nk∑
i=1

(yi − µk)T Σ−1(yi − µk),

where nk is the size of cell k. If Jeffreys’ prior

p(θ) ∝
K∏

k=1

π
− 1

2
k |Σ|−

p+1
2

is used, then the posterior distributions of θ is

[π|x, y] ∼ Dirichlet(n1 +
1
2
, . . . , nK +

1
2
)

[Σ|π, x,y] ∼ Inv −Wishart(S, n−K)
[µk|π,Σ, x,y] ∼ Np(ȳk,Σ/nk) for k = 1, . . . ,K,

where π = (π1, . . . , πK)T , S is the pooled sample vari-
ance matrix of n cases, µk = (µ1k, . . . , µpk)T , and ȳk

is the sample mean of y in cell k. The full conditional
posterior predictive distribution of xi is given by

p(x̃i = k|θ, x,y) =
πkexp(φik)∑K

k′=1 πk′exp(φik′)
for k = 1, . . . ,K,

where φik = yT
i Σ−1µk− 1

2µT
k Σ−1µk (similar for φik′).

Thus, for cases i = {i1, i2} with raw keys as k =
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{k1, k2}, we can write

p(x̃i1 = k1|x,y) = πk1(yi1) =
πk1exp(φi1k1)∑K
k=1 πkexp(φi1k)

p(x̃i1 = k2|x,y) = πk2(yi1) =
πk2exp(φi1k2)∑K
k=1 πkexp(φi1k)

p(x̃i2 = k1|x,y) = πk1(yi2) =
πk1exp(φi2k1)∑K
k=1 πkexp(φi2k)

p(x̃i2 = k2|x,y) = πk2(yi2) =
πk2exp(φi2k2)∑K
k=1 πkexp(φi2k)

,

and the swapping odds between cases i1 and i2 is

O(i1, i2) =
πk1(yi2) · πk2(yi1)
πk1(yi1) · πk2(yi2)

= exp{−(yi1 − yi2)
T Σ−1(µk1

− µk2
)}.

Suppose i1 is the sensitive case in a swapping cycle,
O(i1, i2) will be calculated for each case i2 ∈ Ai1 , as
well as wi1i2 and pi1i2 given a prespecified w0. Note
the swapping odds with normal y does not depend on
the marginal distribution of X and its associated pa-
rameters π. This is generally true since p(X|y,θ) is
proportional to p(X|π) · p(y|X,µ,Σ), where the for-
mer is cancelled out in the swapping odds calculation.

4 Statistical Inferences and
Identification Risk

4.1 Statistical Inferences

For inferences based on D multiple independently
swapped data sets via MaPS, we use the inferences
methods from Reiter (2003) for partially synthetic
data. Suppose γ is a parameter of interest, from each
of the swapped data set d, the estimate γ̂d and its vari-
ance estimates V̂d are obtained, then the final estimate
for γ is

γ̄ =
D∑

d=1

γ̂d/D

and the variance of γ̄ is estimated by T

T = W +
1
D

B, where

W =
D∑

d=1

V̂d/D, B =
D∑

d=1

(γ̂d − γ̄)2/(D − 1).

W and B are respectively called the within and be-
tween variance of γ̄. The implementation of the cut-
point parameter w0 might cause some bias in γ̄. As
shown by our simulation, the bias is mild across a
moderate range of w0. The variance estimate T seems

to work well for MaPS in our simulation. More rigor-
ous development on the inference methods for MaPS
is in process.

4.2 Identification Risk

Researchers in the SDL area have been investigating
different approaches for a sensible and unified mea-
sure on disclosure risk (see Bethlehem et.al (1990);
Chen et.al (1999); Duncan & Lambert (1986); Fien-
berg et. al. (1997); Fienberg & Markov (1998); Reiter
(2005c); Samules (1998); Skinner & Holmes (1998)).
Some propose to estimate the number of population
unique records or the probability of a case being pop-
ulation unique given the sample data; some use record
linkage software to investigate the cases with poten-
tially the highest identification risk; other suggest to
model the behavior of intruders to obtain probabilities
of identification for sampled units. Without doubt the
task of quantifying identification risk is extremely de-
manding. There are zillions of data intruders who pos-
sess different amount of prior information about the
released data; and each intruder could have a unique
way of stealing information from the released data by
using various tools and techniques. Though there is
some work on incorporating sources of the uncertainty
in a Bayesian framework when formulating identifica-
tion probabilities, these methods lack practical evi-
dence and remain skeptical due to many strong as-
sumptions made about the behavior of intruders. In
the context of MaPS, to measure disclosure is even
harder because of the multiplicity feature of the re-
leased data sets.
It is not attempted here to provide an explicit measure
on identification risk in MaPS-modified data, rather a
brief description is given on the aspects where MaPS
tries to impose restrictions on record identification.
First, MaPS offers two tuning parameters s and w0

to control the amount of noises that MaPS introduces
into the raw data. The larger the s is or the smaller
the w0 is, the more perturbation there will be in the re-
leased data. Secondly, MaPS releases a small number
D of multiple data sets. The variation of the key in-
formation of a case across the multiple data sets may
confuse and intimidate intruders more than a single
data set does.

5 A Simulation Study

This section presents a simple simulation study where
y has a univariate normal distribution. 1000 data sets
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Table 1: Inferences from the Raw Data and the Modified Data via MaPS
MaPS

Raw w0 = 0.9 w0 = 0.8 w0 = 0.7 w0 = 0.6
Parameter Bias RMSE CP Bias RMSE CP Bias RMSE CP Bias RMSE CP Bias RMSE CP

β0 0.001 0.207 95.0 0.014 0.209 94.9 0.041 0.215 94.4 0.068 0.225 94.2 0.098 0.223 94.9
β1 0.003 0.410 95.4 -0.012 0.415 95.1 -0.046 0.426 95.1 -0.082 0.440 94.3 -0.133 0.459 94.6
β2 -0.006 0.221 95.2 -0.019 0.223 95.1 -0.045 0.229 94.6 -0.072 0.240 94.1 -0.100 0.238 94.8
β3 0.001 0.232 94.6 -0.014 0.236 94.8 -0.045 0.244 94.5 -0.076 0.225 94.1 -0.111 0.254 94.7
σ2 0.003 0.021 95.6 0.003 0.021 95.5 0.004 0.021 95.4 0.006 0.021 95.5 0.010 0.022 95.0

were simulated from the following model:

p(xi = k) = πk, for k = 1, 2, 3, 4;
p(yi|xi) ∼ N(µxi , σ

2) for i = 1, . . . , 100,

where µxi
∈ {µ1, µ2, µ3, µ4}. Let π1 = π2 = 0.0625,

and π3 = 0.5, π4 = 0.375; µ1 = 0, µ2 = 3, µ3 = 1.5,
and µ4 = 0.5; σ2 = 1. s was set at 10. The poste-
rior predictive distribution of xi, the swapping odds
and probability can all be obtained from the formu-
las presented in Section 3. To investigate the effect
of w0, we chose w0 at {0.6, 0.7, 0.8, 0.9} respectively.
The model-free data swapping technique was applied
to the simulated data sets to provide a comparison to
MaPS. Usually data swapping refers to “random data
swapping” (RDS) as we call it. In RDS, a certain per-
centage (p%) of total cases are randomly picked to be
swapped with other randomly selected cases. We set
p% to be the percentage of sensitive cases in each data
set in our simulation. Obviously, RDS leaves some
sensitive cases unprotected. On the other hand, RDS
is model-free without taking into account the statisti-
cal relationship between the swapped and unswapped
variables during the swapping process. Ignorance of
the relationship consequently leads to possible invalid
inferences. Therefore, RDS could perform poorly at
both ends of the trade-off. To improve over RDS from
the perspective of protection, we also applied “deter-
ministic data swapping” (DDS) where each the sensi-
tive case is bound for swapping with another randomly
picked case.
For the analysis model, we fitted a simple linear re-
gression model on y:

yi = β0+β1xi1+β2xi2+β3xi3+εi, where εi ∼ N(0, σ2).

x1, x2, x3 are the dummy variables created from x.
The parameters of interest are θ = {β0, β1, β2, β3, σ

2}.
Table 1 lists a side-by-side comparison between the
inferences from the raw data and the MaPS-modified
data in terms of bias of the estimate θ̂, root mean
square error (RMSE) of θ̂, and the coverage prob-
ability (CP) of the nominal 95% confidence interval
for each parameter. When w0 = 0.9, the inferences

Table 2: Inferences from the RDS/DDS-Modified Data

Data Swapping
RDS DDS

Parameter Bias RMSE CP Bias RMSE CP

β0 0.389 0.453 84.8 1.162 1.662 37.3
β1 -0.990 1.633 66.8 -3.05110.048 4.2
β2 -0.544 0.644 76.4 -1.158 1.709 37.9
β3 -0.137 0.354 93.4 -1.049 1.448 46.8
σ2 0.310 0.140 49.6 0.329 0.154 45.9

Table 3: A sample from a MaPP-modified Data Set

MaPS-modified x (w0 = 0.9) y raw x

3 3 1 3 3 1 4 4 4 3 1.38 1
4 1 1 1 4 4 4 4 4 4 -1.32 1
4 1 1 1 1 1 1 1 1 1 -0.62 1
4 4 1 4 1 4 4 3 4 3 1.60 1
4 2 2 2 3 3 3 2 3 4 1.50 2
3 3 3 3 3 2 3 4 3 4 1.81 2
1 1 1 4 4 1 1 4 4 1 -1.40 4

based on MaPS-modified data are comparable with
these from the raw data. As w0 goes down, more
noises are introduced into the swapping process, bias
and RMSE go up, but CP stays around the nominal
level of 95%. As mentioned in Section 4, MaPS is not
perfect in inferences. In this simulation, w0 can be
chosen to make the bias small enough to be neglected.
The advantages of MaPS over the simple data swap-
ping technique are obvious in Table 2. The inferences
based on the RDS- and DDS- modified data are far
away from being valid. Especially in DDS, the full
protection comes at a high cost in inferences. Table
3 presented some cases from a MaPS-modified simu-
lated data set to show the difficulties that intruders
may face to identify records.

6 Discussions

This article has presented a new model-based SDL
method – MaPS for public use microdata with cat-
egorical key variables. MaPS swaps the values of
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key variables in probabilistically matched cases via
Bayesian modeling. After swapping, the original key
cell structure remains unchanged. The well-controlled
swapping process in MaPS helps protection and infer-
ences in the swapped data set to reach a satisfactory
level, as demonstrated by the simulation study. The
increasing popularity of Bayesian methods and the
much advanced computation tools (such as MCMC
algorithms) make the implementation of MaPS more
feasible in practice. Yet more work needs to be done
before MaPS can be put into real practice. This in-
cludes more rigorous justification of the inferences in
MaPS and possible quantification of the identification
risk in multiple swapped data sets.
MaPS improves over the model-free data swapping ap-
proach in both preservation of raw information and
protection of data confidentiality, and provides a sta-
tistically stricter control over the tradeoff between
these two aspects. The simulation presented in this
article should ring alarm bell for the SDL practitioners
who are attracted to the simple data swapping tech-
nique due to its easy implementation. Though it is
well understood in the SDL community that the most
crucial element in SDL is the trade-off between con-
fidentiality protection and preservation of raw data,
yet model-free SDL techniques take a large portion of
the SDL market with limited well-justified statistical
inference methods or no satisfactory protection. We
hope model-based approaches could gain more pop-
ularity in the future since they are based on sound
statistical theory, offer far more choices than model-
free approaches, and help data distributors to better
achieve the two-fold objectives of SDL.
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