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1. Introduction1

The U.S. Census Bureau’s Center for Economic
Studies (CES) and its network of Census Research
Data Centers (RDCs) provide restricted access to
non-publicly available Census Bureau data files for
projects that benefit Census Bureau programs.2 At
RDCs, researchers estimate characteristics of the un-
derlying populations, typically using various types
of regression models. Regression model output, like
any other, must be checked to make sure that it does
not reveal confidential information about individual
survey respondents.

Previous research by the authors (Reznek, 2003,
Reznek and Riggs, 2004) has demonstrated that dis-
closure risks can exist in regression models, including
Generalized Linear Models (GLMs). Coefficients in
models that contain only fully-interacted (saturated)
dummy variables on the right-hand side can be risky,
since they allow recovery of cell means of the depen-
dent variable in a table defined by the categories of
the (fully interacted) dummy variables. Risks can
also arise from correlation and covariance matrices
of the variables, and variance-covariance matrices of
model coefficients. If these matrices include dummy
variables, then they can also allow recovery of cell
means in tables defined by the dummy variable cate-
gories. Whether these tables present disclosure risks
can be evaluted with the statistical agency’s stan-
dard techniques for tabular data.

All of these results have assumed that the model
residuals are independent and identically distributed
(iid). This paper focuses on output from models in
which the residuals are not necessarily iid. Section
2 reviews the layout of a model with possibly corre-
lated residuals, and describes when it reduces to the
standard linear regression model. We consider Gen-

1This report is to inform interested parties of research and
to encourage discussion. The views expressed on statistical,
methodological, or operational issues are those of the authors
and not necessarily those of the Census Bureau. We thank
Phil Steel and participants in a Center for Economic Studies
seminar for helpful comments.

2For more detail on CES and the RDC program, see http:

//www.ces.census.gov.

eralized Least Squares (GLS) estimators, which are
generalizations of the basic Ordinary Least Squares
(OLS) estimators. In the next three sections, we
consider examples of GLS models. Again, we fo-
cus on situations in which the model coefficients
and variance-covariance matrices of the coefficients
might allow recovery of tables of means of the left-
hand-side variable, broken down by the categories in
the right-hand-side dummy variables. Section 3 dis-
cusses models with heteroskedastic residuals, which
are independent but do not have the same variance
across observations. Section 4 considers models with
residuals that are correlated across observations (au-
tocorrelated). Section 5 analyzes a more complex
‘error correction’ model, in which the residuals are
both heteroskedastic and autocorrelated. Section 6
gives conclusions.

2. Model Setup and Notation

The standard linear regression setup is summarized
as follows:

y = Xβ + ε Model
E(ε |X ) = 0 iid error terms

E(εε′) = σ2I

y = Xb + e Estimated model (1)

b = (X ′X)−1X ′y Parameter vector

s2
b = s2(X ′X)−1 Var-covar matrix of b

s2 =
1

n− k
Σn

i=1e
2 Residual variance

Here:

y is the dependent variable;

X is an n × k matrix of n observations each on k
independent variables

β is a column vector of k parameters

ε is a column vector of n independent and identi-
cally distributed (iid) error terms:

b is the OLS estimate of β

e is the OLS residual, an estimate of ε.
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For a wide variety of models3, the assumption that
the errors are iid is invalid, and is replaced by the
assumption

E(εε′) = σ2Ω (2)

where Ω is symmetric and positive definite. By
Aitken’s theorem, there is a matrix P that can be
used to transform the model into the form

Py =PX + ε

or

y∗ =X∗β∗ + ε∗ (3)

where

y∗ = Py

X∗ = PX

ε∗ = Pε∗

P ′P = Ω−1

The OLS estimator of the transformed model (3) is
the Generalized Least Squares (GLS) estimator:

bGLS = (X∗′X∗)−1X∗′y

= (X ′Ω−1X)−1X ′Ω−1y (4)

To estimate (4), the error covariance matrix Ω
must be known. If (as is typical), Ω is not known, we
cannot estimate it in full generality because it con-
tains n(n-1)/2 distinct parameters, which is more
than the number of observations. Therefore, we
must impose some structure to reduce the number
of independent parameters, and then estimate this
structure. This gives rise to the wide variety of Fea-
sible Generalized Least Squares (FGLS) estimators
that are applied in diverse situations: heteroskedas-
ticity, autocorrelation, panel data, and more.

The problem here is whether the GLS or FGLS
estimates allow us to estimate means tables of sub-
sets of the data. This parallels what we did in earlier
papers.

3. Simplest Example 1:
Heteroskedastic Residuals

In models with heteroskedastic residuals, the matrix
Ω is diagonal, but the variances are not constant:

σ2Ω =




σ2
1 0 0 · · · 0
0 σ2

2 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · σ2
n


 (5)

3Here, we follow closely discussions in (Greene, 2000),
chapter 11.

In this situation, GLS or FGLS produce a Weighted
Least Squares (WLS) estimate. In either case,
a model that includes only fully interacted FGLS
dummy variable coefficients produces regression co-
efficients that are weighted means. In this situation,
it is possible to recover cells of tables of weighted
means.

We illustrate with a model from Chapter 12 of
Greene (2000). Here, we assume that Ω is known.
(This is sometimes reasonable in models with het-
eroskedasticity.) The model includes data for indi-
vidual persons on credit card expenditures and cer-
tain variables affecting them:4

exp is credit card expenditures.

age is the person’s age.

income is the person’s income.

incomesq is income squared.

hiinc is a dummy variable with 1 for high-income
persons, 0 othewise.

old is a dummy variable with 1 for older persons, 0
otherwise.

hiold = hiint · old, the interaction between hiint
and old.

ownrent is a dummy variable with 1 if the person
owns a home, 0 otherwise.

From an initial OLS model, it is reasonable to
assume that the variance of the residuals increases
with income. To investigate possible disclosure risks,
we estimate unweighted and income-weighted mod-
els including combinations of the right-hand side
variables shown in the following model:

exp = b0 + b1 · hiincome + b2 · old + b3 · hiold

+ b4 · ownrent + b5 · incomesq + e
(6)

We also compare this model with the model esti-
mated by Greene:

exp = b0 + b6 · age + b7 · income

+ b5 · incomesq + b4 · ownrent + e
(7)

We consider unweighted (OLS) as well as weighted
models in part because researchers often begin the
estimation of complex models by estimating OLS
models, and they may often wish to report these
estimates. Also, the more complex estimation pro-
cedures themselves often begin by calculating and

4The underlying data set is available at http://pages.

stern.nyu.edu/~wgreene/Text/tables/Tbl5_1.htm.
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reporting OLS estimates. Therefore, we need to con-
sider the risks of OLS models even in the estimation
of more complex models.

Table 15 gives unweighted and income-weighted
means of income (low and high) by age (young and
old). We compare these tables with parameter es-
timates from Tables 2 and 3. In tables 2 and 3,
the first four models contain only dummy variables.
Models (1), (2), and (4) are ”fully” interacted. Their
parameter estimates produce unweighted means that
can be used to recover entries in Table 1. (Whether
these are disclosure risks depends on whether the un-
derlying weighted or unweighted means pose disclo-
sure risks.) For example, the parameter estimates of
model (1) in Table 2 (shown in bold) can be used to
recover the entries in the unweighted ”All” column of
Table 1 (also shown in bold): we have b0 = 113.5869,
which is the mean of credit card expenditures for low
income persons, and b0 + b1 = 403.4262, the mean
expenditure for high-income persons.6 Similarly, the
parameters in models (2) and (4) in Table 2 can be
used to recover other cells in the unweighted portion
of Table 1. But the other models in table 2 cannot
be used in this way. Model (3) is not fully inter-
acted; Models (5) and (6) include another dummy
and continuous variables.7

Models (1), (2), and (4) in Table 3 can be used in
exactly the same way to recover the corresponding
cells in the weighted portion of Table 1.

We end this section with two notes. First, mod-
els are estimated with weighted data for reasons
other than heteroskedasticity. For example, regres-
sion models using complex survey data are often es-
timated using survey weights. Second, OLS param-
eter estimates in models with heteroskedastic data
are consistent but not efficient, and the parameter
variance estimates can be biased. Several methods
have been developed to adjust the standard errors
for heteroskedasticity. For these methods, the esti-
mated parameters are the OLS parameters. 8

4. Simplest Example 2:
Autocorrelated Residuals

The simplest model with autocorrelated residu-
als called the first-order autoregressive, or AR(1),

5All tables are at the end of the paper.
6The values do not agree exactly because of inconsistent

rounding.
7Model (6) is the first model in Table 12.3 of Greene (2000)

p. 506.
8Table 12.2 of Greene (2000) gives different estimates

of standard errors for three estimators. Stata output all
these models is available at http://www.ats.ucla.edu/stat/
stata/examples/greene/greene12.htm.

model with parameter ρ:

y = βX + ε (8)

where
ε = µt − µt−1 (9)

and the µt are iid, i = 0 . . . n. The residual variance-
covariance matrix is

σ2Ω =
σ2

µ

(1− ρ)




1 ρ · · · ρ3

ρ3 1 · · · ρ2

...
...

. . . ρ
ρ ρ2 ρ3 1


 (10)

If ρ is known, then we can carry out GLS esti-
mation by performing OLS on the following trans-
formed data:

y∗ =




√
1− ρ2y1

y2 − ρy1

...
yn − ρyn−1


 , x∗ =




√
1− ρ2x1

x2 − ρx1

...
xn − ρxn−1


 ,

(11)
where xi is a row vector containing the ith observa-
tion on each of the right-hand side variables, includ-
ing the transformed constant term.

Usually, ρ is not known and must be estimated;
several methods are available that estimate all the
model parameters jointly ((Greene, 2000) sec. 13.7).

We now estimate a very simple model, adapted
from example 13.1, p. 525 of Greene, in which real
gross private investment depends on real gross na-
tional product (GNP) and the real rate of interest.9

The investment data are autocorrelated, and Greene
fits models in which the residuals have an AR(1)
structure.10 The original data are continuous, so for
our purposes we constructed two dummy variables,
representing years of high and low GNP and high
and low real interest rates. Table 4 shows the means
of real investment by these categories of GNP and in-
terest rates. To investigate possible disclosure risks,
we estimate OLS models that include four combina-
tions of the right-hand side variables in the following
specification:

rinvest = b0 +b1 ·hiint+b2 ·hignp+b3 ·hiintgnp+e
(12)

where
9Such a simple model, with aggregated data, is not often

used at CES. However, researchers at CES do occasionally
estimate models based on aggregated data that the Census
Bureau does not publish.

10The underlying variables, with annual observations cov-
ering years 1963 through 1982, are defined in (Greene, 2000)
A13.1, p. 954. The data set is available at http://pages.

stern.nyu.edu/~wgreene/Text/tables/Tbl13_1.htm.
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rinvest is real investment

hiint is a dummy variable with 1 for real high in-
terest rate, 0 otherwise.

hignp is a dummy variable with 1 for high real
GNP, 0 otherwise.

hiintgnp = hiint · hignp, the interaction between
hiint and hignp.

Table 5 shows the OLS parameter estimates from
the four models. Exactly as in the previous section,
models (1), (2), and (4) are fully saturated, and can
be used to recover entries from Table 4; the rele-
vant entries for model (1) are shown in bold in both
tables.

Table 6 shows the same four models estimated us-
ing FGLS.11 Again, we concentrate on model (1).
The parameter estimates in this model do not al-
low recovery of the means shown in bold in Table
4. (The same is true for the other three models
in the table.) Table 8 gives both the transformed
and untransformed data for this example and re-
veals the reason. The first column is a time index
t, t = 1 . . . 20, representing years 1963-1982. The
transformed variables are calculated using data out-
side the original dummy variable categories. The
transformed dummy variables (and the transformed
constant) do not have the same categories as the
original varsiables. Without access to the micro-
data, it would be impossible to recover the means of
the original data.

We conclude that use of FGLS for models with
autocorrelated residuals appears to pose few disclo-
sure risks; at least, the risk of recovering tables of
means based on categories of dummy variables is
small. However, we should always remember that a
researcher may report an initial OLS model. Also,
it is possible (though unlikely) that FGLS might re-
duce to OLS; this happens when the estimated pa-
rameter ρ is zero.

5. Error Corrections in Models

This section focuses on the models used for estima-
tion of time-series and panel data that use error cor-
rection terms to adjust for correlation in the error
terms. Given the potential disclosure risks of releas-
ing the covariance matrix of the residuals, further
investigation on the impact of these error correction
adjustments seems warranted. Typically, these mod-
els first estimate the structure of the error term using

11Several methods are available; we use the Prais-Winsten
method implemented in Stata.

OLS. These OLS estimates are then put back into
the more complicated model to obtain the adjust-
ment. Then, does releasing the OLS estimates, the
means of the variables, and the adjusted estimates
pose disclosure risk?

The most basic of these models is corrected OLS
where the absolute value of the minimum error (ei)
is added to the constant term of the original OLS
model, β̂0. If both the original constant term and
the error-corrected constant term are released, the
minimum error would be revealed. Since this error
term is from one observation, this would be consid-
ered an inappropriate disclosure.

This model is very simplistic compared to typical
models estimated at RDCs. A more realistic model
for panel uses data with N cross-sectional units and
T time series observations:

yit = ΣK
k=1Xitkβk + uit (13)

i = 1, . . . , N ; t = 1, . . . , T

where K is the number of independent variables.
Specification of the error term defines the type of

model to be estimated. For example, uit = vi + εit

specifies a one-way (dependent only on the cross
section) fixed or random effects model; whereas,
uit = vi + et + εit specifies a two-way (dependent on
the cross section and the time series) fixed or random
effects model. Further, uit = ρiui,t−1 + εit specifies
a first-order autoregressive model with contempora-
neous correlation. The mixed variance-component
moving average error process is specified with the
following:

uit = vi + bt + eit (14)
eit = α0εt + α1εt−1 + · · ·+ αmεt−m

Both the first-order autoregressive model and the
moving average model specified above are estimated
using a two-stage GLS-type procedure.

For the autoregressive model, assume the follow-
ing:

E(u2
it) = σii

E(uitujt) = σij (15)
uit = ρiui,t−1 + εit

where

E(εit) = 0
E(ui,t−1εit) = 0

E(εitεjt) = φij (s 6= t) (16)
E(εitεjs) = 0

E(ui0) = 0
E(ui0uj0) = σij = φij/(1− ρiρj)
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Then, the covariance matrix for the residuals can
be written as follows:

E(uu′) = V (17)

=




σ11P11 σ12P12 · · · σ1NP1N

σ21P21 σ22P22 · · · σ2NP2N

...
...

...
...

σN1PN1 σN2PN2 · · · σNNPNN




where

Pij =




1 ρj ρ2
j · · · ρT−1

j

ρi 1 ρj · · · ρT−2
j

ρ2
i ρi 1 · · · ρT−3

j
...

...
...

...
...

ρT−1
i ρT−2

i ρT−3
i · · · 1



(18)

To estimate the covariance matrix, V , OLS is used
to estimate β and to obtain the fitted residuals, û =
y−Xβ̂OLS . This also provides a consistent estimator
of ρi:

ρ̂i =
(ΣT

t=2ûitûi,t−1)
(ΣT

t=2û
2
i,t−1)

(19)

where i = 1, 2, . . . , N .
The model is then transformed as follows:

yit − ρ̂iyi,t−1 =Σp
k=1(Xi1k − ρ̂iXi,t−1,k)βk (20)

+ uit − ρ̂iui,t−1

where t = 2, 3, . . . , T . Then,

y∗it = Σp
k=1X

∗
itkβk + u∗it

where t = 1, 2, . . . , T .
The second step is estimating the transformed

model using FGLS:

û∗ = y∗ −X∗β∗OLS (21)

β̂P = (X ′V̂ −1X)−1X ′V̂ −1y

Further, the covariance matrix of the coefficients
is as follows:

V ar(β̂P ) = (X ′V̂ −1X)−1

Note that β̂P can be derived directly from the
transformed model:

β̂P = (X ′(Φ̂−1 ⊗ IT )X)−1X ′(Φ̂−1 ⊗ IT )y (22)

where Φ̂ = [φ̂ij ] i, j = 1, . . . , N .
This is simply the GLS model outlined in Reznek

and Riggs (2004). Hence, when the transformation
is known, this model has the same disclosure risks
as OLS with respect to the release of the variance-
covariance matrix of the coefficients.

6. Conclusions

In this paper, we have discussed disclosure risks in
three types of models in which the residuals are
not independent and identically distributed, as in
the standard OLS model. The first two types, in
which the residuals are heteroskedastistic or auto-
correlated, are perhaps the simplest possible ones.
Models incorporating heteroskedasticity, described
in section 3, can lead to weighted regressions and
can pose risks similar to those in OLS models. Mod-
els incorporating autocorelation, described in sec-
tion 4, appear to present few risks. More realis-
tic models, illustrated by a simple error correction
model described in section 5, incorproate both au-
tocorrelation and heteroskedasticity in various ways.
Their complexity seems to prevent most disclosure
risks. However, we should always remember that a
researcher may report an initial OLS model, which
of course might pose risks. Moreover, it is possible
(though unlikely) that a relatively complex model
might reduce to OLS. Overall, we conclude that the
disclosure risks of these models are usually small -
at least, the risk of recovering tables of means based
on categories of dummy variables is small.
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Table 1: Means of Credit Card Expenditures: Unweighted and Weighted

Unweighted Weighted
Income Age Age

Young Old All Young Old All
Low 116.42151 66.81500 113.58686 114.49718 66.88952 112.11997
High 399.45482 414.14900 403.42622 371.56891 395.65982 377.07915
All 243.78650 356.26000 262.53208 195.48488 304.21312 207.94463

Table 2: Coefficents of Models of Credit Card Expenditures: Unweighted

Dependent Variable: exp (Credit card expenditures)
Model

Indep. Var (1) (2) (3) (4) (5) (6)
hiincome (b1) 289.83940 289.52180 283.03330 227.84180
old (b2) 112.47350 1.49020 -49.60650 -68.71840
hiold (b3) 64.30070 23.01660
ownrent (b4) 54.68620 27.94090
incomesq (b5) 3.01390 -14.99680
age (b6) -3.08180
income (b7) 234.34700
Constant (b0) 113.58690 243.78650 113.50170 116.42150 89.00770 -237.14650

Table 3: Coefficients of Models of Credit Card Expenditures – Weighted

Dependent Variable: exp (Credit card expenditures)
Model

Indep. Var. (1) (2) (3) (4) (5) (6)
hiincome (b1) 264.95920 264.77800 257.07170 203.56200
old (b2) 108.72820 1.01310 -47.60770 -71.00780
hiold (b3) 71.69860 25.89480
ownrent (b4) 65.45680 50.49360
incomesq (b5) 3.95530 -12.11360
age (b6) -2.93500
income (b7) 202.16940
Constant (b0) 112.12000 195.48490 112.06940 114.49720 81.66630 -181.87060
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Table 4: Means of Investment by GNP and Interest Rate

GNP
Low High Total

Interest Low 142.1596 202.2608 180.4058
Rate High 163.7402 228.6995 199.8287

Total 152.9499 213.2769 189.1461

Table 5: Investment Models – OLS Coefficient Estimates

Dependent variable: Real investment (rinvest)
Model

Indep. Var. (1) (2) (3) (4)
hiint (b1) 19.4229 24.4625 21.5806
hignp (b2) 60.3270 62.3655 60.1011
hiinteract (b3) 4.8581
Constant (b0) 180.4058 152.9499 140.7187 142.1596
N=20

Table 6: Investment Models – FGLS (Autocorrelation) Coeff. Estimates

Dependent variable: Real investment (rinvest)
Model

Indep. Var. (1) (2) (3) (4)
hiint (b1) 14.4217 21.6560 14.3980
hignp (b2) 46.8686 54.2330 47.6627
hiinteract (b3) 12.6784
Constant (b0) 176.8380 158.7417 145.6316 149.4874
rho 0.8146 0.5513 0.5732 0.5922
N=20
Estimated with Stata ”Prais” procedure

Table 7: Means of Transformed Real Investment

Interest Rate Transformed Investment
Low 43.1811
High 37.3731
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Table 8: Data for Investment Model - Original and Transformed

Original Data Transformed Data
(1) (2) (3) (4) (5) (6) (7)

time (t) rinvest constant hiint trinvest tconstant thiint
1 126.8313 1 0 73.5675 0.5800 0.0000
2 133.8464 1 0 30.5313 0.1854 0.0000
3 152.6358 1 0 43.6064 0.1854 0.0000
4 163.7572 1 1 39.4221 0.1854 1.0000
5 155.3251 1 0 21.9307 0.1854 -0.8146
6 161.4975 1 1 34.9718 0.1854 1.0000
7 172.0244 1 1 40.4708 0.1854 0.1854
8 157.6818 1 1 17.5530 0.1854 0.1854
9 173.3153 1 0 44.8698 0.1854 -0.8146

10 195.0000 1 0 53.8197 0.1854 0.0000
11 217.3050 1 1 58.4606 0.1854 1.0000
12 198.7313 1 1 21.7176 0.1854 0.1854
13 163.8445 1 0 1.9607 0.1854 -0.8146
14 194.8768 1 0 61.4113 0.1854 0.0000
15 231.4173 1 0 72.6733 0.1854 0.0000
16 257.0137 1 0 68.5043 0.1854 0.0000
17 258.8423 1 1 49.4824 0.1854 1.0000
18 225.2550 1 1 14.4056 0.1854 0.1854
19 243.3637 1 1 59.8740 0.1854 0.1854
20 200.3577 1 0 2.1169 0.1854 -0.8146

Source: Greene (2000) chap. 13.
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