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ABSTRACT 
 
Multiple imputation procedures (MI) are a useful tool 
to adjust for item non-response but are often based on 
fully parametric assumptions, such as multivariate 
normality. For many applications such assumptions 
may not hold in practice, for example if the data are 
skewed and affected by rounding and truncation 
effects. Hot deck imputation methods, however, make 
less or no assumptions about underlying distributions 
and may be more appropriate to use in such 
circumstances. The basic idea is to combine multiple 
imputation and hot deck approaches with the aim of 
preserving advantageous properties of MI and at the 
same time relaxing distributional assumptions. This 
paper develops a semi-parametric data augmentation 
method to generate MI under the missing at random 
assumption and a nonignorable missing data 
mechanism. The use of predictive mean matching as a 
form of hot deck imputation is considered as part of 
the data augmentation procedure to improve the 
robustness of the multiple imputation method.  
 
Keywords: missing data, hot deck imputation; 
predictive mean matching imputation; nonignorable 
non-response. 
 
 
1. Introduction 
 
Item non-response is often a problem in survey data 
and various imputation and weighting techniques have 
been developed to compensate for non-response bias. 
One imputation method is multiple imputation (MI) 
which has found considerable attention in the literature 
in recent years. The availability of multiple imputation 
procedures in a number of software packages has 
facilitated an easier use of the method. Although other 
imputation methods may be more efficient than MI and 
might be more suitable for some applications or certain 
types of estimators (Kim and Fuller, 2004), MI can be 
regarded as a flexible approach to imputation with the 
advantage of providing a relatively simple variance 
estimation technique. The basic principles of MI have 
been described in detail in Rubin (1987), Schafer 

(1997; 1999) and Zhang (2003). Multiple imputation 
procedures are often based on fully parametric 
assumptions, such as multivariate normality. An 
imputation model should, however, preserve 
distributional features of variables subject to missing 
data. For example, imputing variables, that are skewed 
or truncated, under an assumption of joint normality, 
will lead to biased results if distributional features are 
of interest, such as the estimation of the tail behavior 
(see also Schafer, 1999). This may be of concern for 
example when considering income and earnings 
variables, in particular when estimating the distribution 
of such variables.  
An attractive approach to imputation is hot deck 
imputation. An advantage is that actually observed 
values are imputed and, depending on the type of hot 
deck method, less or even no assumptions about 
underlying distributions of the variables of interest are 
made. Hot deck imputation is common in practice, in 
particular in official statistics. The combination of both 
approaches, multiple and hot deck imputation, could 
lead to imputation methods with desirable properties. 
Such a combination of methods may have certain 
advantages, for example overcoming distributional 
assumptions by using a hot deck method and at the 
same time providing a simple variance estimation 
formula by using MI. Some approaches of how to do 
this have been discussed in the literature such as the 
use of the approximate Bayesian bootstrap (Rubin and 
Schenker, 1986) or the semi-parametric methods 
described in Schenker and Taylor (1996).  
In this paper, the use of hot deck methods is proposed 
as a means of relaxing distributional assumptions made 
by parametric model-based multiple imputation 
methods. The paper develops a method that combines 
hot deck and multiple imputation as a semi-parametric 
approach under the missing at random (MAR) 
assumption and a nonignorable non-response 
assumption. 
The structure of the paper is as follows. Section 2 
introduces notation, the missing data mechanisms and 
the estimation problem considered. Section 3 reviews 
some existing approaches that combine MI and hot 
deck methods. In section 4 the basic ideas of data 
augmentation for imputation are introduced and 
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section 5 develops the use of predictive mean matching 
imputation in the data augmentation procedure under 
the MAR assumption. The method is extended to a 
nonignorable missing data setting in section 6. 
Inference under semi-parametric data augmentation is 
described in section 7 and section 8 makes some 
concluding remarks.  
 
 
2. Missing Data Assumptions and Estimation 
 
To facilitate the discussion the following notation is 
introduced. The focus is, at least initially, on the 
univariate non-response case, where only one variable 
is subject to missing data. Let iy  be the variable of 
interest, which is missing for some units i  in a random 
sample . Let ir  be the binary variable indicating 
whether  is observed, i.e. i  if i  is observed 
and  if not. The fully observed auxiliary 
variables in sample s  are denoted in a row-vector .  

s
iy 1r = y
0ir =

i
When considering a non-response problem an 
assumption needs to be made about the non-response 
mechanism. The standard assumption is that the data 
are missing at random (MAR), i.e.  

w

                                     ,             (1) |i iy r w⊥ i

i

which means that conditioning on the observed 
variables w , y is independent of r  (Rubin, 1987). i i i
Alternatively, if data from a validation sample or a 
follow up study are available, a nonignorable non-
response assumption may be considered. Let us 
assume that surrogate data are available, that is let ix  
be a variable, which measures iy  with error, but is 
observed for all units in the sample. Then, the 
following missing data assumption may be made,  
                                   ,             (2) | ,i i ix r y w⊥
which means that conditioning on the true variable iy  
and i , the measurement error variable ix  is 
independent of ir . This may be regarded as an 
attractive assumption in the presence of surrogate data, 
since it allows conditioning on the true variable iy . 
The assumption will be referred to as the common 
measurement assumption (CME), since it can be 
interpreted as a measurement error model assuming the 
same measurement error for respondents and non-
respondents. Other nonignorable assumptions may be 
conceivable depending on the type of data available. 
(for a discussion on the plausibility of assumptions 

w

(1) 
and (2) for a specific application see Durrant and 
Skinner, 2006). 
In the following, the case is considered where the 
variable iy  does not follow a normal distribution, but 
may be skewed and truncated. The aim of the analysis 

is estimation of the cumulative distribution function of 
. The parameter of interest, θ , may be expressed as iy

                          1( ) ( iI )
i U

y y y
N ∈

= ≤∑θ ,                       (3) 

where U  is the population of interest, N  is the size of  
,  is the indicator function indicating if a 

condition is true or false and y  is a specified 
threshold. Under imputation this parameter may be 
estimated by: 

U (.)I

                             1.̂( ) ( . )i
i s

y I y
n

θ
∈

= ≤∑ y

η β ε= + 2~ (0, )i Nε σ

,                    (4) 

where  if  and  if  and 
 is the imputed value. For simplicity, it is assumed 

that . The aim is to define an 
appropriate imputation method to obtain  for 

, either under MAR or under nonignorable non-
response.  

.i iy y= = 1ir ˆ.i iy y= = 0ir
îy
( , , , )i i i iy x w r iid∼

îy
= 0ir

 
 
3. Multiple Imputation and Hot Deck 
 
One way of generating MI is to use a Markov chain 
Monte Carlo method defined in a Bayesian framework 
(Rubin, 1996; Schafer, 1997; Lipsitz, Zhao and 
Molenberghs, 1998). Particularly suitable for 
imputation of missing data is the data augmentation 
algorithm by Tanner and Wong (1987). Such an 
approach, however, is fully parametric and requires 
making assumptions about underlying distributions. As 
emphasized in Schafer (1997) for some applications a 
parametric approach might perform reasonably well 
even if the assumptions do not hold in practice. 
However, for applications where components of the 
data are skewed or show certain features, such as 
truncation and rounding effects, or where the 
estimation of distributional quantities is of interest, 
fully parametric approaches do not seem suitable. In 
such circumstances, it is important to focus on semi-
parametric or non-parametric imputation methods that 
make less or even no distributional assumptions about 
the variables to be imputed.  
Hot deck imputation methods are non-parametric (or 
semi-parametric) and aim to avoid distributional 
assumptions. A particularly attractive form of hot deck 
imputation is predictive mean matching imputation 
(Little, 1988). Under the MAR assumption, an 
imputation model is defined relating  to auxiliary 
variables , which may be written as 

iy
iw

                      y ,  ,          (5) i i i

where i  is a vector of covariates, functions of iw , i  
are the residual terms and β  and  are the unknown 
parameters.  

η ε
2σ
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The predicted values of iy , , are obtained from 
the model estimating the parameters based on 
respondents data only, and are calculated for all i s . 
The value *iy  is replaced for the missing item, where 
the respondent  is the donor for non-respondent  if  

ˆprediy

∈

*i j
                          , * ˆ ˆmin | |pred pred

ji j ii
D y y= −

i.e.  ,  where  and .  * *
The advantage of the predictive mean matching 
imputation method is that it uses the linear regression 
model based on normal theory only to define the 
distance. The method is therefore expected to be less 
sensitive to model misspecifications than fully 
parametric approaches.  

ĵ iy y= 0jr = 1ir =

 
One way of implementing a combination of hot deck 
imputation and multiple imputation under MAR is to 
use the approximate Bayesian bootstrap (ABB) (Rubin 
and Schenker, 1986), which may be regarded as a non-
parametric approach to MI. Having defined imputation 
classes, for example based on categories of iw , the 
donors within each imputation class are sampled 
(bootstrapped) with replacement of the same size as 
respondents are available in each class. For each non-
respondent in a class one donor is selected with 
replacement from the set of bootstrapped respondents 
for that class at random. This is repeated M  times. 
The ABB for predictive mean matching imputation is 
described in Heitjan and Little (1991), and requires 
bootstrapping the sample s  with replacement creating 

 bootstrap samples , . The 
parameters of the imputation model 
M ( )ms 1,...,m = M

(5) are estimated 
based on respondents only for each bootstrap sample 
separately, to reflect parameter uncertainty, and the 
predicted values, , for all i , are defined 
for each bootstrap sample. Based on these values 
predictive mean matching imputation is performed, by 
drawing at random one donor value from a set of 
nearest neighbors, e.g. defined as the nearest 5 above 
and 5 below the predicted value of 

( )ˆpred miy s∈

( )ˆpred mjy , . 0jr =
 
Alternatively, at least for the univariate missing data 
case under MAR, the partially parametric techniques 
proposed in Schenker and Taylor (1996) may be used. 
The method requires drawing parameters of the 
imputation model from their posterior distribution 
given the observed data, calculated analytically. Then, 
the M multiple draws of the estimated parameters are 
used in the imputation model to derive the predicted 
values of iy , , , for all i s . 
Using predictive mean matching, a nearest neighbor is 
defined based on these predicted values and a donor 
value is chosen for imputation for .  

( )ˆpred miy 1,...,m = M

'Y′ ′

∈

1,...,m M=
 

An alternative, semi-parametric MI approach would be 
to incorporate a hot deck method in the MI data 
augmentation procedure. The novelty here is the use of 
predictive mean matching in the imputation step 
instead of regression imputation with the aim of 
relaxing residual assumptions, commonly made in 
standard data augmentation procedures. The aim is to 
improve the robustness of the MI procedure to model 
misspecification. This approach will be discussed in 
the following sections, first based on the MAR 
assumption in (1), then under the nonignorable 
assumption in (2). 
 
 
4. Data Augmentation 
 
Data augmentation is a Markov chain Monte Carlo 
method, which enables imputation for complex 
missing data problems by iteratively solving more 
tractable complete data problems (Schafer, 1997 and 
Gelman et al., 1998). In the context of missing data, 
the data augmentation algorithm consists of a series of 
imputation steps (I-steps), which impute the missing 
values given all the observed data and a current set of 
parameters, and posterior steps (P-steps), in which the 
parameters of the model are drawn from their posterior 
distribution given the complete data formed from the I-
step. On convergence, the algorithm should provide 
imputed values from the conditional distribution of the 
missing values given the observed data, where the 
distribution is integrated over any unknown parameters 
in the model with respect to the posterior distribution 
of these parameters given the data.  
 
The following notation is used. The vectors of length 

containing the sample values are denoted  
and R , for example 1 . Similarly, W  
denotes a matrix with values of the covariates. Suppose 
without loss of generality that for the direct variable 
only the first  elements are observed in sample s  
and the following  elements are missing. It is 

, where  is the 
observed part of Y  and  is the 
missing part. 

,n ,Y X
( ,..., )'nY y y=

rn
rn n−

( , )misobsY Y= 1( ,..., )'
rnobsY y y=

1( ,..., ) '
r nmis nY y y+=

 
 
5. A Semi-Parametric Data Augmentation 
Approach under MAR  
 
In data augmentation under the assumption of MAR as 
specified in (1) the imputation and the posterior steps 
are as follows. Let us write ( | , )f Y W ζ , i.e. ζ  is 
defined as the parameter for the complete data model 
( | )f Y W . The predictive distribution of the direct 
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variable required for the I-step is ( | , )f Y W ζ  and the 
complete-data posterior for the P-step is ( | , )f Y Wζ . 
 
 
5.1 The Imputation Step  
 
Given a current estimate of the parameters , where 

 denotes the iteration of the data augmentation 
procedure, , the imputation step draws the 
imputed value from  

( )dζ
d

0,...,d = D

d      ,             (6) ( 1) ( )ˆ ~ ( | , )d
i iiy f y w ζ+

where  is the imputed value for non-respondent 
 in iteration  and  is the vector of 

parameters of the complete data model. The model 

( 1)ˆ diy
+

i 1d + ( )dζ

( | , )i if y w ζ  is referred to as the imputation model.  
Drawing values  from ( 1)ˆ diy

+ ( )( | , )di if y w ζ  is usually 
based on a parametric regression model. A standard 
approach would be to assume that 
                   ,                    (7) 2

|| , ~ ( ; )i i i Y Wy w Nζ η β σ

where i  is a vector of covariates, functions of iw ,  
is a vector of coefficients and  denotes the 
conditional variance of  given i . The vector of 
parameters is . Regression imputation 
can then be performed adding a normal error to the 
predicted values from the model (David et al. 1986). 
Similar assumptions as in 

η β
2
|Y Wσ

iy w
2
|( , )Y Wζ β σ′= ′

T

)

(7) have been made by 
Raghunathan et al. (2001) and by Heitjan and Rubin 
(1990), even in the presence of skewed data. However, 
they are unlikely to hold in many applications. It may 
for example be the case that the assumption of 
homoscedasticity may be violated in reality.  
To relax the distributional assumptions made in (7), 
and to improve the robustness of the standard 
parametric approach, the imputation step may be 
modified by using predictive mean matching 
imputation. Predictive mean matching still makes an 
assumption about the form of the linear relationship 
but does not make any assumptions about the 
distribution of the residuals, such as constant variance 
and normality. Two forms of predictive mean 
matching are suggested to be implemented in the 
imputation step. These are: 
a.) Hot deck imputation within classes: In each 
iteration, imputation classes, t , , are 
defined based on the range of the predicted values of 
the imputation model as specified in 

C 1,...,t =

(7). For example, 
for each non-respondent in class tC , 10 donor values 
are selected from the same class without replacement. 
Then, one donor value is selected at random from this 
set for imputation. After convergence of the data 
augmentation algorithm for example  
imputed sets are selected. How to draw imputed values 

after convergence and inference under the data 
augmentation algorithm is discussed in section 7.  

= 10M

b.)   Nearest neighbor imputation: for example, the 10 
nearest neighbors for each non-respondent are defined 
and one donor value is selected at random for 
imputation. Then, for example  imputations 
are selected after convergence. 

= 10M

 
 
5.2 The Posterior Step  
 
In the posterior step for iteration , the required 
vector of parameters  is 
drawn from the posterior distribution 

1d +
( 1)dζ + ( 1) 2 ( 1)

|( ,d d
Y Wβ σ+ +′ ′=

( 1)( | . , )df Y Wζ + , where denotes 
 and  are the imputed values 

from the I-step in iteration ( . Under an 
uninformative prior for ζ and 

( 1). dY +
( 1)ˆ( , )d

obs misY Y + ′′ ′ ( 1)ˆ d
misY +

1d + )
(7) the posterior 

distribution of interest, following derivations in Box 
and Tiao (1992), is  

( | , )f Y Wζ 2 1/2 2 1/2 2
| | 2

1 |

1( ) ( ) exp ( )
2

n

i iY W Y W
i Y W

yσ σ η
σ

− −

=

⎧ ⎫⎪ ⎪−⎪ ⎪∝ −⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∏ β      

1( )2 22
| 2

1|

1
( ) exp ( )

2

nn

i iY W
iY W
yσ η

σ

+−

=

⎧ ⎫⎪ ⎪−⎪ ⎪= −⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∑ β

1)

.
ηβ

)

.                (8) 

The required parameters for the P-step can therefore be 
drawn from the posterior distribution as    

               and     2 2
. . 2| ˆ ˆ| ~ Y Y nY W Wσ ε ε χ−

−′

             ,          (9) 2 2
| |

ˆ| , ~ ( , ( )Y W Y WW Nβ σ β σ η η −′

where  is the inverted chi-square distribution, η  
defines the corresponding matrix to ,  is the 
maximum likelihood estimate, , and 

, both based on augmented data 
 for iteration ( 1 .  

2
2nχ−

−

iη β̂
1ˆ ( ) Yβ η η η−′=

.
ˆˆ .Y Yε = −

( 1). dY + d +
 
Note that under the assumption of MAR and in the 
case of a monotone missing data structure, it is not 
necessary to use an iterative procedure such as data 
augmentation to obtain draws from the observed-data 
posterior. Under these conditions, it is possible to 
express the observed-data posterior in a tractable form. 
In the case of a monotone missing data structure and if 
the prior density factors into independent densities, 
then the observed-data posterior distribution also 
factors into independent posteriors and Bayesian 
inference is possible without iteration. In this case the 
observed-data posterior is the product of a multivariate 
normal and a scaled inverted-chisquare density based 
on observed data only, rather than on augmented data, 
i.e. observed and imputed data. Under such conditions, 
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it would be enough to draw the parameters from their 
posterior distribution given the data as in Schenker and 
Taylor (1996). However, for illustrative purposes, 
since the interest is on computational properties of 
such an iterative method and to allow extensions to 
more complex problems a data augmentation 
procedure is used.  
 
 
6. Semi-Parametric Data Augmentation Approach 
under Nonignorable Non-Response 
 
Let us now turn to using multiple imputation under the 
CME assumption, representing nonignorable non-
response as specified in (2). Here, a surrogate variable 
of i , namely ix , is assumed to exist, which measures 
i  with error but is fully observed. Under 

noningorable non-response the data augmentation 
procedure is more complex since the non-response 
model cannot be ignored and needs to be incorporated 
in the imputation procedure.  

y
y

Given the data under CME, a model for  
conditional on W  is considered which is expressed as  

, ,Y X R

 ( , | , ) ( | , , , )f Y X W f R Y X Wζ ψ ,  
where  and  are the parameters of the complete 
data and the missing data mechanism respectively. A 
prior density for ζ  and  is written as 

ζ ψ

ψ ( , )f ζ ψ . The 
predictive distribution of the variable iy  required for 
the I-step is ( | , , , , )f Y X RW ζ ψ  and the complete-
data posterior required for the P-step is 
( , | , , , )f Y X RWζ ψ . It is convenient to express the 

parameter   as , where  is the vector of 
parameters of 

ζ 1 2( , )ζ ζ′ ′ ′ 1ζ
1( | , , )f Y X W ζ  and 2ζ  is the vector of 

parameters of 2( | , )f X W ζ . Using the CME 
assumption, the factorisation  

( , , | , , )f Y X R W ζ ψ

1 2( | , , ) ( | , ) ( | , , )f Y X W f X W f R Y Wζ ζ= ψ       (10)      

appears convenient for the implementation of the I- 
and the P-steps. This factorization into three models 
has a simple interpretation. The first model represents 
the predictive distribution of the true variable, the 
second the predictive distribution of the variable 
measured with error and the third factor represents a 
model for the non-response under the CME 
assumption. Let us now specify the imputation step 
and posterior step for data augmentation under the 
nonignorable non-response assumption.  
 
 
 
 
 

6.1 The Imputation Step  
 

The imputation step requires drawing imputed values 
for missing values of  from the predictive 
distribution 

iy
( | , , 0, , )i i i if y x w r ζ ψ= . Using the CME 

assumption and (10), it is   

 ( | , , 0, , )i i i if y x w r ζ ψ= ( , , 0 | , , )
( , 0 | , , )
i i i i

i i i

f y x r w
f x r w

ζ ψ
ζ ψ

==
=

 

1
( 0 | , , )

( | , , )
( 0 | , , ,
i i i

i i i
i i i )
f r y w

f y x w
f r x w

ψζ
ζ ψ

==
=

   

and therefore 

( | , , 0, , )i i i if y x w r ζ ψ=

1( | , , ) ( 0 | , , )i i i i i if y x w f r y wζ ψ∝ = .                  (11) 

The I-step may thus be implemented as follows. Given 
current values of the parameters 1ζ  and , where 

 denotes the iteration of the data augmentation 
procedure, a possible imputed value for non-
respondent i , denoted , is drawn  

( )d

)

+

ˆ d+

( )dψ
d

( 1)*ˆ diy
+

                          .  ( 1)* ( )
1ˆ ~ ( | , , )d d

i i iiy f y x w ζ+

Rejection sampling (Tanner, 1996 and Gelman et al., 
1998) is then performed based on the non-response 
model, accepting  for imputation with 
probability  , 
where  denotes the probability of non-response. 
If accepted, it is , where  is the 
imputed value for non-respondent i  at iteration . 
If rejected, another value iy  is drawn and so on. 
The I-step in 

( 1)*ˆ diy
+

( 1)* ( )ˆ( 0 | , ,d d
i i if r y w ψ+= ( 1)*d

iρ
+=

( 1)*d
iρ
+

( 1)* ( 1)ˆ ˆd d
i iy y+ = ( 1)ˆ diy

+

1d +
( 1)*

(11) has therefore a simple interpretation 
and is easy to implement. The model 1( | , , )i i if y x w ζ  
is henceforth referred to as the imputation model and 
( 0 | , ,i i i )f r y w ψ=  as the non-response model. An 

advantage of the factorisation in (10) is that a model 
for  does not need to be fitted, and therefore no 
assumptions need to be made about this distribution.  
X

To illustrate the procedure how to draw values  
from  in practice, initially a standard 
parametric regression model is described, which is 
then modified. The standard approach, similarly to 

( 1)*ˆ diy
+

( )
1( | , , )di i if y x w ζ

(7), 
would be to assume that 
                   ,          (12) 2

1 | ,| , , ~ ( ; )i i i i Y XWy x w Nζ η β σ

where i  is a vector of covariates, functions of ix  and 
i , β  is a vector of coefficients and | ,Y XWσ  denotes 

the conditional variance of  given  and i . The 
vector of parameters is 1 | ,Y XWζ β . As before, 
to relax the distributional assumptions, two forms of 
predictive mean matching imputation are proposed: a.) 
hot deck imputation within classes and b.) nearest 
neighbor imputation, where the classes and the nearest 

η
w 2

iy ix w
2( , )σ′ ′=
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neighbors are defined based on the predictions of the 
regression model. Due to the nonignorable non-
response model in the I-step these procedures are 
slightly more complex than under MAR.  
Under hot deck imputation within classes Q  donor 
values, denoted , are selected with simple 
random sampling without replacement for non-
respondent i  in class tC from that class. Under nearest 
neighbor imputation the  responding nearest 
neighbors above and below the predicted value for 
non-respondent  are used to obtain the Q  possible 
values for imputation, where the value for Q  is an 
even number, e.g. . However, under hot deck 
imputation within classes and nearest neighbor 
imputation the number of values that can be chosen for 
imputation is restricted due to the definition of the 
classes and the nearest neighbors. The acceptance-
rejection procedure based on the probability 
i

*
1ˆ ˆ,...,i iQy y*

)

/2Q

i

10Q =

ρ 1 ( 1 | , ,i i if r y w ψ= − =  is therefore modified 
using a weighted bootstrap method as described in 
Carroll et al. (1995) and Tanner (1996), since classical 
rejection sampling requires being able to generate a 
large number of potential imputed values, which is 
only possible under parametric random regression 
imputation. Under the weighted bootstrap method the 
value for imputation, , for iteration , is 
sampled out of the Q  possible values 

 with probabilities 

( 1)ˆ diy
+ 1d +

( 1)* ( 1)*
1ˆ ˆ,...,d d
i iQy y+ +

)di ψ
+

Q

 
*( 1)d

iqρ
+ =�  

( 1)* ( 1)*( ) ( )

1
( 0 | , , )/ ( 0 | , ,

Q
d dd

i i iiq iq
q

f r y w f r y wψ+

=
= =∑   (13) 

for all . Note that under both, rejection 
sampling and the weighted bootstrap method, in each 
I-step only one value  is imputed for each non-
respondent. The difference to the data augmentation 
procedure under MAR in section 5 is that the values 
are drawn with the addition of rejection sampling or 
weighted bootstrap from the predictive distribution of 

.  

1,...,q =

( 1)ˆ djy
+

iy
 
 
 
6.2 Posterior Distributions for the Posterior Step  
 

The P-step requires drawing values of the parameters 
from the complete data posterior distributions. The 
required posteriors are 1  and ( | , , )f Y X Wζ
( | , , )f Y RWψ , i.e. the posteriors of 1ζ  and . 

Following the imputation step a posterior for 2ζ does 
not need to be fitted. The derivation of the posterior 

step under CME has been discussed in Durrant and 
Skinner (2006). Here, only the main results are 
presented. Under a computationally uninformative 
prior and assumption 

ψ

(12), the resulting posterior 
distribution for , discarding 
proportionality constants, can be expressed as 

2
1 | ,( , )Y XWζ β σ′= ′

1( | , , )f Y X Wζ

2 3/2 2 1/2 2
| , | , 2

1 | ,

1( ) ( ) exp ( )
2

n

i iY XW Y XW
i Y XW

yσ σ η
σ

− −

=

⎧ ⎫⎪ ⎪−⎪ ⎪∝ −⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∏ β      

3( )2 22
| , 2

1| ,

1
( ) exp ( )

2

nn

i iY XW
iY XW
yσ η

σ

+−

=

⎧ ⎫⎪ ⎪−⎪ ⎪= −⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∑ β

2ε χ
1)

.
ηβ

.          (14) 

In the special case that the data has a monotone 
missing-data pattern (Little and Rubin, 2002) and since 
the parameters are independent, the required 
parameters can be drawn from the posterior 
distribution similarly to the MAR case as follows   
2

. . 1| , ˆ ˆ| , , ~ Y Y nY XW Y X Wσ ε −
−′ and     

,        (15) 2 2
| , | ,

ˆ| , , , ~ ( , ( )Y XW Y XWY X W Nβ σ β σ η η −′

where  is the corresponding matrix to ,  is the 
maximum likelihood estimate, , and 

, both based on augmented data .  

η iη β̂
1ˆ ( ) Yβ η η η−′=

.
ˆˆ .Y Yε = − .Y

 
To compute the posterior for ψ , ( | , , )f Y RWψ , also 
a noninformative prior is assumed. For the response 
model, let i i i i i( 1 | , , ) ( )f r y w G pψ τ ψ= = = , where 

 is a row-vector including functions of iy  and iw , 
i  denotes the probability of response and G  the 

logistic regression model,  

iτ
p

                          exp( )
( )

1 exp( )
i

i
i

G
τ ψ

τ ψ
τ ψ

=
+

.  

Following the approach adopted in Zellner and Rossi 
(1984) the posterior can be specified as 

                              .                         (16) 1ˆ~ ( , )N Tψ ψ −

The matrix T  is defined as           

                      
2

ˆ

( )L
T V

ψ ψ

ψ τ τ
ψ ψ =

⎡ ⎤∂ ′⎢ ⎥= − =⎢ ⎥′∂ ∂⎣ ⎦
,  

where  is a matrix including functions of Y  and W  
and V  is a diagonal matrix with element  

τ

        2
2 2

( )1
(1 )(1 )
i i ii i

i i
i ii i

r G gr r
v g

G GG G
⎡ ⎤ ′−−⎢ ⎥= + −⎢ ⎥ −−⎣ ⎦

,    (17) 

where  
 

ˆ( )i iG G τ ψ= ,  
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ˆz

(z ) ˆ(
z

i i

i
i i

i

dG
g g

d τ ψ
τ ψ

=

⎡ ⎤
⎢ ⎥= =⎢ ⎥⎣ ⎦

) , and 

ˆz

(z )
z

i i

i
i

i

dg
g

d τ ψ=

⎡ ⎤
′ ⎢ ⎥= ⎢ ⎥⎣ ⎦

. 

  

 

7. Inference Under Both Semi-Parametric Data 
Augmentation Procedures 
 
Inference under both cases of data augmentation in 
section 5 and 6 follows the standard procedure for 
multiple imputations. Suppose that the data 
augmentation algorithm has run long enough to 
achieve approximate stationarity and to be independent 
of the initial starting values 

(0)
ζ  for the MAR case and 

(0)

1 and for nonignorable non-response, i.e. d  is 
large enough such that the vectors of parameters  
(

( )

1 and ) are essentially draws from the 
observed-data posterior. Imputed values , 

,  can be determined for each 
non-respondent i  from repeated I-steps. The resulting 
point estimators from each of the M  completed 
datasets, denoted  for , can then 
be combined (Rubin, 1987) to give the point estimator: 

ζ
(0)

ψ
( )d

ζ
d

ζ
( )d

ψ
( )ˆ miy

1,...,m M= 1M >

( ).̂ ( )m yθ 1,...,m M=

( )

1

1ˆ ˆ.( ) . ( )
M

m

m
y

M
θ θ

=
= ∑ y .                 (18) 

Under the model assumptions this estimator will be 
approximately unbiased. The method of multiple 
imputation, moreover, suggests a method of variance 
estimation in the context of data augmentation (Little 
and Rubin, 2002). For the purpose of variance 
estimation, the M  sets of multiple imputations should 
not be obtained from successive sets of imputed values 
mis  since they are correlated. Instead, the Markov 

chain may be subsampled after an initial burn-in period 
using every k -th iterate to achieve approximate 
independence of repeated imputations. An estimator of 
the variance of  is then given by (Rubin, 1987): 

Y

.̂( )yθ

             ˆ ˆˆvar ( .( )) . (1 1/ ) .MI y A Mθ = + + B           (19) 

where  

                 ( )

1

1 ˆ. .
M

m

m
A A

M =
= ∑  

is the within imputation variance, and  is the 
standard variance estimator valid for complete data, 
applied to obsY  and the imputed values  for the 

-th imputation, and  

( ).̂ mA

( )m
misY

m

( ) 2

1

1ˆ ˆ. ( . ( )
1

M
m

m
B y

M
θ θ

=
= −

− ∑ .̂( ))y   

is the between imputation variance.  
 
An application of the semi-parametric data 
augmentation method and a simulation study 
evaluating the properties of this method for a specific 
example on hourly pay distributions are described in 
Durrant and Skinner (2006). They find in their 
application that standard parametric imputation 
approaches, including fully parametric multiple 
imputation, do not perform well, for skewed and 
truncated hourly pay data. However, the semi-
parametric method described above incorporating 
predictive mean matching imputation in the imputation 
step of the data augmentation procedure instead of 
fully parametric regression imputation performs much 
better and shows robustness against model 
misspecifications. This coincides with findings 
described in Schenker and Taylor (1996), investigating 
fully parametric imputation methods under model 
misspecifications and comparing the performance to a 
partially parametric predictive mean matching method.  
 
 
8. Conclusions 
 
The combination of multiple imputation and hot deck 
imputation can have several advantages. Such an 
approach can make use of the flexibility of the MI 
procedure, with the advantage of providing a relatively 
simple variance estimation formula, as well as 
preserving attractive features of hot deck imputation, 
such as making less parametric assumptions, and being 
able to impute actually observed values. Further work 
is needed to evaluate the properties of such a method 
in more detail and to develop the combination of 
multiple imputation and hot deck procedures for the 
multivariate missing data case.  
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