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1. Introduction1 
 

Government agencies routinely release various public use 
microdata files (PUMF) at the respondent level such that 
outside researchers can perform various statistical analyses 
according to their own needs and verify results published 
by government agencies.  There are mainly two equally 
critical but conflicting goals when releasing PUMF: 
maximizing the “openness” of its operation and preserving 
the confidentiality of the survey respondents.  “Without 
adequate access to data, decision making is poorly based, 
and without adequate assurance of confidentiality, 
voluntary reporting is likely lessened.” (Duncan and 
Lambert, 1986) 
 
The basic requirement of creating PUMF is to provide 
adequate information on the sampling design and the 
variables so that various official estimates and their 
associated randomization-based variance estimates can be 
reproduced.  Releasing survey weights and the cluster 
membership of a given respondent is needed to conduct 
standard statistical inference with complex survey data.  
However, releasing the key information may put the 
respondents at the risk of disclosure (Fienberg and 
Willenborg, 1998). 
 
Commonly used methods to guard the confidentiality of 
survey respondents include cell suppression, data masking, 
and data swapping (Willenborg and de Wall, 1996; 
Duncan and Pearson, 1991; Cox, 1994, Fienberg, 1997).  
Nevertheless, these methods can distort relationships 
among variables in the data set.  In addition, Rubin (1993) 
proposed to create multiple, synthetic data sets for public 
release.  The agency selects units from sampling frame and 
imputes their data using models fits to the original survey 
data.  However, a challenge for this approach is that a 
specific model must be assumed to reflect the structure of 
the data with a reasonable accuracy. 
 
An alternative approach, the mean bootstrap method, was 
proposed by Yung (1997) to reduce the disclosure risk 
arising from the release of bootstrap weights with PUMF.  
The mean bootstrap method averages the bootstrap weights 
over C bootstrap samples to reduce the possibility of zero 
weights.  In order to obtain B mean bootstrap weights, 

                                                 
1 The opinions expressed in this paper are those of the 
authors and not necessarily those of the National Center 
for Health Statistics. 
 

B×C bootstrap weights are produced.  For example, in the 
General Social Survey, 5000 bootstrap weight variables 
were produced.  These weights were then averaged in 
groups of size C=25 to obtain the B=200 mean bootstrap 
weights that accompany the original macrodata (Phillips, 
2004).  This procedure has successfully reduced the 
disclosure risk arising from the pattern of “zero” bootstrap 
weights.  However, it has several disadvantages.  First, 
compared to the standard bootstrap approach, B×C 
(instead of B) bootstrap weights are needed to obtain B 
mean bootstrap weights.  Second, this method relies on 
poststratification adjustments to add noise to the mean 
bootstrap weights so that members from the same cluster 
do not share the same bootstrap weight. However, 
poststratification adjustments can be deduced back by 
smart users, and members from the same cluster still share 
the same weight, which might help an inquisitive user to 
recreate stratum and cluster membership from patterns of  
B mean bootstrap weights. 
 
The main objective of this paper is to propose a new 
multiple-bootstrap-datasets presentation (MBDP) method.  
The MBDP method can effectively overcome the 
disadvantages of the mean bootstrap method: 1) only B 
bootstrap weights are needed in order to produce B 
bootstrap datasets, and 2) the MBDP method is capable of 
reducing the disclosure risk arising from the pattern of 
bootstrap weights, not relying on the poststratification 
adjustments. 
 
As mentioned earlier, the original microdata may contain 
some information that can potentially reveal respondents’ 
identity.  For example, if the sample contains an outlier 
respondent (e.g., the richest person in the country), then 
the microdata can not only reveal this person’s data but 
can potentially reveal information on some other 
respondents in the same cluster.  Furthermore, combination 
of different variables for some respondents might be 
unique, which can be employed to identify the 
respondents. The circumstances discussed above are 
interesting research areas and need to be studied in the 
future.  Readers interested in different research issues 
related to confidentiality and disclosure limitations are 
referred to Willenborg and de Waal (1996).  This work 
focuses on addressing the disclosure risk arising from the 
pattern of bootstrap weights.   
 
The outline of this paper is as follows.  In Section 2, the 
proposed MBDP method is presented.  In Section 3, this 
method is compared with another competitive method 
under two simple but realistic design settings analytically, 
and the corresponding simulation studies are conducted.  
Finally, in Section 4 this work is summarized. 
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2. Proposed MBDP Method 

 
The original microdata contain the information on the 
respondents, sample design and auxiliary variables.  Some 
of the information cannot be released to protect the 
confidentiality of the respondents.  In order to reduce the 
disclosure risk, the idea of this proposed MBDP method is 
to release multiple bootstrap datasets (avoiding zero 
replicate weights) instead of single original microdata to 
block all design information. 
 
2.1 Difference between the MBDP Method and the 
Mean Bootstrap Method 
 
The main difference between the MBDP method and the 
mean bootstrap method is in the manner of presentation in 
the PUMF.  The mean bootstrap method basically provides 
one PUMF that contains all B bootstrap replicate weights 
and the variables.  By investigating the pattern of all B 
bootstrap weights, the stratum and cluster membership 
might be identified by using the fact that records in the 
cluster have the same weight.  In contrast, we suggest the 
presentation of multiple PUMFs.  For each PUMF, only 
the clusters that are selected in the bootstrap method are 
included.  For complex survey design, it is possible that 
members from different clusters share the same bootstrap 
weights.  Therefore, members of the same cluster can not 
be identified by their bootstrap weights.  Among different 
PUMFs, there is no one-to-one correspondence because 
different clusters are selected for different PUMFs.  It is 
not possible to combine all B PUMFs and investigate the 
pattern of all B bootstrap weights to identify the members 
of the same cluster.  Therefore, disclosure risk arising from 
the pattern of bootstrap weights is reduced.  Furthermore, 
the bootstrap methods have already been well studied for 
the last two decades.  “Various bootstrap procedures were 
developed to deal with various complex issues such as 
complex correlation structure induced by the survey 
design, weighting, imputation, small-area estimation, 
among others.” (Lahiri, 2003)  Therefore, based on 
multiple bootstrap datasets valid inferences on variance 
estimation can be obtained, while the disclosure risk 
arising from the pattern of bootstrap replicate weights is 
reduced. 
 
2.2 MBDP Estimates and Their Variances 
 
The population parameter, θ , is estimated using B 
independent bootstrap datasets instead of the original 
microdata.   

   Define )ˆ(ˆ ** Zθθ = , where )ˆ...,ˆ,ˆ()(ˆˆ **
2

*
1

**
pZZZSZZ ==  is 

estimated using the bootstrap sample s*.  Based on a 

bootstrap distribution of *θ̂ , the following two estimators 

of θ  are considered: (i) BSZE θθ ˆ))](ˆ([ *
* = , the mean of 

the bootstrap distribution of ))(ˆ(ˆ ** SZθθ = , and (ii) 

BSZE θθ ˆ̂
))](ˆ([ *

* = , the original estimate with Ẑ  replaced 

by ))(ˆ( *
* SZE .  Note if )(Zθθ =  is a linear function of 

),...,,( 21 pZZZZ = , the two estimators are same.  If 

)(Zθθ =   is nonlinear, we have the following two 
theorems: 
Theorem 1: Assume regularity conditions to achieve good 
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1

()ˆ()ˆ(ˆ
n

OZVZV pDD =− , where 
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 (See Appendix for 

derivation).   
   Monte Carlo simulation methods can be used to estimate 
the expectation and variance of the estimates.  Suppose 
one decides to release B bootstrap samples.  Then,  
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where {
**

2
*
1 ,...,, Bsss } are B bootstrap samples. 

Theorem 2: Assume regularity conditions to achieve good 

estimates ZZED =)ˆ(  and )
1

()ˆ()ˆ(ˆ
n

OZVZV pDD =− , where n 

is the sample size.  Then, we have 

)
1
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1
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)]ˆ([)1
1
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1
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[ ZV
B

V D
B θθ ×+=  (See Appendix for derivation).  

   Using a proper bootstrap procedure according to the 

corresponding sampling design, the variance )]ˆ([ ZVD θ  can 
be estimated by 

2

1

* )
~

)](ˆ[(
1

)]ˆ([var B
B

b
bD sZ

B
Z θθθ −= ∑

=

. (2.1) 

It can be seen from this theorem that in case sample size is 
sufficiently large, the bootstrap estimates are 
approximately unbiased; when B is sufficiently large the 
variances of bootstrap estimates approach the original 

microdata-based variance )]ˆ([ ZVD θ . 
 

3. Comparison between the Proposed MBDP 
Method and the Inverse Sampling Method 

 
An inverse sampling algorithm was proposed by Hinkens, 
Oh, and Scheuren in 1997.  This is an innovative 
technique.  The idea is to generate a new sample from the 
original complex sample using a subsampling mechanism, 
and the generated new sample has a simpler data structure, 
like simple random sample (SRS), that is easier to analyze.  
This technique provides a useful tool to allow the public to 
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access microdata because the design information would 
not be needed for the analysis. 
   However, the success of applications heavily depends on 
the complexity of survey design.  Hinkins and Scheuren 
(2001) attempted to invert the sample for National Health 
Interview Survey (NHIS) to protect confidentiality.  
Nevertheless, inverting the NHIS data resulted in 
microdata only to the secondary sampling unit (SSU) level 
– data aggregated to clusters of households.  For most 
researchers SSUs are simply not attractive as a unit of 
analysis.  Therefore, this would not solve the problem of 
releasing useful microdata while protecting confidential 
data simultaneously for the survey data with complicated 
sampling design, like NHIS data.  On the other hand, 
inverse sampling is still a valuable confidentiality 
protection method for surveys with simpler sampling 
designs. 
   Next, we will compare the MBDP method with the 
inverse sampling method analytically under two design 
settings: stratified SRS and one-stage clustering sampling.  
Simulation studies are also conducted to validate our 
analytical work. 
 
3.1 Stratified simple random sampling (SSRS) 
   The population mean for the survey variable, y, under 

SSRS is ∑
=

=
L

h
h

h Y
N

N
Y

1

, where hN  is the population size 

for the stratum h, ∑
=

=
L

h
hNN

1

, and ∑
=

=
hN

i
hi

h
h y

N
Y

1

1
.  The 

classical estimate for the population mean and its variance 
are  

∑ ∑
= =

=
L

h

n

i
hi

h

h
str

h

y
nN

N
y

1 1

)
1

( ,   (3.1.1)  

∑
=

=
L

h h

hh
strD n

S

N

N
yV

1

2
2)()( ,   (3.1.2) 

where hn  is the sample size for the stratum h and 

∑
=

−=
hN

i
hhi

h
h Yy

N
S

1

22 )(
1

 (Cochran, 1977). 

   According to Rao et al (2003), in order to obtain an 
inverse sample for SSRS, one needs to first generate a 
random number mh for each stratum from the hyper-
geometric distribution with the mass function 

⎟⎟
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= ∏
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)( , and then draw a SRS of size mh 

from nh sample units in stratum h, where 
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h
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),( '

' −
−

−=
N

mN

N

N

N

N
mmmCov hh

hh .  It can be seen from 

this scheme that there are two steps involved in order to 
obtain the inverse sample for SSRS:  

1. A random number mh for each stratum is 
generated by hypergeometric distribution; and 

2. mh sample units are selected with SRSWOR from 
nh originally sampled units in stratum h. 

   The estimator for the population mean based on the jth 

inverse sample is ∑∑
= =

=
L

h

m

k
hkj

h

y
m

y
1 1

* 1 , where hsk ∈  and sh 

represents original sample of size nh from stratum h, and 
mh denotes the number of units selected from sh in the 
inverse sample.  Subsequently, the inverse sampling 

estimate of the population mean is ∑
=

=
g

j
jINV y

g
y

1

*1
 (Rao 

et. al., 2003), where g denotes the number of the inverse 
samples generated.  It can be readily shown that 

YyE INV =)(  and by assuming m/N → 0, 
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1 1

2)( .  Under proportionally 

stratified sampling, we have 

Nn
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n
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m
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gN
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1
)( ,  

where ∑= hnn  and ∑∑
= =

−=
L

h

N

i
hhi

h

YySSW
1 1

2)(  (Derivation 

is available upon request). 
 
   We recall that from Theorem 2 the variance for the 

proposed MBDP estimate is )()1
1

( strDMBDP yV
B

V ×+= .  

Next, we compare MBDPV  with INVV .  Under 
proportionally stratified sampling, we have  

−MBDPV INVV =
Nn

SSW

n

SSW

m

SSTO

gNNn

SSW

B
−−−+ )(

1
)

1
1( . 

(3.1.3) 
For a fair comparison, let Bn=gm, where n denotes the 
bootstrap subsample size and m is the inverse sample size.  
Note that the total sample size in g inverse samples and B 
bootstrap samples would be equal.  Consequently, we have 

−MBDPV INVV = )(
1

m

SSB

n

SSW

gNgNm

SSB

gNn

SSW −=− , 

  (3.1.4) 

where SSB = SSTO – SSW.  Therefore, if 
m

SSB

n

SSW < , 

then the MBDP method gives smaller variance estimates 
and is more efficient.  Otherwise, the inverse sampling 
method is more efficient. 
 
3.2 Simulation study 1 
   To validate our analytical results of Section 3.1, a limited 
simulation study is conducted.  A finite population 
{ hhi NiLhy ,...1;,...,1; == } is generated by the model 
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hihhiy εµ +=  for specified H, Nh, hµ  and 2
hσ , where 

hµ  is the stratum mean and ),0(~ 2
h

iid

hi N σε . 
   We create R=500 independent SSRS samples with 

proportionally allocated sample size {
N

N
nn h

h = } from 

each stratum.  For the rth SSRS sample, different estimates 
and their efficiencies are studied as follows. 
1) Original micordata-based estimates: (3.1.1) and (3.1.2) 

with 2
hS  estimated by ∑

=

−
−

=
hn

i
hhi

h
h yy

n
s

1

22 )(
1

1
 and 

∑
=

=
hn

i
hi

h
h y

n
y

1

1
. 

2) Inverse sampling estimates  
i) Generate a random number mh for each stratum from 
the hyper-geometric distribution with the mass function 

⎟⎟
⎠
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)( , where )min( hnm = ;  

ii) Draw a SRS of mh without replacement from nh 
sample units in the hth stratum; 
iii) Repeat step i) and ii) multiple times, say g.  
Conditioning on the original SSRS sample, g 
independent inverse samples are generated.  The 
population mean can then be estimated along with its 
variance estimates (Rao et. al., 2003):  

∑
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i
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   (3.2.2) 
where )(iy and )(iv  denote the estimate and the variance 

estimate produced from the ith inverse sample, 
respectively. 

3)  MBDP estimates 
i)     Select a subsample of size nh from original sample 
units for each stratum with replacement; 
ii)     Repeat step i) B times and B=gm/n; 
iii) We have: 

∑
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    (3.2.4)  
where )(by  denotes the estimate produced from the bth 

bootstrap sample. 
   The estimators strry , , INVry , , MBDPry , , )var( ,strry , 

)var( ,INVry , and )var( ,MBDPry  are calculated for each 

SSRS sample.  The means over R SSRS samples 
corresponding to each estimator are  
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∑
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R
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1
, )var(

1
)var( , respectively. 

   Tables 1 and 2 report the true population mean, three 
different point estimates and corresponding variance 
estimates produced by the original microdata-based 
method, the inverse sampling method, and the MBDP 
method over 500 simulation runs.  The following 
parameters are adopted in the calculation: 
N=(1183761,552909,678371,436023), 005.0×= hh Nn , 

2
hσ ={1,1,1,1}, g=1000, and three different values of hµ .  

N is chosen based on the statistics of income sample 
(Hinkins et al, 1997).  It can be seen from Table 1 that the 
three different methods perform equally well in terms of 
point estimates.  However, from Table 2 it can be observed 
that the MBDP estimates are more efficient than inverse 
sampling estimates when }4,...,1;{ =hhµ  gets more 
disperse.  This result confirms our expectation.  The more 
disperse of }4,...,1;{ =hhµ , the smaller of the value of 

m

SSB

n

SSW
− .  Therefore, by (3.1.4) the more efficient of 

the MBDP estimates compared to the inverse sampling 
estimates.  Table 2 also reports the proportion of negative 
variance estimates produced by the inverse sampling 
method over 500 SSRS samples.  The maximum of this 
proportion can be as high as 44%, and the more disperse 
the value of hµ , the higher the proportion of negative 
variance estimates produced by the inverse sampling 
method.  Table 3 presents the results when we only 
consider the SSRS samples with positive variance 
estimates )var( INVy .  Large difference (54.70 vs. 7.03) 

between )var( INVy  and )var( MBDPy  are found when 

=hµ {10, 15, 20, 25} and the MBDP estimates are much 
more efficient than the inverse sampling estimates. 
 
3.3 One-stage Cluster sampling with equal cluster size M 
   Let A and a represent the total number of clusters in the 
population and the number of sampled clusters, 
respectively.  For one-stage cluster sampling the 

population mean is ∑
=

=
A

i
iY

A
Y

1

1 , estimated by 

 ∑
∈

=
asi

icl Y
a

y
1 ,   (3.3.1)  

where iY  denotes the ith cluster mean and as  represents 

the set of sampled clusters.  Assuming finite population 
correction can be ignored, the variance  
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   According to Rao et. al. (2003), the approximate scheme 
to obtain an inverse sample for one-stage cluster sampling 
is to select one unit randomly from each cluster, and then 
treat the inverse sample as SRS.  The estimator for the 
population mean using the jth inverse sample is 

∑
∈
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ikj y
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1* , where isk ∈  and is  denotes the set of 

units in the ith sampled cluster.  The expectation and 
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derived that the variance for INVy  is 
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   The variance for the proposed MBDP estimate by 
Theorem 2 given in Section 2 is  
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    (3.3.4) 
Next, we compare the variances by the inverse sampling 
method and the MBDP method,  
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Let Bn=gm. Then, we have 

)(
1

M

SSW
SSB

aMAB
VV INVMBDP −=− . (3.3.6) 

This equation indicates that the variance difference 

depends on the data structure.  If 
M

SSW
SSB < , then 

INVMBDP VV <  and the MBDP method is more efficient.  
Otherwise, the inverse sampling method is more efficient.  

 
3.4 Simulation study 2 

   Again a limited simulated study is conducted to validate 
our analytical results in Section 3.3.  First we generate a 
finite population { MjAiyij ,...1;,...,1; == } using the one-

way random effects model: ijiijy εαµ ++= , where 

),0(~ 2τα N
iid

i  and ),0(~ 2σε N
iid

ij  
for specified A, 

M, µ , 2τ , and 2σ .  
   We draw a clusters with SRSWOR.  Given the sampled 
clusters, we study different estimates and their efficiencies:  
1) Original microdata-based estimates (3.3.1) and (3.3.3). 
2) Inverse sampling estimates  

i) Randomly draw one unit from each sampled 
clusters, and the inverse sample consists of a units; 
ii) Repeat step i) multiple times, say g.  Conditioning 
on the original sample, g independent inverse samples 
are generated; 
iii) According to Rao et. al. (2003), the population 
mean can be estimated along with its variance 
estimates by (3.2.1) and (3.2.2). 

3)  MBDP estimates 
i) Resample a clusters from original sampled 
clusters with replacement; 
ii) Repeat step i) B times and B independent 
bootstrap samples are produced.  Let B = g/M; 
iii) The population mean can be estimated along with 
its variance estimate by (3.2.3) and (3.2.4). 

   We draw R=500 original samples independently from 
the finite population.  For the rth original sample, six 
estimators clry , , INVry , , MBDPry , , )var( ,clry , )var( ,INVry ,  

and )var( ,MBDPry  are calculated.  The means over R 

simulation runs corresponding to each estimator are 
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   Tables 4 and 5 give the relative biases for different point 
estimates and the corresponding variance estimates 
produced by the original microdata-based method, the 
inverse sampling method, and the MBDP method over R 
simulation runs.  The following parameters are used: 
A=10,000, M=15, a=30, 100=µ , g=1,500, B=100, 

2σ =15, and five different values of 2τ .  It can be 
observed from Table 4 that the three different methods 
perform similarly in terms of relative bias for different 
point estimates.  The three variance estimates from Table 5 
are also similar.  Nevertheless, a slight pattern is showed 
that the inverse sampling estimates are more efficient than 

the proposed MBDP estimates as 2τ increases.  This result 
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confirms our expectation.  The value of 
M

SSW
SSB −  

increases with 2τ , and accordingly by (3.3.6) the more 
efficient are the inverse sampling estimates.  Table 5 also 
reports the proportion of negative variance estimates 
produced by the inverse sampling method over 500 
simulation runs.  The results show that the maximum of 
the proportion of negative variance estimates by inverse 

sampling method is 5.6%, and the smaller the value of 2τ , 
the higher the proportion of negative variance estimates. 

 
3. Summary and Future Research 

 
This paper proposed a new method to reduce the disclosure 
risk arising from the pattern of bootstrap replicate weights 
while valid inferences on the variance estimation for 
complex surveys can be obtained.  This new method was 
compared with the inverse sampling method under two 
simple but realistic survey designs.  Both our analytical 
work and simulation work showed that whether the MBDP 
estimates have smaller variances depends very much on 
the data structure.  One advantage of the MBDP method 
over the inverse sampling method is shown via simulation: 
variance estimates produced by the MBDP method are all 
positive, however, negative variance estimates can be 
produced by the inverse sampling method, especially 
under proportionally stratified sampling when the stratum 
means, hµ ’s, are more disperse.  
   In the future research, we will compare the MBDP 
method and the inverse sampling method under more 
complex design settings, like two-stage cluster sampling, 
probability proportional to size sampling, etc.  
Furthermore, applications of the MBDP method to the real 
complex survey data would be useful.  The inverse 
sampling method was applied to NHIS data (Hinkins and 
Scheuren, 2001) and this approach was not judged feasible 
for NHIS data.  It would be interesting to see the 
performance of the MBDP method in the application to 
NHIS data.  This paper also discussed a few potential 
situations when this new method might fail to protect the 
confidentiality of respondents in the Section 1.  Further 
research is needed to understand the disclosure risk for the 
proposed method and to provide effective solutions in 
these circumstances. 
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Table 1. Means for different point estimates over 500 simulation runs. 

(N=(1183761,552909,678371,436023); 005.0×= hh Nn ; 2
hσ ={1,1,1,1}; g=1000) 

 

 Y  stry  INVy  MBDPy

=hµ {10, 10.5, 11, 11.5} 10.56 10.56 10.56 10.56 
=hµ {10, 11, 12, 13} 11.13 11.13 11.13 11.13 
=hµ {10, 15, 20, 25} 15.64 15.64 15.64 15.64 

 
Table 2. Means for different variance estimates over 500 simulation runs. 

(N=(1183761,552909,678371,436023); 005.0×= hh Nn ; 2
hσ ={1,1,1,1}; g=1000) 

 

 
)var( stry  

(×10-5) 

)var( INVy  
(×10-5) 

)var( MBDPy  
(×10-5) 

 
Prop (Neg#) 

=hµ {10, 10.5, 11, 11.5} 7.02 6.95 7.06 0.2% 
=hµ {10, 11, 12, 13} 7.03 7.27 6.98 3.8% 
=hµ {10, 15, 20, 25} 7.02 9.70 7.04 44% 

 
Table 3. Means for different variance estimates over simulation runs with only positive )var( invy . 

(N=(1183761,552909,678371,436023); hn =0.005 hN ; 2
hσ ={1,1,1,1}; g=1000) 

 

 
)var( stry  

(×10-5) 
)var( INVy  

(×10-5) 
)var( MBDPy  

(×10-5) 

 
Prop (Neg#) 

=hµ {10, 10.5, 11, 11.5} 7.02 6.97 7.06 0.2% 
=hµ {10, 11, 12, 13} 7.03 7.65 6.97 3.8% 
=hµ {10, 15, 20, 25} 7.02 54.7 7.03 44% 

 
Table 4. Relative biases for different point estimates over 500 simulation runs. 

(A=10,000, M=15, a=30, 100=µ , g=1,500, B=100,  and 2σ =15) 
 

 
Y

Yycl −  

(×10-4) 
Y

YyINV −  

(×10-4) 
Y

YyMBDP −  

(×10-4) 
2τ =0.01 -0.9 -1.0 -0.9 
2τ =0.1 0.7 0.6 0.7 
2τ =1 -1.4 -1.3 -1.4 
2τ =5 2.3 2.4 2.4 
2τ =10 -3.5 -3.6 -3.4 

 
Table 5. Means for different variance estimates over 500 simulation runs. 

(A=10,000, M=15, a=30, µ =100, g=1,500, B=100, and 2σ =15) 
 

 )var( cly  )var( INVy )var( MBDPy  Prop (Neg#) 

2τ =0.01 0.035 0.036 0.035 5.6% 
2τ =0.1 0.037 0.037 0.037 4.2% 
2τ =1 0.067 0.066 0.067 0% 
2τ =5 0.199 0.197 0.201 0% 
2τ =10 0.372 0.372 0.377 0% 
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Appendix 
In this appendix, we prove Theorems 1 and 2. 
 
Theorem 1 (Proof): 
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( θθ VarVar B = . Therefore, 
inference does not change as far as bias and variance are 
concerned.   
 
Theorem 2 (proof): 
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