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Abstract 

 
The Australian Bureau of Statistics has recently developed a 
generalized estimation system for processing its large scale 
annual and sub-annual business surveys. Designs for these 
surveys are highly stratified, have non-negligible sampling 
fractions, are overlapping in consecutive periods, and are 
subject to frame changes.  A significant challenge was to 
choose a variance estimation method that would best meet the 
following requirements: valid for a wide range of estimators 
(e.g. ratio and generalized regression), requires limited 
computation time, can be easily adapted to different designs 
and estimators, and has good theoretical properties measured 
in terms of bias and variance. This paper describes the 
Without Replacement Scaled Bootstrap (WOSB), a variation 
of Rao and Wu (1998)’s With Replacement Scaled Bootstrap 
(WSB), that was implemented. The main advantages of the 
Bootstrap over alternative replicate variance estimators are its 
efficiency (i.e. accuracy per unit of storage space) and the 
relative simplicity with which it can be specified in a system. 
This paper describes the method for point-in-time and 
movement variance estimates.  Simulation results obtained as 
part of the evaluation process show that the WOSB was more 
efficient than the WSB.  
 

1. Introduction 
 
In 2000, the Australian Bureau of Statistics (ABS) first 
obtained a register of business containing taxation data from 
the Australian Taxation Office (ATO). The data items 
included turnover, sales, and other expense items.  In 2001, 
the ABS used this register as a sampling frame for some 
surveys in order to improve the efficiency of its sample 
designs. This data is updated for each business at least 
annually.  To make maximum use of these administrative 
data items in estimation the ABS developed a generalized 
estimation system called ABSEST, with the capability of 
supporting generalized regression estimation (GREG) and 
variance estimation. ABSEST has been routinely used for the 
monthly ABS Retail Survey since July 2005.  
 

A generalized estimation system is highly desirable for 
statistical agencies as it supports a variety of survey output 
requirements at high levels of statistical rigor for an 
acceptable cost.  The ABS has invested considerable 
resources into its generalized estimation system for business 
surveys. Prior to 1998, the ABS’s generalized estimation 
system was capable of Horvitz-Thompson, ratio, and two-
phase estimation with variance estimates based on Taylor 
Series (TS) approximations. In 1999, the Taylor Series 
method was replaced with the Jacknife method. Subsequent 
feedback about the computer design and usability were that 
changes to the generalized estimation system made it 
increasingly complex to maintain and develop and that 
processing time could be undesirably long. These key 
features were important when choosing the variance 
estimation method for ABSEST.  
 
Core survey output statistics for ABS business surveys are 
estimates at a point in time, estimates of movement between 
two time points, and estimates of rates. Business surveys are 
typically equal probably designs within stratum, are highly 
stratified (100s of strata), can be either single or two phase 
sample designs, and for surveys that sample on more than 
occasion the overlapping sample can range from 0 to 100%.  
The sample size for business surveys range from less than 1 
000 to 15 000; stratum level sample sizes can be as low as 3 
and as high as several hundred. 
 
Section 2 introduces the GREG estimator. Section 3 
discusses alternative variance estimators for GREG and 
justifies why the Bootstrap variance estimator was chosen for 
ABSEST. Section 4 describes the Without Replacement 
Scaled Bootstrap (WOSB) and Rao and Wu (1998)’s With 
Replacement Bootstrap (WSB) variance estimators for point-
in-time estimates under single-phase designs. Section 5 
describes the WOSB for movement estimates. Section 6 
measures the bias and variance properties of WOSB and 
WSB in a simulation study. Section 7 gives some concluding 
remarks and mentions further methodological developments 
to ABSEST. 
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2. Generalised Regression (GREG) Estimator 
 
In this section we briefly describe the GREG that is 
implemented in ABSEST.  Consider a finite population  U 

divided into H strata { }1 2 HU U , U ..., U= , where hU  is 

comprised of hN  units. The finite population total of interest 

is h
h

Y Y=∑ , where 
h

h ih
i U

Y y
∈

= ∑  and h=1,…H. Within 

stratum h, the sample hs  of hn  units is selected from hU  
by Simple Random Sampling without Replacement 
(SRSWOR). The complete sample set is denoted by 

{ }1 2 Hs s ,s ...,s= .      

 
Consider the case where a K vector of auxiliary variables 

( )T

i 1i ki Kix x ,..., x ,..., x=
%

 is available for i s∈  and the 

corresponding vector of population totals i
i U

X x
∈

=∑
%

 are 

known. The GREG estimator (Särndal,  Swenssen, and 
Wretman, 1992 pp 227) is given by 

( )T

reg i i i i
i s i s

ˆ ˆ ˆY w y w y X X Bπ
∈ ∈

= = + −∑ ∑%

% % %

, where 

i i iw w g=% , i h hw N / n= , 1B̂ T t−=
% % %

 with 1T−

%

 being the 

generalised inverse of T
%

, i i
i s

X̂ w xπ
∈

=∑
% %

 and 

( )( )T
T 1

i i
ˆg 1 x T X X−

π= + −
% % % %

, T 1
i i i i

i s

T w x x −

∈

⎛ ⎞= σ⎜ ⎟
⎝ ⎠
∑

% % %

, 

1
i i i i

i s

t w x y −

∈

⎛ ⎞= σ⎜ ⎟
⎝ ⎠
∑

%%

, iσ  is a constant motivated by the 

superpopulation model T
i i iy x= β + ε

%

%

 such that iε  is 

independently and identically distributed with mean 0 and 

variance 2
iσ , and ( )ˆE B = β

%

%

. It is well known that regŶ  is 

unbiased to 1O(n )− . The weights iw%  are stored for ready 
calculation of estimates. In practice bounds will be placed on 

the weights, iw% .  If the weights, iw% ,  given by the above 
equation, are outside these bounds, they are calculated 
through iteration (see Method 5 of Singh and Mohl (1996)).  
 

The expression for regŶ  can be adapted to a range of 

practical situations (see Estevao, Hidiroglou, Sarndal 1996). 

For example, when ix 1=
%

, regŶ  becomes the Horvitz-

Thompson estimator given by 
h

h hi
h i s

Ŷ w yπ
∈

=∑ ∑  with 

estimated variance  2 2
h h h h

h

ˆˆ ˆVar(Y ) N / n (1 f )sπ = −∑ , 

where 
h

2 2
h h hi h

i s

ˆŝ 1/(n 1) (y y )
∈

= − −∑ , 
h

h hi h
i s

ŷ y / n
∈

=∑  

and h h hf n / N= . 
 

3. Comparison of Alternative Variance Estimators 
 
The ABSEST variance estimation method was required to 
have bias and variance properties that were  competitive in 
simulation studies, when compared with alternatives in the 
literature. In order to simplify the maintenance and 
development of the system, the variance estimation system 
specifications were required to be generic such that all 
calculations were largely independent of the type of estimator 
and sample design. Also, strong consideration was given to 
minimise the computational costs. 
 
We considered the relative merits of a number of variance 
estimators for implementation in ABSEST. The TS method 
was not suitable as its variance expression for complex 
estimands could involve many terms specific to the estimand, 
making it difficult to adapt into a generalized system. For the 
same reason other linearized variance estimators (described 
in Estevao, Hidiroglou, Sarndal 1996 and evaluated in Yung 
and Wu (1996)) were rejected, despite good theoretical 
properties, good empirical results and being computationally 
efficient. We also considered the Bootstrap, Jacknife and 
Balanced Repeated Replication (BRR) methods (Shao and 
Tu 1995, Rao and Wu 1988, and Wolter, 1985). 
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Consider estimating the variance of a function ˆg( )θ , where 

θ̂  is a P vector of estimates and g is a smooth function. 
Estimating the variance using a replication method involves 
the following steps: (i) independently sub-sampling from the 

set s a total of R times to get the replicate samples rs , where r 

=1, ..., R; (ii) computing =r r

i i i
w b w , where r

i
b  depends 

upon the number of times unit i is selected in rs ; (iii) 

calculate rˆg( )θ , where r r
i i

i s

ˆ w
∈

θ = θ∑  and is an estimate of 

ˆg( )θ  based on s and iθ  is the response vector from unit i ; 

(iv) estimate variance of ˆg( )θ  by 
R

1 r 2
rep

r 1

ˆ ˆ ˆˆVar (g( )) (R 1) (g( ) g( ))−

=

θ = − θ − θ∑ .  Note: the 

expression for replicate weights, =r r

i i i
w b w , includes the 

Jacknife, Bootstrap and Balanced Repeated Replication as 
special cases; see reference list for the appropriate choice of 

r

i
b  for each of these methods. 
 

From section 2, it is possible to express r
reg

ˆŶ g( )= θ , where 

ˆ ( , ,X ,Y )π π π πθ = t T . In the case of estimating the variance 

of r
regŶ , steps (iii) and (iv) above respectively become: (iii) 

calculate 
r

r r
reg i i

i s

Ŷ w y
∈

=∑ % , where r r r
i i iw w g=%  and r

ig  has 

the same form as ig  but is calculated using the weights r
iw  

instead of the weights iw ; (iv) estimating variance by 
R

1 r 2
rep reg reg reg

r 1

ˆ ˆ ˆˆVar (Y ) (R 1) (Y Y )−

=

= − −∑ . 

 
The attractive feature of these replication methods is that 

only the selection of the replicate samples and the value r
ib  

needs to be varied to calculate unbiased variance estimates 
for many commonly used sample designs and for estimators 
that have good first order Taylor Series approximations. For 
example, under SRSWOR the Jacknife forms replicate 

samples rs  by dropping the r th unit from s for r =1, .., R and 

using the values  r
ib n /(n 1) (n 1) / n(1 n / N)= − − −  if  

ri s∈  and 0 otherwise, and. If the replicate weights, r
iw%  are 

stored the variance estimates of r
regŶ  require simple 

calculations that can be completed in a short time; this 
approach of storing replicate weights has been applied 
successfully by the ABS’ generalized estimation system for 
household surveys. 
 

We now consider the replication methods mentioned above. 

The drop-one Jacknife forms replicate samples, rs , by 
dropping one unit at a time. This implies that R = n. For 
large-scale surveys this storage requirement is excessive. The 
delete-a-group Jacknife, while reducing R by dropping a 
group of units within a stratum at a time, would still have at 
least R = 2H replicates- a minimum of two groups per 
stratum is required to calculate variance. Despite performing 

well in an empirical study where hn =2 (see Shao and Tu 
1995 pp. 251), the Jacknife was rejected on the basis of its 
excessive storage requirement. 
 
For stratified designs the scaled Balanced Repeated 
Replication (BRR) requires approximately R H=  replicate 
weights. Firstly, the replicate samples are formed by 

randomly splitting the stratum sample hs  into two groups 

then allocating one of these groups to r
hs  for each r = 1, …, R 

and h=1, …, H. The allocation of groups to replicates, 
defined by a Hadamard matrix, is done in such a way to 
eliminate between stratum covariance in the replicate 
samples. The Grouped BRR (GBRR) (see Shao and Tu 1995) 
can arbitrarily reduce R at the cost of introducing between 
stratum covariance in the replicate samples.  Rao and Shao 
(1995) show in their simulation study that BRR, "is very 
unstable". Further, Preston and Chipperfield (2002) showed 
in an empirical evaluation for a typical ABS business survey 
that BRR (and GBRR) was significantly more unstable than 
the Bootstrap. 
  
In their summary of the literature, Kovar, Rao, and Wu 
(1988) found that the scaled Bootstrap tended to have a larger 
bias compared with the Jacknife or TS when estimating the 
variance of GREG estimates. As the relative assessment of 
these methods varied according to the underlying simulation 
model and the stratum sample size it was important to make 
an assessment that was based on a model and sample design 
that were typical of ABS business surveys. Section 6 shows 
these properties to be acceptable. Unlike the other replication 
methods, the value of R for the Bootstrap may be chosen 
arbitrarily and so meet storage and computation restrictions. 
Further, the selection of the Bootstrap replicate samples is 
more easily specified in a computer system compared with 
selection of the BRR replicate samples. 
 
On the above considerations, the preferred variance 
estimation method for ABSEST was the Bootstrap. In the 
next section we describe the WOSB and WSB, where only 
the former is implemented in ABSEST. 
 
 

4. Without Replacement Scaled Bootstrap (WOSB) for 
Point in Time Estimates 
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For point-in-time GREG estimates, the Without Replacement 
Scaled Bootstrap (WOSB) variance estimator involves 

repeating the following R times: (a) forming the set rs  by 

selecting hm  units by SRSWOR from hs  independently 

within each stratum h = 1, …, H, where [ ]h hm n 2=  and 

the operator [ ].  rounds down its argument down to the 

nearest integer; (b) calculating 

r rh
hi hi h h hi

h

n
w w (1 )

m
= − γ + γ δ  for hi s∈ , where  

( ) ( )h h h h h1 f m / n mγ = − −  , riδ  is 1 if r
hi s∈  and 0 

otherwise; and (c) calculating r r r
hi hi hiw w g=%  for i s∈ ; and  

(d) calculating the r th  Bootstrap estimate of  Y , 
r r
reg hi i

i s

Ŷ w y
∈

=∑ % .  The Bootstrap variance estimator is 

given by the Monte Carlo approximation, 

( ) ( )
R 2

r
B reg reg reg

b 1

ˆ ˆ ˆVar Y 1/(R 1) Y Y
=

= − −∑ .  The WSB 

method is the same as WOSB except that the replicate 
samples are selected by SRSWR and the scaling factor is 

instead ( ) ( )h h h h1 f m / n 1γ = − − , where hm  is often 

set to hn 1−  in the literature. Preston and Chipperfield 
(2002) found that WOSB was found to have significantly less 
replication error than the WSB- the error due to replicate 
sampling and conditional on the sample set. 
 

It is easy to see that the WOSB and WSB estimators are 

unbiased estimators of ˆVar(g( ))θ .  Briefly dropping the 
stratum subscript, the TS approximate variance is given by 

θ = ∇ θ θ ∇ θˆ ˆ ˆ ˆ ˆˆVar(g( )) g( )'V( ) g( ) , where θˆ ˆV( )  is P x P 

matrix with elements 
2 2

,p ,p ' p,p '
ˆ ˆˆ ˆCov( , ) N (1 f )s / nπ πθ θ = − , where 

2
p,p ' pi p p'i p '

i s

ˆ ˆŝ 1/(n 1) ( )( )
∈

= − θ − θ θ − θ∑ , 

p pi
i s

ˆ 1/ n
∈

θ = θ∑ , ,p i pi
i s

ˆ wπ
∈

θ = θ∑ , p, p ' 1,...P= , and 

ˆ1 P( / ,... / )
θ

∇ = ∂ ∂θ ∂ ∂θ .  It is easy to see that 

( ) ( )r r r rˆ ˆ ˆ ˆˆˆE Var(g( )) g( ) 'E V( ) g( )θ = ∇ θ θ ∇ θ

ˆ ˆ ˆg( ) 'V( ) g( )= ∇ θ θ ∇ θ , by noting that 

r r r
,p ,p ' ,p ,p '

ˆ ˆ ˆ ˆˆ ˆE Cov( , ) Cov( , )π π π π
⎡ ⎤θ θ = θ θ⎣ ⎦  where 

r

E  

denotes the expectation with respect to re-sampling. Note the 

scaling constants applied to hiw  to calculate the replicate 
weights are chosen so that the appropriate finite population 

correction factor is reflected in ,p ,p '
ˆ ˆCov( , )π πθ θ .  It 

therefore follows that the Monte Carlo approximation to the 

variance, ( ) ( )
=

θ = − θ − θ∑
R 2

r r

B

b 1

ˆ ˆ ˆVar g( ) 1/(R 1) g( ) g( ) , is 

unbiased for ˆVar(g( ))θ .   
 

5. Movement Variance between Single Phase Estimates 
 
A key output requirements of many business surveys is the 
estimate of change between two time points. Denote the finite 

population at time t by { }( t ) ( t ) (t ) (t )
1 2 HU U , U ..., U= , where 

( t )
hU  is the stratum h population at time t that is made up of 
( t)
hN  units. The population total at time t is 

t
h

( t) ( t )
hi

h i U

Y y
∈

=∑ ∑ . Estimating the variance of 

(t ) (t ) ( t 1)ˆ ˆY Y −∆ = − , the difference between two time 
periods, is the focus of this section.  The terms corresponding 

to hn , hf  and 2
hs  at time t are denoted by (t )

hn , ( t )
hf  and 

( t )2
hs  respectively. We also define cN , hcn , (1)

chn , and (2)
chn  

to be the number of units in the following sets (1) (2)
h hU U∩ , 

(c) (1) (2)
h h hs s s= ∩ , (1) (1)

hc h hcs s s= − , and (2) (2)

hc h hcs s s= −  
respectively. When sampling on more than one occasion, 
ABS business surveys designs are analogous to sampling plan 

A of Tam (1985) where the size of overlapping sample, hcn , 

is controlled by the Permanent Random Number method (see 
Brewer, Gross and Lee 1999).  
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The estimator of ( )ˆVar ∆  can be expressed as 

1 2 1 2
ˆ ˆ ˆ ˆ ˆVar( ) Var(Y ) Var(Y ) 2Cov(Y ,Y )∆ = + − .  

Consider the Horvitz –Thompson estimator 
(2) (1)ˆ ˆ ˆY Yπ π π∆ = − , where t = 1, 2 and tŶπ  is defined 

analogously to Ŷπ . Using a result from Tam (1985) when 

(1) (2)
h hU U= ,  an unbiased estimator of ( )ˆVar π∆  under 

sampling plan A is 
(1) (2) (1) (2)ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆVar( ) Var(Y ) Var(Y ) 2Co v(Y ,Y )π π π π π∆ = + −

, where ( t ) 2 ( t )2 ( t )
h t h h

h

ˆˆVar(Y ) N (1 f )s / nπ = −∑ , 

(1) (2) 2 (12) (1) (2)
h 12 h c h h

h

ˆCov(Y , Y ) N (1 f )S n /(n n )π π = −∑  and 

(1) (2)
h h

12,h
hc h

n n
f

n N
= .  

 

When (1) (2)
h hU U≠ , a more general form of Tam’s estimator 

is given by ( )ˆˆVar π∆ , except that 

( t ) (t )2 (t )2 (t )
h t h h

h

ˆˆVar(Y ) N (1 f )s / nπ = −∑ , 

(1) (1) (1) (2) (1) (2) (12)
h h h h c 12,h h

h

Cov(Y , Y ) N N /(n n )n (1 f )Sπ π = −∑

 and 
(1) (2)
h h hc

12,h (1) (2)
hc h h

n n N
f

n N N
= . For the reminder of this section 

we assume that ˆˆVar( )π∆  is unbiased for ˆVar( )π∆  when 
(1) (2)
h hU U≠ . 

 

Estimating the variance of (1) (2)
reg reg reg

ˆ ˆ ˆY Y∆ = − , the 

movement between GREG estimates at times 1 and 2, using 
WOSB involves repeating the following R times: (a) forming 

the set rs  by independently selecting [ ]ch chm n 2= , 

(1) (1)
ch chm n 2⎡ ⎤= ⎣ ⎦  and (2) (2)

ch chm n 2⎡ ⎤= ⎣ ⎦  units by SRSWOR 

from the sets hcs , (1)
hcs , and (2)

hcs  respectively; (b) for 
(1)
hi s∈ calculate the replicate weights 

(1)
r(1) (1) r ( t )ch hc ch
hi h ch 1ch ch hi(1) (1)

h h ch

n n n
w N / n 1

n n m

⎡ ⎤
= − γ − γ + γ δ⎢ ⎥

⎣ ⎦
 

for ∈
hc

i s , 

r(1) r (1)ch 1ch 1ch
hi ch 1ch 1ch hi

1h 1h 1ch

n n n
w 1

n n m

⎡ ⎤
− γ − γ + γ δ⎢ ⎥

⎣ ⎦
 for 

(1)
hci s∈ , where 

( ) ( )
( )

1h h ch 12,h 1ch

1ch
1ch 1ch 1ch

n 1 f n 1 f m

{n n m }

⎡ ⎤− − −⎣ ⎦γ =
−

, 

( ) ( )ch 12,h ch ch ch1 f m / n mγ = − −  and r(t )
hiδ  equals 1 if 

unit i is selected in replicate group r at time point t and zero 
otherwise;  (c) calculating weights defined analogously for 

(2)
hi s∈ ; (d) calculating r(t ) r (t ) ( t )r

hi hi iw w g=%  for (1) (2)
h hi s ,s∈ , 

where (t )r
ig  has the same form as ig  but is calculated using 

the weights r(t )
hiw  instead of (t )

hiw ; (e) calculating 
r (2)r (1)r
reg reg reg

ˆ ˆ ˆY Y∆ = − , where 
(1)

( t )r (t )r
reg hi i

i s

Ŷ w y
∈

= ∑ % . The 

WOSB variance estimator is given by 

( ) ( )
R 2

(t )r
B reg reg reg

r 1

ˆ ˆ ˆˆVar 1/(R 1)
=

∆ = − ∆ − ∆∑ , where 

(1) (2)
reg reg reg

ˆ ˆ ˆY Y∆ = −  and 
( t )

( t) (t )
reg hi i

i s

Ŷ w y
∈

= ∑ % .   

 

The proof that ( )B reg
ˆˆVar ∆  is unbiased is straight-forward 

and is similar to the proof that ( )B
ˆVar g( )θ  is unbiased 

(see section 4). 
 
The approach described above requires a separate set of 
replicate weights for movement and level variance estimates.   
Roberts, Kovacevic, Mantel, and Phillips (2001) consider 
approximate Bootstrap variance estimators of movement that 
only use the level replicate weights.   
 

6. Simulation Study 
 
This section summarizes the simulation study for point-in-
time and movement estimates carried out to empirically 
measure the bias and variability of the WOSB and WSB over 
repeated sampling. A population of size 5000 was generated 

from the following models, ( )= + ψ
1i 1i 1i

y abs x  and 

( )= + + ψ
2i 1i 2i 2i

y abs x x , ( )= ξ
1i 1i

x abs , 

( )= ξ
2i 2i

x abs , ( )ξ �
1i

N 0,25 , ( )ξ �
2i

N 0,25 , 

( )ψ �
1i 1i

N 0, x  and ( )2i 1i 2i
N 0, x xψ +� . Each 

population unit was assigned to one of 10 strata on the basis 

of 
i

z , where ( )= + ζ
i 1i i

z abs x  and ( )ζ �
i 1i

N 0, x ; the 

stratum boundaries were 
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=
i

z 5,10,15,20,25,30,40,50,75  resulting in stratum 
population sizes that ranged from 20 to 900. A total of 2500 
simulated stratified simple random samples without 
replacement were taken from the population, where =

h
n 10  

for all h. 
 
From the j th simulation sample we define 

( ) ( )= =j j j
B Bk k ,reg k ,reg

ˆ ˆ ˆˆS Se Y Var Y , where j
k ,regŶ  is the 

GREG population estimate of 
k
Y  based on the j th simulation 

sample, 1,regŶ and 2,regŶ  are defined as in section 2 with 

i 1i
x x=
%

and 
i 1i 2i

x (x ,x )=
%

 respectively, and 
i

1σ = .  The 
true standard error of the Bootstrap’s estimated standard error 

was calculated by ( )2500 2
j

k k ,reg k
j 1

1 ˆS Y Y
2500 =

= −∑ . We 

define the Relative Bias (RB) of the Bootstrap’s estimated 

standard error by ( )
=

= −∑
2500

j
k k k

j 1k

1ˆ ˆBias(S ) S S
2500S

 and its 

Relative Root Mean Squared Error (RRMSE) 

by ( )
=

= −∑
2500 2

j
k k k

j 1k

1 1ˆ ˆRRMS(S ) S S
S 2500

. The results in 

the table show that the bias and the RRMSE of the WOSB 
and WSB are both acceptably small.  

 
Next we consider the WOSB for movement estimates. The 
population at time point 1 is described above. For every 
population unit at time point 1, the corresponding 
characteristic of interest at time point 2 was generated using 

the model ( )(2) (1)

2iki kiy abs 1.1 y= × + ψ . From this 

population 2500 samples at time 1 and 2 were taken using 

Tam's sampling plan A to control overlap, where ( t )

hn 10=  

and 
hc

n 6=  for all h. The results in the table show that the 
bias and the RRMSE of the WOSB were acceptably small. 
 
  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table: Bootstrap Estimate of the standard error for movement and level estimates 
 
 
Estimator 

Replicate 
sampling 
scheme 

 
Variable  

Point in time Movement 

   RRMSE (%) RB (%) RRMSE (%) RB (%) 
HT SRSWOR 

1
y  11.8 -1.5 16.0 1.4 

HT SRSWR 
1

y  11.9 -1.5 15.8 1.5 

GREG SRSWOR 
1

y  11.9 3.3 14.5 1.5 

GREG SRSWR 
1

y  11.8 2.5 14.7 2.2 

HT SRSWOR 
2

y  13.0 1.9 15.7 -2.3 

HT SRSWR 
2

y  13.2 1.9 15.7 -2.3 

GREG SRSWOR 
2

y  12.4 1.9 12.6 0.5 

GREG SRSWR 
2

y  12.8 2.8 12.7 -0.3 
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7. Summary 
 
From the simulation results, both the WOSB and WSB were 
considered to be reliably accurate. The mean squared error of 
the Bootstrap standard error estimator is made up of: (i) the 
variance due to repeated sampling from the population, (ii) 
the variance due to replicate sampling conditional on the 
sample, and (iii) the bias squared. We know from standard 
theory that (i) is independent of the Bootstrap method and so 
clouds any comparison of the WOSB and WSB. Therefore, 
when comparing the accuracy of the WOSB and WSB only 
(ii) and (iii) are relevant. We know from the table of results 
that (iii) for both the WSB and WOSB is negligible. Using 
the ABS’ Quarterly Economy Wide Survey, where a 
stratum’s sample size is often as low as 6, Preston and 
Chipperfield (2002) found that (iii) for the WOSB was 40% 
smaller than the WSB: this meant that WOSB required 40% 
fewer replicates (R) than WSB.  As a result, the WOSB was 
considered to be more efficient and subsequently 
implemented in ABSEST. 
 
ABSEST has adopted the paradigm of storing replicate 
weights for variance calculation. A limitation of this 
approach is that, with the exception of mean imputation, 
accounting for the variance in estimation due to item non-
response could potentially require RM replicate weights per 
sample unit, where M is the number of data items requiring 
imputation. However, estimating the variance due to 
imputation could be implemented in ABSEST, but would 
require additional calculations not reflected in the replicate 
weights (see Shao and Sitter (1996)).  
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