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Abstract

We consider a longitudinal study composed of a first-
phase sample with multiple subsets of these units
selected for observation over time. Such a design is
used for the National Resource Inventory, where a
core panel of segments is observed yearly and an-
nual supplements are selected using a rotation de-
sign. As observations are taken over time, there is
a dependency in the data that can be exploited in
estimation. We use an estimated generalized least
squares (EGLS) approach that utilizes the estimated
time dependency to improve estimation of level and
change relative to direct survey estimators. Because
longitudinal studies often involve a large number of
variables and the output of such studies is a dataset
with weights for end users, we provide a s consistent
jackknife replication variance method for our EGLS
estimator. This approach relies on having a consis-
tent jackknife variance estimator for the first-phase
sample. The National Resource Inventory will serve
as the motivating example for this work.

Introduction

Longitudinal surveys are surveys in which data are
collected at more than one point in time. Exam-
ples of longitudinal surveys are panel surveys, which
are surveys where observations are taken on the
same unit more than once over time. Longitudi-
nal panel surveys have gained in use and impor-
tance in decision making over the past 30 years be-
cause they provide efficient estimators of changes
over time (Kasprzyk 1989). Today, longitudinal sur-
veys such as the Forest Inventory and Analysis Na-
tional Program, Current Population Survey, and Na-
tional Health Inventory Survey are used by policy-
makers to evaluate past decisions and develop future
policies. The defining characteristic of panel sur-
veys is that repeated observations are made on the
same unit over time. The repetition of observations
on the same units in the survey exists for studying
changes over time in the responses from the obser-

vation units.

Design and estimation for longitudinal panel surveys
provide two challenges. The design of a panel survey
is composed of two components. The first is a prob-
ability mechanism for selecting a collection of units
to observe at some point over a series of surveys.
The second is a probability mechanism for assigning
the selected units to groups that will be observed at
a specific time. The choice of the longitudinal obser-
vation scheme is critical to achieving the objectives
of the survey. For estimation, we need to determine
how to utilize the time dependency in the data as
well as how to build estimators that incorporate the
longitudinal design structures.

We consider a class of longitudinal panel surveys in
which a large, first-phase sample is selected and sev-
eral second-phase samples are selected from the first
large sample and observed at different points in time.
We will focus on the estimation problem for two-
phase longitudinal designs and propose a model and
estimator for means and totals under these designs.

If analysis objectives of a longitudinal panel survey
are known, models and estimation schemes can be
constructed to satisfy those goals. However, many
large-scale longitudinal surveys produce data for use
by end-users where the models and parameters of in-
terest are not completely known to the designers of
the survey. When a survey’s ultimate use is not com-
pletely prespecified, the result of the survey may be a
dataset with estimation weights that can be used in
the construction of estimators built from a common
form, for example from Horvitz-Thompson total es-
timators. Similarly, replication weights for estimat-
ing variances of these estimators are often provided.
With the outputted dataset, end users control the
estimators and are not restricted to predetermined
estimators.

We consider a cell-mean model where the auxil-
iary information is a set of indicator variables and
the time dependency of observations on the same
unit are incorporated through the correlation ma-
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trix. Given the cell mean structure, we construct the
estimated generalized least squares (EGLS) estima-
tor. EGLS is a method for estimating the minimum
variance estimator for parameters in a linear model.
We also present a replication variance consistency
result.

The National Resources Inventory (NRI) is a lon-
gitudinal survey that changed from a 5-year panel
study into a yearly supplemented panel survey in
2000. Since the time between observations and the
number of observations at each time decreased un-
der the new design, there is interest in utilizing the
time dependency in the dataset to improve the ef-
ficiency of yearly estimates and estimates of change
over time.

Two-phase Samples

We consider longitudinal surveys with a first-phase
sample containing all of the units that will be stud-
ied over time. In two-phase sampling, we begin by
first selecting a large sample of units, which we call
the first-phase sample and we observe a set of auxil-
iary variables for units in the first-phase. A second-
phase sample is selected from the population and
often depends on the first-phase observations. The
second-phase sample is often a sub-sample from the
first-phase sample, and we restrict our discussion to
this type of two-phase sampling. In the second-phase
sample, we observe both the auxiliary variables and
the response variables. The auxiliary variables are
often less expensive to observe than the response
variables, and the auxiliary variables are often cho-
sen to be related to the response variables.

To define a two-phase sample where the second-
phase sample is a subsample of the first-phase sam-
ple, let A1 be the first-phase sample of size n, drawn
from some finite population, denoted by FN , with
size N . The design for the first-phase sample is
denoted by p1(·), with associated inclusion proba-
bilities π1i = Pr[unit i ∈ A1] for i = 1, 2, . . . , N .
From the first-phase sample, we select the second-
phase sample A2, with design p2(·|A1) and associ-
ated conditional inclusion probabilities of π2i|1i =
Pr[unit i ∈ A2 given unit i ∈ A1] for i = 1, 2, . . . , n.

For the longitudinal designs we will discuss, the
second-phase samples will be subsamples from the
first-phase sample. To support development of sta-
tistical theory, we will view the second-phase de-
sign of these surveys as being defined by a parti-
tioning mechanism that divides the first-phase into

P groups, or panels, denoted by A2p
with p =

1, 2, . . . , P . A panel, or union of panels, is assigned
by the longitudinal design structure to be observed
at specific times. For a longitudinal survey, p2(·|A1)
defines the probability that each unit i ∈ A1 is as-
signed to A2p

for p = 1, 2, . . . , P . For example,
p2(·|A1) may provide a multinomial probability for
each unit in A1. Let np be the second-phase sample
size for A2p

.

The described class of samples includes many com-
mon longitudinal sample designs. The pure panel,
in which each sampled unit is observed at every
time point, can be thought of as having a second-
phase sample where the entire first-phase sample is
the second-phase sample. Selecting a pure rotat-
ing panel survey, in which a single panel is observed
at each time point and then not reobserved until all
panels have been observed, can be thought of as first
selecting a first-phase sample composed of all of the
units we will observe over time, then partitioning
the first-phase sample into P panels and observing
one panel at each time point until all P panels are
observed, then repeating through the panels. A sup-
plemented panel design combines the notions of a
pure panel and pure rotating sample by partition-
ing a first-phase sample into a core set of units to
be observed at every time point and a set of rotat-
ing panels that are cycled through as in a rotating
panel design. Other combinations of panels such as
observing two panels at a time point and replacing
one at each time point also fall into the class of de-
signs under consideration.

National Resources Inventory

The National Resources Inventory (NRI) has its
roots in the Natural Resource Conservation Service’s
(NRCS) efforts to monitor soil erosion which dates
back to the 1930s. Over time, NRCS objectives
grew and in 1982, the NRI survey was created to
address a broader set of goals and natural resource
concerns (Nusser and Goebel 1997). The objectives
of the NRI are to monitor conditions and trends of
soil, water, and related natural resources on non-
federal lands. These objectives were developed in
response to the increased importance of addressing
agro-environmental and ecological problems (Goebel
1998). More recently the NRI has expanded its wet-
lands variables and has focused on observing changes
on the land with respect to urban sprawl.

The original longitudinal design for the NRI was
a pure panel observed every five years. Roughly
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300,000 segments were observed every five years.
The 300,000 segments observed in 1997 form the
first-phase sample for our discussion since it was par-
titioned into the panels for the continuous inventory
sample.

The 1997 Foundation NRI sample is a stratified two-
stage area sample. In a typical Public Land Survey
System state, the strata are two mile by six mile ar-
eas (one-third of a township). The area segments
(sometimes referred to as primary sampling units or
PSUs) are typically half-mile by half-mile land areas.
Sampling rates vary, but two segments are usually
selected within each stratum. Within the selected
segments, a secondary sampling unit (SSU) is a sam-
ple point. Three sample points are typically selected
within each sampled segment. Points were selected
using a restricted sampling scheme that guarantees
spatial dispersion of selected points in the sample
(Nusser and Goebel 1997).

The NRI began an annual inventory in 2000. The
decision to move to an annual, or continuous, inven-
tory was made to satisfy the demand by users to have
current estimates and to establish a more stable op-
erational base for collecting data. The workload is
distributed over each of five year individually rather
than making all of the observations at the same time
every five years. It is believed that measurement er-
ror induced by the data collectors may be reduced
under the annual data collection approach (Breidt
and Fuller 1999).

The longitudinal design for the continuous inven-
tory is a supplemented panel design. The core,
the pure panel component, and supplemental pan-
els, the rotating panel components, are subsamples
selected from the 1997 Foundation NRI sample. The
second-phase design describes the probabilities used
to select the core and supplemented samples from
the first-phase 1997 Foundation NRI sample. The
core sample contains approximately 41,600 segments
(Fuller and Wang 2002). Only the core sample was
observed in 2000, with supplements beginning in
2001. The 2001 supplement contains approximately
32,000 segments and each successive supplement is
intended to be similar in size. Table 1 shows the
NRI data collection for 2000-2003.

A supplemented panel design is a compromise de-
sign between the competing objectives of estimat-
ing current level and change. The core panel pro-
vides the continuous reobservation of units that is
often beneficial to change estimation. The supple-
ments are a set of disjoint panels that are rotated in

and out of the study. Often only one supplemental
panel is observed at each time point and the sup-
plement is reobserved after all of the supplements
have been observed. The NRI supplemented panel
design’s rotating of panels is more complex and oc-
curs more on a land category basis. Specific details
of the second-phase sample can be found in Fuller
and Wang (2001).

Table 1: 2000-2003 NRI Data Collection

Year: 00 01 02 03
Core X X X X
Supplement 1 X
Supplement 2 X
Supplement 3 X

Generalized Least Squares

For two-phase samples, the basic building block for
estimators is the π?-expanded estimator where the
π?-expanded estimator for a population total is

t̂y,π? =
∑
i∈A2

π?−1
i yi. (1)

The π?-expanded estimator, like the Horvitz-
Thompson estimator, is design unbiased and has a
design unbiased variance estimator.

Stukel and Kott (1996) examined two two-phase
sample estimators in the case where the second
phase sample is stratified. Stukel and Kott term the
π?-expanded estimator in the stratified case to be
the double expansion estimator (DEE). The second
estimator is the ratio of two π?-expanded estimators,
one for estimating the total for y, the other for esti-
mating the size of the strata. This ratio estimator is
termed the reweighted expansion estimator (REE).

An extension to the REE and DEE is the two-phase
regression estimator, which makes use of auxiliary
variables observed at the first phase (Fuller 2005).
Let xi be a k × 1 auxiliary information vector ob-
served for units in A1. Let yi be the response vari-
able observed in A2 and let the regression estimator
for a population mean be

ȳreg = ȳπ,A2 + (x̄π,A1 − x̄π,A2)β̂2, (2)

where

β̂2 =

(∑
i∈A2

π?−1
i (xi − x̄π,A2)

′(xi − x̄π,A2)

)−1

×
∑
i∈A2

π?−1
i (xi − x̄π,A2)

′(yi − ȳπ,A2), (3)

ASA Section on Survey Research Methods

3301



(x̄π,A2 , ȳπ,A2) =

(∑
i∈A2

π?−1
i

)−1 ∑
i∈A2

π?−1
i (xi, yi),

(4)
and

x̄π,A1 =

(∑
i∈A1

π−1
1i

)−1 ∑
i∈A1

π−1
1i xi. (5)

The regression estimator provides a way of using the
correlation between observations taken at two differ-
ent times in the sample. For a longitudinal survey,
we have multiple times and panels of observations
to combine. Generalized least squares with a cell-
mean model combines the different components of
the sample.

Consider the linear model

Y = Xβ + ε (6)

where Y is the n × 1 vector of observations, X is
the n×k matrix of auxiliary variables, β is the q×1
vector of unknown parameters, and ε is the n × 1
vector of random errors with

E(ε) = 0 (7)

and
V (ε) = V . (8)

Generalized Least Squares (GLS) is an estimation
method that provides an estimator for β. For pos-
itive definite V and invertible X ′V −1X, the GLS
estimator is

β̂GLS = (X ′V −1X)−1X ′V −1Y . (9)

In practice, the covariance matrix of ε is not known,
so a consistent estimator of V , V̂ , is created. Sub-
stituting V̂ into (9), provides the EGLS estimator
of β,

β̂EGLS = (X ′V̂ −1X)−1X ′V̂ −1Y . (10)

For estimation in repeated surveys, we will take Y
to be the vector of ȳπ,pt’s, estimators of the popu-
lation mean for panel p at time t. We will assume
ȳπ,pt is consistent for the population mean at time
t. For example, ȳπ,pt may be the π?-expanded esti-
mator ratio estimator. For the NRI, ȳπ,pt is a ratio
estimator that uses the NRI estimation weights. Let
yit be the sample mean of y collected on points in
segment i with data collected at time t for a vari-
able. Let wi be the weight associated with segment

i. The core and supplements are considered panels
and are indexed by p. For the NRI,

ȳπ,pt =

∑
i∈A2p

wiyit∑
i∈A2p

wi
. (11)

The unknown parameter vector β will be the T × 1
vector of µt, the population means at time point t
for t = 1, 2, . . . , T . Since we consider a cell-mean
model, X will be the matrix of 0’s and 1’s link-
ing each ȳπ,pt to the corresponding µt. For ȳπ,pt,
the corresponding row in X will have a 1 in the
cell that is multiplied by µt, and 0 in the remaining
cells. We will assume observations from different
units are independent and have a constant variance.
The constant variance assumption implies that V
will be proportional to the correlation matrix of the
ȳπ,pt’s. The independence assumption implies that
only correlations between ȳπ,pt’s on the same panel
will have a nonzero correlation. We will estimate V
with a design consistent estimator V̂ . The described
model and assumptions are outlined in Fuller (1990)
for general repeated surveys and Fuller and Breidt
(1999) for supplemented panel surveys.

For the data in Table 1, the model is

y1 =



ȳπ,00

ȳπ,01

ȳπ,02

ȳπ,03

ȳπ,11

ȳπ,22

ȳπ,33


X1 =



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1


µ

T1
=


µ0

µ1

µ2

µ3

 ,

(12)

where ȳπ,pt is the mean estimated as in (11) for our
variable of interest in panel p in year t, and µt is the
population mean of our variable in year t. A panel
code of 0 represents the core panel, and the other val-
ues of t represent supplements first seen in the year
200t. We assume that each panel mean has the same
constant variance term so the variances of the panel
means differ only by the sample sizes. Since the core
and supplements were selected to have similar com-
positions of land covers and uses, the assumption
of the same variance for panel means is reasonable.
The model assumption that the supplement and core
means in a year t estimate the same mean, µt is also
reasonable since the core and supplements are ran-
dom samples from the first-phase sample. We also
assume the same sample size in each supplement for
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convenience. Let
r =

n0

np
, (13)

where n0 is the sample size in the core, and np is the
sample size in a supplement. We set r=1.294, the
approximately ratio of the sample size in the core to
the sample size in the supplements. We assume a
stationary error process. Let ρ(l) be the correlation
between observations on the same unit at a lag of l.
The ȳπ,pt’s with the same p have a nonzero covari-
ance term. Panel means from different panels are
assumed to be uncorrelated. Under these assump-
tions,

V ar(y1) ∝



1 ρ(1) ρ(2) ρ(3) 0 0 0
ρ(1) 1 ρ(1) ρ(2) 0 0 0
ρ(2) ρ(1) 1 ρ(1) 0 0 0
ρ(3) ρ(2) ρ(1) 1 0 0 0
0 0 0 0 r 0 0
0 0 0 0 0 r 0
0 0 0 0 0 0 r


.

(14)

To estimate the µ’s in the model, we need to first
estimate the ρ(l)’s in V . Empirical correlations may
be used in the V matrix, however we chose to use
time series models. The ρ(l)’s were estimated using
nonlinear least squares for fitting the empirical cor-
relations to theoretical autocorrelation functions of
first-order autoregressive processes.

The variance of the EGLS estimator for a year mean
is compared to the variance of the sample mean for
a year. For changes, the variance of a one-year mean
difference from EGLS is compared to the variance of
a one-year change in sample core means. We con-
sider two time frames in our comparison: 2000-2003
and 1997-2003. The 1997-2003 NRI data includes
replication on the panels. For the 1997-2003 model,
the data that has not been reobserved since 1997 is
excluded. Results for three NRI variables are pre-
sented in Tables 2 and 3. Soil loss has low correlation
over time, urban has high correlation over time, and
cultivated crop has correlations in between urban
and soil loss. The values are in ratios of variances
with the EGLS variance in the numerator.

For estimation of year means, the EGLS estimator
outperforms the sample year mean. For estimat-
ing one-year change, the EGLS estimator is superior
to the core estimator when 1997 data are included.
The variance reduction is greater for estimating year
means than for one-year change. For estimating year
means, there is little precision gain from including
the first-phase (1997) sample data in the model. The

Table 2: Variance Ratios for Year Estimators

Estimation Years
Variable Data Used 2000 2003
Soil Loss 2000-2003 0.513 0.688

1997-2003 0.465 0.681
Urban 2000-2003 0.306 0.538

1997-2003 0.304 0.537
Cultivated 2000-2003 0.364 0.580
Cropland 1997-2003 0.343 0.577

Table 3: Variance Ratios for One-Year Change Estima-
tors

Change Years
Variable Data Used 1997-2000 2003-2002
Soil Loss 2000-2003 0.902

1997-2003 0.591 0.860
Urban 2000-2003 0.998

1997-2003 0.537 0.908
Cultivated 2000-2003 0.971
Cropland 1997-2003 0.563 0.895

addition of the 1997 data reduces the variance for
year means estimators the most for the variables
with the low correlations between years. For vari-
ables such as range and cropland, the core estimator
of change is performing almost as well as the EGLS
estimator when 1997 is not included. The inclusion
of the 1997 correlations for the panels improves es-
timation of change. When the supplements begin to
repeat, it is likely that the improvements from the
inclusion of the first-phase data will decrease. The
results indicate that repeated observations on all of
the panels, not just the core, reduce variances of the
EGLS estimator for change by including additional
correlation information.

Replication Variance

We now present a replication variance consistency
theorem for a single µ̂d estimator using EGLS with
our cell-mean model. The consistency may be ex-
tended to the entire vector µ̂ by applying the result
to the difference of two µ̂d’s. Let the number of
occasions for observations and panels be fixed at T
and P respectively. Let the finite population be of
size N indexed by i and t, where i = 1, 2, . . . , N and
t = 1, 2, . . . , T is time. Let the parameters of interest
be the set of population means Ȳt,N =

∑N
i=1 N−1Yit.

Define the vector of population means as ȳN . Let
E{θ̂|F} and V {θ̂|F} denote the design expectation
and variance of θ̂, where F is a finite population. Let
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the first-phase sample, that is the sample at t=1, be
labeled A1. Every panel is included in A1.

Let FN be a sequence of increasing populations as
defined in Fuller (1975). Define

ȳπ,p,t,N = (
∑
i∈A1

π−1
1i π−1

2ip|1iaipbpt)−1

×
∑
i∈A1

π−1
1i π−1

2ip|1iaipbptyit, (15)

where aip is an indicator for the ith element in the
pth panel, bpt is an indicator for the pth panel at the
tth time, π1i is the first-phase selection probability,
π2ip|1i is the conditional probability of selecting the
ith element for the pth panel given that the ith ele-
ment is in A1, and the subscript of N is suppressed
on the right side of (15). Mathematically,

aip =
{

1 if ith unit in the pth panel
0 otherwise (16)

and

bpt =
{

1 if pth panel observed at time t
0 otherwise . (17)

We consider disjoint panels, so aip may be 1 for only
one p. The aip are random indicator variables with a
probability distribution defined by the second-phase
design. For the proof of the theorem, we assume that
the ai vectors are independent multinomials of size 1.
For each i, we have an independent multinomial dis-
tribution with probabilities κ2ip for p = 1, 2, . . . , P .
The bpt are fixed indicator variables determined by
the longitudinal data collection structure. For ex-
ample, for the core panel in a supplemented panel
design, bcore,t is 1 for all t.

Let ȳπ,N be the vector of ȳπ,p,t,N ’s. Let

µ̂N = (X ′V̂ −1
N X)−1X ′V̂ −1

N ȳπ,N (18)

be the EGLS solution , where X is the cell mean
model matrix and V̂N is a consistent estimator of
the covariance matrix of ȳπ,N . Define

ēπ,p,t,N = (
∑
i∈A1

π−1
1i π−1

2ip|1iaipbpt)−1

×
∑
i∈A1

π−1
1i π−1

2ip|1iaipbpteit, (19)

where
eit = yit − ȳt,N . (20)

Note that µ̂N − ȳN is a vector of linear combinations
of ēπ,p,t,N ’s.

Further, assume that

CπS < Nn−1
1Nπ1i,N < CπB (21)

for all N, where n1N is the sample size for the
first-phase sample drawn from FN , and CπS and
CπB are fixed positive constants. Assume that
π2ip|1i = κ2ip = Pr[aip = 1] are fixed probabili-
ties,

∑P
p=1 κ2ip = 1, and Pr(i ∈ p1 and i ∈ p2) = 0

for p1 6= p2. Note that κ2ip does not depend on a
particular first-phase sample A1. Assume the finite
population FN is a sample from an infinite popula-
tion with 4 + δ, δ > 0, moments.

The next set of assumptions pertain to first-phase
estimators. Assume that

V {T̂1y|FN} ≤ KMV {T̂y,SRS |FN}, (22)

where y is any variable with fourth moments, T̂y,SRS

is the total estimator for simple random sampling,
T̂1y is the Horvitz-Thompson total estimator from
the first-phase, and KM is a fixed constant. Assume
that the variance of a first-phase linear estimator
of the mean is a symmetric quadratic function, and
that

nNV {N−1
∑

i∈A1N

π−1
1i,NyiN |FN}

=
N∑

j=1

N∑
i=1

ωij,NyiNyjN , (23)

where ωij,N ’s satisfy

N∑
i=1

|ωij,N | = O(N−1). (24)

The assumption that underlies the replication vari-
ance procedure is that of a design consistent repli-
cation variance estimator for the first-phase sample.
Let this replication variance estimator for a mean be

V̂1{ȳ1,HT } =
L∑

k=1

ck(ȳ(k)
1,HT − ȳ1,HT )2, (25)

where ȳ1,HT =
∑

i∈A1
N−1π−1

1i yi is the Horvitz-

Thompson mean of y, ȳ
(k)
1,HT is the kth replicate of the

estimated mean, L is the total number of replicates,
and ck, k = 1, 2, . . . , L, are constants determined by
the replication method and design.

To construct a replicate for µ̂, apply the replication
proceduce for the first-phase to units across time
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that share the same element identification. That is,
if the ith observation is removed to form a replicate,
then data for all time points on the ith element is
removed. We then replicate µ̂ using the remaining
data. The replication variance estimator for µ̂ is

V̂2(µ̂d) =
L∑

k=1

ck(µ̂(k)
d − µ̂d)2, (26)

for the dth year where

µ̂(k) = (X ′V̂ −1
N X)−1X ′V̂ −1

N ȳ
(k)
pt,N (27)

are the replicates. The following result establishes
the consistency of V̂2{µ̂d}.

Assume (21), (22), (23), and (24), as well as

E{[(V [θ̂|FN ])−1V̂1{θ̂} − 1]2|FN} = o(1) (28)

for any variable with bounded fourth moments. Also
assume that the replicates for the first-phase sample
estimator of a total, T̂1, satisfy

E{[ckN (T̂ (k)
1 − T̂1)2]2|FN} < KγL−2

N [V {T̂1|FN}]2
(29)

uniformly in N for any variable with fourth mo-
ments, where Kγ is a fixed constant. Consider repli-
cation variance estimation for µd defined in (26).
Then the replication variance satisfies

V̂2(µ̂d) = V {µ̂d|FN}

−N−2
∑N

i=1

{∑P
p κ−1

2ip(1− κ2ip)η2
dip

+
∑P

p1=1

∑P
p2=1

p1 6=p2
(−ηdip1ηdip2)

}
+op(n−1),

(30)
where

ηdip =
T∑

t=1

λdptbpteit (31)

and λdpt are the coefficients of (X ′V −1X)−1X ′V −1

corresponding to estimation of the dth year compo-
nent of µ̂.

Outline of the Proof: Since the κ2ip do not de-
pend on a particular A1, the sampling procedure
can be thought of by first generating an ai for
each element in the population and then drawing
a first-phase sample from the population including
the second-phase panel identification. By first deter-
mining the panel identification, we can condition on
the second-phase sample aip’s in the proof. Condi-
tioning on the second-phase indicators lets us write
the estimator in terms of a first-phase estimator as

in (15). Since the first-phase estimator has a con-
sistent replication variance estimator, we can apply
that consistency to the estimator conditional on the
aip’s. We then obtain the unconditional properties
by applying the probabilities from the independent
multinomial distributions of the ai’s.
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