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Abstract

We apply the delete-a-group jackknife variance

estimator to a multi-wave longitudinal population-based

study, the Chicago Health and Aging Project.  This

study examines risk factors for chronic health problems

of older adults, particularly Alzheimer’s disease.  Every

three years, all surviving members of the study

population are interviewed and a “disease-free” cohort

is identified, from which a Poisson (stratified Bernoulli)

sample is drawn for detailed clinical evaluation of

incident disease at the next cycle. We show how

multiple observations from the same individual can be

incorporated into an analytic model and how the delete-

a-group jackknife can be used for variance estimation.

KEY WORDS: Complex surveys, Poisson sampling,

Randomization-based inference, Longitudinal,

Alzheimer’s disease

1.  Introduction

Complex sampling designs present particular

challenges to statistical modeling and estimation.  In

social, economic, and health research, samples of

individuals are typically taken for more detailed follow-

up when the cost of collecting such data on all the

individuals in the study is cost-prohibitive. In such

studies, the estimands of interest are typically model

parameters or measures of association, rather than

means or totals.  Complex sampling plans are often

used in this context to guarantee the inclusion of certain

subgroups of the population under study or increase the

number of sampled individuals with known or

suspected predictive variables of interest.   In studies of

risk factors of incident disease, for example, analysts

often increase the sample number of expected cases of

diseases by oversampling groups expected to exhibit

more incident disease.

Inference under complex sampling plans can be

model-based (as in Breckling et al. 1994) or

randomization-based (as in Binder 1983).  When the

estimands of interest are model parameters,  Binder and

Roberts (2003), among others, have shown that using

randomization-based techniques can often produce

inferences robust to certain types of model failure.  In

this paper, we follow Fuller (1975) and treat a real

finite population as if it were a simple random sample

from a conceptual infinite population.  Combined with

our sampling strategy, this allows us to estimate the

model and randomization mean squared errors of

parameters simultaneously.  

We apply this approach to the Chicago Health and

Aging Project (CHAP), a longitudinal community-

based study examining risk factors for chronic health

problems of older adults.  The CHAP design has two

components, each conducted every three years.   In the

“census” component, all surviving members of the

study population are interviewed and tested on a variety

of health-related areas.  In the sample component,  a

Poisson (stratified Bernoulli) sample is drawn from

among the respondents to the full-population interview

for detailed clinical evaluation and neuropsychological

testing.  To investigate risk factors for incident

Alzheimer’s disease, a “disease-free” cohort is

identified at the preceding time point and forms one

major stratum in the sampling. We describe the

application of a delete-a-group jackknife mean-squared-

error estimator to the modeling of risk factors for

incident Alzheimer’s disease.  Complicating matters is

a sampling design that not only oversamples certain

groups but also can contain data from the same

individual more than once. 

2.  Design of the Study

2.1  Overview

The Chicago Health and Aging Project (CHAP) is

an ongoing longitudinal community-based cohort study

of older adults (65 years of age and older) living in a

geographically defined area of Chicago, Illinois.  The

study was approved by the Institutional Review Board

of Rush University Medical Center.   Data for CHAP

are collected during face-to-face interviews from

participants who have given written, informed consent;

we will call these participants  the study population.   

 The primary purpose of CHAP is to investigate

risk factors for common chronic conditions of older

adults, with a particular emphasis on risk factors for

decline in cognitive functioning and incident

Alzheimer’s disease.  First identified in the early
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twentieth century by Dr. Alois Alzheimer (Alzheimer

1907), dementia of the Alzheimer’s type is a

particularly debilitating progressive neurodegenerative

disorder, characterized by declines in memory and other

cognitive processes.  It currently has no known cause

and no cure, although some partial symptomatic

treatments exist.  Because of its long-term nature and

the changing age structure of the population in the U.S.

and other industrialized countries, it is projected that

the cost of treatment and care for those with

Alzheimer’s disease will place increasingly high

demands on the health-care system (Hebert et al.,  2003,

2004).  Thus, the identification of potentially

modifiable risk factors is of great public health concern.

Since the inception of CHAP in 1993,

approximately 10,000 older adults have been enrolled

into the study.  In-home interviews are conducted with

all surviving participants approximately every three

years.  We will refer to these waves of data collection

as “cycles.”  Interviews include performance-based tests

of physical and cognitive function as well as structured

questions about sociodemographic characteristics,

health, and lifestyle.  In addition, a random sample of

individuals is taken from each cycle of study-population

interviewing. Sampled individuals are asked to

participate in an additional interview, a detailed clinical

evaluation that includes neuropsychological and

neurological evaluation for Alzheimer’s disease.   

The sample taken from the first, or baseline, cycle

provided estimates of prevalent disease.  Samples taken

from later cycles allow us to examine incident disease.

In do this, a “disease-free” cohort is identified at the

preceding time point and forms one major stratum in

the sampling.  Further details of the study and the

design are available in Bienias et al. (2003a) and

Wilson et al. (1999).  In this paper, we will focus on

aspects of the design involving the samples taken for

clinical evaluation of incident Alzheimer’s disease.

2.2.  Successive Samples for Incident Disease

Based on brief tests of cognitive performance given

to all participants and further information from the first

(baseline) clinical evaluation, a cohort of persons

believed to be free of Alzheimer’s disease was

identified.  Approximately three years later, following

the second cycle of full-population interviews, a sample

of those persons free of disease at baseline was taken

for the first clinical evaluation for incident disease.

Repeating the process, at this second cycle, a new

cohort of persons believed to be free of Alzheimer’s

disease was identified.  Approximately three years later,

following the third cycle of study-population

interviews, a sample of this second cohort was taken for

evaluation for incident disease.  Figure 1 illustrates the

design schematically.  The solid black arrows, which

extend from the time of the baseline interview to the

time of the first evaluation for incident disease,

represent the first incidence sample.  The second set of

arrows (dots and dashes) represent the second sample.

Note that some of the sample is new, and some is a

continuation of the old (solid line) sample.  The third

set of arrows (dotted lines) are included to show the

continuation of the design into the future.  The length of

each arrow is approximately 3 years by design. 

We focus here on the combined sample drawn after

the second (solid lines) and third (dots and dashes) full-

population interview cycles.  Some individuals

identified as eligible to be sampled provided two

observations to the combined sample; some only one,

and many none at all. 

Figure 1.  Schematic Representation of Sample Design.

2.3  Sample Selection

Each sample of individuals for clinical evaluation

was chosen using the same basic approach.  People

were identified as belonging to strata defined by the

cross-classification of race (black or non-black), sex,

age group (in 5- or 10-year groupings), and cognitive

performance (based on four tests given to all

individuals in the study-population interview).

Additionally, for the second incidence sample, we also

stratified by whether or not an individual had been a

participant in the first incidence sample.  

The strata used in sample selection were not

technically design strata in the customary meaning of

the term in the survey-sampling literature.  Within each

“stratum,” individuals were selected into the sample

using Bernoulli sampling, that is, independently, with

the same probability of selection applied to each

member of the stratum.  Stratified Bernoulli sampling

is a special case of Poisson sampling.
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3. Statistical Modeling of Risk

Factors for Disease Incidence

NLet P  be the subset of N individuals in the CHAP

study population eligible for sampling into the first or

second incident clinical-evaluation samples or both, and

Nlet i index an individual in this set.  We call  P  the

eligible population.

  In principle, we could observe a clinical-

evaluation measurement whenever individual i was in

ithe eligible population.  Let U  be the set of such

putative observations for i. This set can have 1 or 2

members, depending on whether individual i was

eligible once or twice.  The population we want to

ianalyze here is U , the union of the U , that is, the set of

all putative observations.  We call U  the analytical

universe.   The term “universe” is used to distinguish

this population of putative observations from a

population of individuals.  

itLet *  = 1 if individual i is in the t  clinical-th

it itevaluation sample, and  *  = 0 otherwise, where B  is

the probability of person i  being selected for the tth

it itsample.   Note that E(* ) = B .  Let n be the number of

individuals with actual observations in the two incident

clinical-evaluation samples combined and m  be the total

number of observations:  n # m  # 2n.

Because the study was designed such that each

individual in the incident sample was observed for

approximately three years between entry into the

sample and clinical evaluation for the presence of

disease, we used logistic regression to examine risk

itfactors for incident disease.  Let Y  denote the presence

(=1) or absence (=0) of disease at time point t for

it it1 itJindividual i. Let X  = (X , ..., X )  denote a row vector

containing a set of J covariates for i, to be associated

with the clinical evaluation at time t.  Typically,

because we are interested in assessing the effect of risk

factors for disease, the values of these covariates will be

taken at the ascertainment of disease-free status from

itthe preceding cycle.  Suppose we assume that the Y  in

the population satisfy this logistic model:

it it itY   = f(X $) + , ,                                             (1)

it it 1 Jwhere f(X $) = [1 + exp(!X  $)]  , $ = ($ , ..., $ )'  is-1

itan unknown vector of parameters, and ,  is a random

it it itvariable with E(, |X ) = 0.  The ,  are assumed to be

uncorrelated across individuals but not necessarily

across putative observations for the same individual. 

Using maximum likelihood principles, a consistent

estimator for $ under mild conditions is the vector B

that satisfies 

it it it  3         3    X  [Y  ! f(X B)] = 0                          (2) 

N ii 0 P    t 0 U

(see McCullagh and Nelder, 1989). In practice,

ithowever, we only know the Y  values for observations

in the sample.   Consequently, we need a sample-based

estimator for B , which in turn will serve as an estimator

for the model parameter $. 

The above reasoning supposes we assume the

logistic model (1) holds for all the putative observations

in the analytical universe U .   Alternatively, we can

treat B  as the definition of a finite-population

parameter, and try to estimate it using randomization-

based survey sampling theory.  If b solves the sample-

based score equation,   

it it it it it  3         3     X [Y  ! f(X  b)](* /B ) = 0,             (3)

N ii 0 P    t 0 U

then it can be both a consistent estimator for $ under

the logistic model and for B  under randomization-based

theory.  Binder and Roberts (2003) make a similar

point.   Their concern is asymptotic unbiasedness under

either model- or randomization-based inference rather

than consistency.  Establishing dual consistency

requires some additional mild assumptions we assume

to hold in our context.     

Randomization-based theory is appealing because

it frees us from making assumptions about models. 

Unfortunately, its results are constrained to the

population under review, in this case the universe of

putative observations for the eligible CHAP population.

 This is extremely limited.  Rather, we believe that other

populations of older adults will have similar risk factor-

disease associations, which is why we are studying the

behavior of the CHAP population

With this in mind, we follow Fuller (1975) and

Ntreat the individuals in the eligible population, P , as a

simple random sample of a conceptual infinite

population. The goal of randomization-based inference

is now not to estimate the finite-population parameter,

B , but its limit, say B*, as N grows arbitrarily large in

a well-defined way. The score equation for b in (3) is a

consistent estimator for B* under mild conditions.  Note

there is no need to include an additional probability-of-

selection factor in equation (3) to reflect the sampling

of the eligible population from the conceptual infinite

population, because these probabilities of selection are

the same for all individuals and thus for all putative

observations associated with them.  

When the model in (1) holds, B* = $ in probability

under mild conditions. This is true even when the

sampling design is nonignorable (Rubin, 1976) in the

sense that observations in the sample behave differently

it it itfrom those outside of it, and  E(, |X , * ) � 0.   The

CHAP design may be nonignorable if there is relevant

information about the risk of disease contained in the

probabilities of selection that is not captured by  (1).

We can go even further.The limit of the finite-

population parameter B  is the model parameter $

it itwhether or not E(,  | X ) = 0.  This conditional

expectation is usually a requirement of the model.  In
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the standard formulation of the logistic model,

it itd{logit[E(Y )]}/dX , is assumed to be constant and

itequal to $ across all realizations of X .   That means

itj jthat a unit change in X  leads to an (exp{$ }-1)x100

j it.$  x100 percent change in the odds of Y  being 1 no

itmatter what the values of the components of X .  

When the population and model is such that

it it itE(, |X ) � 0 for all X , the standard assumption can be

it itreplaced with a more general one: E(X , ) = 0.  Such

a generalization reinterprets the meaning of $ to be the

it itaverage value for M{logit[E(Y )]}/MX  across the

ituniverse of X  values.   Consequently,  a unit change in

itj jX  leads to an approximate $  x100 percent change in

itthe odds of Y  being 1 on average. 

T he  randomization-based technique  of

it itincorporating the sampling weights, * /B , into the

determination of b, which is often given a model-based

justification when the sampling design is nonignorable,

also provides a means of estimating our robustified

model parameter.      

4.  The Delete-a-Group Jackknife

Mean-Squared-Error Estimator

We describe an estimator for the randomization

MSE of b as an estimator for B*, which also serves as

a measure of the model MSE of b as an estimator for $.

For the remainder of this discussion, we will

discontinue using the clarifying, but unwieldy, phrase

“as an estimator for B*” when referring to

randomization-based properties of b.   We focus on

mean squared error rather than variance because b is a

randomization-consistent estimator but not necessarily

a randomization-unbiased one.  Under mild conditions,

however, the randomization bias is an asymptotically

insignificant contributor to the randomization mean

squared error of b.   Consequently, the randomization

variance and MSE of b are asymptotically identical.

Effectively, we have a two-stage sample.   In the

first stage, a simple random sample of individuals

eligible for either clinical-evaluation study is drawn

from the conceptual infinite population of such

individuals.  The result of this (imaginary) stage of

Nsampling is the finite eligible population, P .   In the

second (real) stage, a Poisson subsample of

observations is drawn.     

NFor each  i 0 P , let 

i it it it it itE    =   3    X [Y  ! f(X B*)] (*  /B ).                   (4)

i         t 0 U

NAs P  is a simple random sample from a conceptual

iinfinite population, the E  are uncorrelated random

variables with mean zero, just as if they had been

sampled with replacement.   Consequently, under mild

conditions, we can parallel Binder (1983) and write 

ib ! B* . T  (1/m) 3  E  ,  where-1

 N                            i 0 P

 it it it it itT = plim {(1/m)  3         3   X 'X  f'(X B*)(*  /B )} 

N i                          i 0 P    t 0 U                                  

and  f'(z) = df(z)/dz = f(z)[1 ! f(z)].  The randomization

MSE of b is the randomization expectation of 

i i  mse(b) . T  (1/m ) 3   E E ' T .                         (5)-1 2 -1.  

 N                             i 0 P

The right hand side of equation (5) cannot be calculated

ibecause T and the E  are unknown;  one way to estimate

the randomization mean squared error of b is to follow

iBinder and replace T and the E  with sample analogues.

A popular alternative to Binder’s approach is to use

a replication method.  As in Bienias et al. (2003b), we

follow this second path and compute a delete-a-group

jackknife (Kott 2001, 2005).  This is done by randomly

Nassigning the individuals in P  into G  mutually

it(g) itexclusive groups of nearly equal size.   Letting * = *
when individual i is not in group g and 0 otherwise, we

(g)can define b  as the solution to 

it it it (g) it(g) it  3         3    X [Y  ! f(X b )] (* /B ) = 0. 

N ii 0 P    t 0 U

Only those data that form the complement of a given

group g are included, that is, we “delete the group.”

A delete-a-group jackknife estimator for the

randomization mean squared error of b is 

                                  G  

dag (g) (g)mse (b) = [(G-1)/G] 3 (b  ! b)(b  ! b)'.           (6)

                                  g=1

It is not hard to show that under mild conditions

dagmse (b) is an almost randomization unbiased

estimator for mse(b), which in turn is an almost

unbiased estimator for the randomization MSE of b. 

When the sampling design is ignorable and the

it it itstandard logistic model holds, so that  E(, |X , * ) = 0,

dagmse (b) is also an almost unbiased estimator for the

model MSE of b as an estimator for $.   The reasoning

ibehind this assertion replaces E  in equation (4) by     

i it it it it itu    =   3    X [Y  ! f(X $)] (*  /B )   

i         t 0 U  

it it it it     =   3    X ,   (*  /B ).                                              

i         t 0 U

i it itThe model independence of the u  rests on the , |X

being uncorrelated across individuals but not

necessarily observations. The remainder of the

argument parallels the randomization case with T

replaced by the sample value 

it it it it it(1/m)  3  3  X 'X  f'(X B*)(*  /B ).

Alternatively, consider a robustified general

it itlogistic model where only the X ,  have zero means

and are uncorrelated across individuals, so that $ = B*

dagin probability.  Then, mse (b) is an almost unbiased

estimator for the sampled-weighted average – that is,

the randomization expectation – of the model mean
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squared error of b as an estimator for $.   The key here

* , , *is the near equality of E {E [(b ! $) ]} and E {E [(b2

! B*) ]}, where the subscripts * and , refer to2

randomization and model-based inference, respectively.

5. The Application

5.1  Statement of the Problem

We considered models for incident Alzheimer’s

disease, adjusting for time-on-study, demographic

variables (e.g., age, sex) and other key covariates as

appropriate for the given risk factor of interest.  We

present two models:  (a) a simple model with time-on-

study and age, and (b) the final risk-factor model

reported in Evans et al. (2003).  Evans et al. (2003)

examined the effect of the presence or absence of the ,4

allele of the apolipoprotein E gene, a known risk factor

for Alzheimer’s disease, and whether or not the

magnitude of its effect varied by race.  The models

reported in that paper were estimated from the first

incidence sample from the CHAP study (the Cycle 2

sample; schematically, the solid-line arrows in Fig. 1).

We chose to use logistic regression, adjusting for

time-on-study, in preference to survival models, for two

reasons: (1) There is a long time between measurements

(three years by design, sometimes longer in practice),

which would induce interval censoring, and (2)

Although in practice there is some variability in time-

on-study across persons, the study is designed to have

essentially the same length of follow-up for everyone.

We estimated the variances with SAS® using

custom software we wrote (Bienias, 2001) and used 100

groups  (G=100 in Eq. (6)) to support the asymptotic

normality assumptions inherent in statistical testing.

5.2  Summary of the Analytic Data Sets

As mentioned earlier, an individual can contribute

one or two observations to the analyses described here.

 A total of 1,249 persons were selected for the Cycle 2

sample, and a total of 712 persons were selected for the

Cycle 3 sample, of whom 314 had also been selected at

Cycle 2.  We have a total of 1,134 persons contributing

1,346 observations to our analyses; 623 persons

contributed only to the first (Cycle 2) sample, 299

persons contributed only to the second (Cycle 3)

sample, and 212 persons contributed to both samples.

The response rates, weighted to the frame, among

survivors still living in the community were 77.4% for

the Cycle 2 sample and 72.8% for the Cycle 3 sample.

We considered two separate data sets: (a) The fully

combined samples just described (1,346 observations),

and (b) A subset using only one observation from each

of the 1,134 persons (i.e., all of the observations from

the Cycle 2 sample plus and the 299 persons who had

their first clinical evaluation in the Cycle 3 sample). 

Initially, we ignored nonresponse, which is

implicitly the same as assuming nonrespondents were

missing completely at random.  As a sensitivity analysis

to the effect of missing data, we re-analyzed the same

two data sets but with sampling-weight adjustments for

nonresponse computed using a propensity-stratification

approach (Rosenbaum and Rubin 1983; Little 1986;

Eltinge and Yansaneh 1997).  We first found the best-

fitting logistic regression model for predicting response

in each of the samples by building up a set of individual

predictors that included demographic characteristics

and measures of physical, cognitive and mental health.

We then created ten cells based on deciles of the fitted

logistic response probabilites for each sample, for a

total of twenty adjustment cells for the combined

sample. Within a cell, the nonresponse adjustment

factor was the inverse of the weighted response rate. In

like manner, the nonresponse adjustment factors were

computed separately for each replicate.  The final

weight for analysis was the sampling weight times the

nonresponse adjustment factor.  The adjustment factors

ranged between 1.051 and 2.114 for the full combined

sample of 1,346 observations and between 1.185 and

2.763 for the smaller sample of 1,134 unique persons.

5.3  Results

We first considered models predicting the

probability of Alzheimer’s disease based on age at entry

into the particular observation period (centered at the

approximate mean of 75 years) and time during that

observation period.  For the Cycle 2 sample, this is the

age at the time a person was determined to be free of

disease in conjunction with the first data collection

cycle.  Similarly, for the Cycle 3 sample, this is age at

the second data collection cycle.  “Time on study” is the

time between eligibility for the given sample and

clinical evaluation for incident disease.  Table 1, Model

A,  shows the estimates and standard errors for this

simple model for our four data sets.  As we expect, the

effect of age is strong and very significant (all Wald test

99|t |s > 7.000, all ps < 0.001), whereas the effect of time

99on study is not at all significant (all |t |s < 0.212, all  

ps > 0.833), as we would hope and consistent with

results reported previously (Wilson et al. 2002).

We next considered estimates for the primary risk-

factor model reported in Evans et al. (2003, Table 2,

first model, p. 187).  Table 1, Model B, contains the

parameter estimates and standard errors from that paper

and from our four analytic data sets.  Age was as just

defined for the first set of models, and education was

centered at the approximate mean of 12 years.  Race

was based on self-report  and coded 1 for black and 0
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for non-black; in the full study population, only  0.2%

of participants reported another race.  Apoliprotein E

was  the presence (=1) or absence (=0) of the ,4 allele.

As we see in Table 1, Model B, the estimates and

the standard errors are fairly stable across the four data

sets (Columns 1 - 4).  The estimate for sex varies

somewhat but is never close to statistically significant

(all ps > 0.39).  Comparing the estimates from the

combined samples to that previously reported in Evans

et al. (2003) (Column 5 on Table 1), we see the

estimates are mostly  similar.   Given that the addition

of later samples can shift the population distribution of

the demographic variables associated with the analytical

universe, some differences are to be expected.  For

example, realizing that women have a longer expected

life span than men, we expect the eligible population

(from which the analytical universe of observations is

derived) to contain more women as time goes on.  

Reassuringly, the impact of nonresponse on our

estimates of risk factors and covariates of interest does

not appear to be meaningful, as evidenced by the high

degree of similarity of the estimates between models

with and without nonresponse adjustment (i.e., between

Cols. (1) and (2) and between Cols.  (3) and (4)).  We

see this for the simple and the complex models. Some

may be surprised that explicit nonresponse adjustment,

although leading to more variability in the weights, did

not appear to uniformly increase s.e.  estimates.

We also note the parameter estimates for age and

their estimated standard errors from the simple models

presented in Table 1 are very similar to the estimates in

the corresponding complex models (Table 2).  Finally,

the more data for estimation, the sharper the estimates.

As the number of sampled observations increases from

the single sample reported in Evans et al. (2003)

through the single-observation-per-individual to the

full-sample analysis, standard errors tend to decrease.

 

6.  Discussion

As we have shown, the delete-a-group jackknife

variance estimator can be useful in settings where

standard techniques are not applicable or difficult to

implement.  In our Chicago Health and Aging Project

application, this complexity arose as a consequence of

our wanting to target particular domains of individuals

in each sampling cycle and to combine observations

across cycles involving overlapping sets of individuals.

By employing stratified Bernoulli sampling, we

were able to target domain sample sizes for each cycle

of sampling while at the same time assuring the

independence of observations from different

individuals.   This allowed us to conduct a

randomization-based analysis that also served as a

robust model-based one: robust against both a

nonignorable sample design (in which equation (1)

it it itholds but  E(,  | X , * ) � 0) and the failure of the

it itstandard model assumption (in which E(,  | X ) must be

zero).  When the standard model fails, however, the

estimated model parameters are effectively averages, in

our case taken across putative observations in the

eligible population.  As such, they apply approximately

to populations with covariate values similar to CHAP.

Using conventional stratified simple random

sampling has some apparent advantages over our

stratified Bernoulli design.   Domain sample sizes can

be targeted better and estimated parameters may be

itmore efficient (when E(, ) varies across the strata).

The problem with conventional stratified sampling

when analyzing survey data is that the stratum

population sizes may themselves need to be treated as

random variables.  If so, Korn and Graubard (1998)

show that randomization-based techniques developed

for finite populations may not have the appropriate

model-based properties.

   Fuller’s idea of treating the finite population as a

simple random sample from a conceptual infinite

population does not always allow the analyst to ignore

the finite population correction factors of

randomization-based theory.  It does, however, when

the actual selection mechanism linking the finite

population to the sample is Poisson. The delete-a-group

jackknife provides a simple means for estimating the

variances in a sample containing more than one

observation from the same population unit. 

Our design and methodological approach have

several strengths.  As just mentioned, under Poisson

sampling, we can ignore the finite population correction

(fpc) factor.  Although in many design settings such as

national household surveys, fpc is effectively ignorable

because of very small sampling fractions, in an

epidemiological study such as CHAP, probabilities of

selection are set much higher to allow researchers to

examine as many members of the population as possible

within budgetary constraints.  Thus our ability to ignore

fpc greatly simplifies computations as well as giving us

a more realistic mean-squared-error estimate.  Second,

the approach can be applied cross-sectionally as well as

longitudinally, for example, when multiple samples are

taken from a given list frame for different studies but

there is a desire to combine those samples at a later date

for a particular analysis.  Third, our methodology can

be adapted to the analysis of other types of modeling

beyond logistic regression.  Finally, being able to

combine samples as we describe allows for a

substantially more efficient use of the study population.

For example, when studying older populations, we

expect some loss to follow-up due to decease over the

life of a longitudinal study.  Being able to combine

samples across time allows us to make better use of the
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data, as well as giving us an opportunity to study

temporal or cohort effects.   In CHAP, we are extending

the methodology to future repeated sampling of the

original study population and to newly added  cohorts.
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Table 1.  Model Parameter Estimates (Standard Error Estimates) for Simple (A) and Complex (B) Models

Data Used

Model Term

(1)

Both Cycle 2 and Cycle

3 Clinical Evaluations

(2)

(1) but with

Nonresponse

Adjustment

(3)

Both Cycle 2 and

Cycle 3 Clinical

Evaluations, one

obs./person

(4)

(3) but with

Nonresponse

Adjustment

(5)

Cycle 2

Clinical Evaluation

CE Only

(from Evans et al.

2003)

Model A Intercept -2.212 (0.515) -2.216 (0.497) -2.178 (0.584) -2.062 (0.630) n/a

Time on Study

(years)

0.015 (0.122) 0.025 (0.118) 0.017 (0.138) -0.007 (0.146) n/a

Age (years-75) 0.127 (0.015) 0.127 (0.016) 0.137 (0.016) 0.133 (0.019) n/a

Model B Intercept -2.885 (0.567) -2.915 (0.548) -2.825 (0.629) -2.664 (0.691) -2.99 (0.746)

Time on Study

(years)

0.058 (0.120) 0.070 (0.117) 0.055 (0.136) 0.015 (0.149) 0.108 (0.131)

Age (years-75) 0.131 (0.017) 0.133 (0.018) 0.142 (0.018) 0.140 (0.021) 0.152 (0.024)

Male Sex 0.177 (0.242) 0.204 (0.238) 0.039 (0.266) 0.122 (0.285) -0.112 (0.341)

Black Race 0.610 (0.371) 0.634 (0.385) 0.762 (0.398) 0.815 (0.418) 0.612 (0.467)

Education

(years-12)

-0.096 (0.047) -0.091 (0.051) -0.090 (0.051) -0.073 (0.060) -0.131 (0.051)

Presence of an

Apoliprotein E

,4 Allele

0.953 (0.395) 0.886 (0.371) 0.912 (0.430) 0.778 (0.402) 1.066 (0.334)

Black Race *

,4 

-1.039 (0.540) -1.042 (0.530) -1.164 (0.604) -1.156 (0.588) -1.062 (0.555)
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