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Abstract 
 
Little and An (2004) proposed a penalized spline 
propensity prediction (PSPP) method of imputation of 
missing values that yields robust model-based inference 
under the missing at random assumption. The propensi- 
ty score for a missing variable is estimated and a regres- 
sion model is fit with the spline of the propensity score 
as a covariate. The predicted marginal mean of the miss- 
ing variable is consistent, but the PSPP method does not 
yield consistent estimates of other parameters, like con- 
ditional means or regression coefficients. We discuss 
properties of a simplified version of PSPP that does not 
center the regressors prior to including them in the pre- 
diction model. We then extend PSPP to multivariate 
data with both continuous and categorical variables so 
as to yield consistent estimates of both marginal and 
conditional means. The extended PSPP method is com- 
pared with the PSPP method and simple alternatives in a 
simulation study. 
 
1. Introduction 
 
Missing data problems are common in many applica- 
tions of statistics. In this paper, we consider univariate 
nonresponse, where the missingness is confined to a 
single variable. Let 1 1( , ,..., )pY X X − denote a p  

dimensional vector of variables with Y subject to 
missing values and 1 1,..., pX X −  fully observed 

covariates. We consider the problem of estimating the 
mean of Y , and the conditional mean of Y in subclasses 
defined by a categorical variable, and the regression 
coefficient of Y on a continuous variable. 
 
Many statistical methods have been proposed for this 
problem. A simple approach is complete case analysis 
(CC), which deletes units with Y  missing, so informa- 
tion contained in the deleted cases is lost. In the context 
of our problem, CC analysis yields consistent estimates 
of the conditional mean of Y  given a covariate 1X , if 
the missing-data mechanism is such that missingness 
depends on 1X , but does not depend on Y  or 

2 1,..., pX X − . Another approach is to impute predictions 

based on a parametric model 
1

0 1

p

i j ij ij
Y Xβ β ε−

=
= + +∑ , 

where iε is the error term with 2~ (0, )i Nε σ . One can 

estimate 0 1( ,..., )pβ β −  based on the complete cases and 

predict the missing values of Y by substituting X for 
that case into the regression equation. This approach is 
effective when the model assumptions are correct, but 
can yield biased results when the model is misspecified. 
Semiparametric and nonparametric methods weaken the 
model assumptions and capture the nonlinear relation- 
ships between the variables. In particular, with a single 
covariate X , imputations can be based on the penalized 
spline ( )i i iy s x ε= + with truncated polynomial basis 

0 1 1
( ) ... ( )

Kp p
p pk kk

s x x x xβ β β β κ +=
= + + + + −∑           (1) 

where 1, 1,..., , ( ) ,..., ( )p p p
kx x x xκ κ+ +− −  is known as the 

truncated power basis of degree p ; 1 .... Kκ κ< < are 
selected fixed knots and K is the total number of knots 
(Eilers and Marx 1996; Ruppert, Wand and Carroll 
2003; Ngo and Wand 2004). The penalized least squares 

estimator 0 1
ˆ ˆ ˆ ˆ ˆ( ,..., , ,..., )T

p p pKβ β β β β= is obtained by 

minimizing 

 2 2
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− − − − +∑ ∑ ∑  

where λ is a smoothing parameter and D =   

1(0 ,1 )p Kdiag + . The fitted values are ŷ = 
2 1( )T p TX X X D X yλ −+ . This model can be fitted using 

a number of existing software packages, such as PROC 
MIXED in SAS (SAS, 1992; Ngo and Wand 2004) and 
lme() in S-plus (Pinheiro and Bates, 2000). This imputa- 
tion model is strictly speaking parametric, but mimics a 
non-parametric form for predictions when K  is large.  
 
When there are several covariates in the regression 
model, such models are subject to the curse of dimensi- 
onality, which relates to the difficulty of fitting nonpara- 
metric regression functions when the regressor space 
has high dimension. Little and An (2004) proposed 
Penalized Spline Propensity Prediction (PSPP), which 
addresses the curse of dimensionality by restricting the 
spline to a particular function of covariates most sen- 
sitive to model misspecification, namely the propensity 
score. Little and An show that the PSPP method yields 
an estimate of the marginal mean of the missing varia- 
ble with a double robustness property, described below 
in section 2. We also discuss properties of a simplified 

455

ASA Biometrics Section (including ENAR and WNAR)



version of PSPP that does not center the regressors prior 
to including them in the prediction model.  
 
Little and An (2004) did not consider whether PSPP 
yields robust estimates for other parameters, such as 
conditional means or regression coefficients. In section 
3 we provide examples to show that the PSPP method 
does not in general yield robust estimates of these 
parameters. This motivates robust extensions of the 
PSPP method for estimating subgroup means and 
regression coefficients. These proposed extensions are 
described in sections 4 and 5. Section 6 presents 
concluding remarks. 
 
2. The Penalized Spline Propensity Prediction 
(PSPP) Method 
     
Let 1 1( , ,..., )pY X X −  denote a p  dimensional vector of 

variables with Y subject to missing values and 1,X … 

1pX − fully observed covariates. The missingness of Y  

depends only on 1 1,..., pX X − , so the missing data mech- 

anism is missing at random (Rubin, 1976). Let M be an 
indicator variable with 1M =  when Y is missing and 

0M =  when Y is observed. Define the logit of the pro- 
pensity for Y  to be observed as: 

*
1 1=logit (Pr( 0 | ,..., ))pY M X X −=                                (2) 

The key property of the propensity score is that, condi- 
tioning on the propensity score and assuming MAR, mi- 
ssingness of Y does not depend on the covariates 1,X  

…, 1pX −  (Rosenbaum and Rubin, 1983). Thus, the mean 

of Y can be written as 
 *[(1 ) ] [ ( | )]y E M Y E M E Y Yµ = − + ×                         (3) 

This motivates the Penalized Spline Propensity Predict- 
ion Method (PSPP), which is based on the following 
model: 

* * *
2 1 2 2 1

*
2 1

* * * * 2
2 1

( ,..., | ) ~ (( ( ),..., ( )), )

( | , ,..., ; )

               ~ ( ( ) ( , ,... ; ), )

p p p

p

p p

X X Y N s Y s Y

Y Y X X

N s Y g Y X X

β

β σ

− − −

−

−

Σ

+

       (4) 

 where * *( ) ( | )j js Y E X Y= , 2,..., 1,j p= −  is a spline 

for the regression of jX on *Y  of the form (1); *
jX = 

*( )jX s Y− is the residual of the spline model and repre-  

sents the part in jX  not explained by the propensity 

score; * *
2 2 1(( ( ),..., ( )), )p pN s Y s Y− − ∑ is a multivariate   

normal distribution with mean * *
2 1( ( ),..., ( ))ps Y s Y− and 

variance covariance structure ∑ ; *( )ps Y is a spline of 

Y on *Y  of the form (1) and g  is a parametric function 

indexed by unknown parameter β  with 

*( ,0,...,0; ) 0g Y β = for all β . The variable 1X  is not 

included in the g  function to prevent multicollinearity. 
The first step of fitting a PSPP model estimates the 
propensity score, for example by a logistic regression 
model of M on 1 1,..., pX X − ; in the second step, the 

regression of Y on *Y  is fit as a spline model with the 
other covariates included in the model parametrically in 
the g  function. 
     
PSPP has a double robustness property for predicting 
the mean of Y based on model (4), formalized in the 
following theorem:   
 
Theorem 1. Let ˆ yµ  be the prediction estimator for (3) 

based on model (4), and assume MAR. Then ˆ yµ  is a   

consistent estimator of yµ if either (a) the mean of Y  

given *
2 1( , ,..., )pY X X −  in model (4) is correctly specif- 

ied, or (b1) the propensity *Y is correctly specified, and 
(b2) * *( | ) ( )j jE X Y s Y= for 2,..., 1j p= −  and 

* *( | ) ( ).pE Y Y s Y=  The robustness feature derives from 

the fact that the regression function g does not have to 
be correctly specified.  
    
Little and An demonstrate the robustness property with 
simulations in which the PSPP method is compared with 
several other methods. They show the PSPP method 
yield relatively robust estimates of the population mean 
under different mean and propensity structures. 
     
The above theorem requires that the covariates *

2 ,X …, 
*

1pX −  in the PSPP method are centered by regressing 

2 1,..., pX X −  on splines of *Y  and taking residuals. We 

now show that this centering is not needed, and covaria- 
tes can be added directly into the regression, simplifying 
the method considerably. This property is elucidated in 
the following theorem: 
 
Theorem 2. The PSPP method based on model (4) can 
be simplified as follows:   

*
2 1

* * 2
2 1

( | , ,..., ; )

            ~ ( ( ) ( , ,... ; ), ),            (5)

p

p

Y Y X X

N s Y g Y X X

β

β σ
−

−+
that is, the covariates 2 1,..., pX X − enter the parametric 

function g  without centering. Let ˆ yµ  be the prediction 

estimator for (3) based on model (5), and assume MAR, 
then ˆ yµ  has the same property as that derived from 

model (4) (see appendix for proof). 
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3. The PSPP method for the subgroup means of Y 
conditional on a categorical covariate. 
 
The PSPP method is robust for estimating the marginal 
mean of Y .  An interesting question is whether it also 
yields robust estimates of other parameters, such as 
subgroup means. To address this issue, we consider the 
PSPP method for a subgroup mean when (a) the propen- 
sity of response is correctly specified and (b) the regres- 
sion model for Y given the covariates is incorrectly 
specified. 
  
Example 1. Robustness studies of PSPP for estimati- 
ng conditional means: effect of failing to condition on 
a subgroup variable. We simulate 100 datasets with 
1000 subjects, with two covariates 1 2,X X  and a respo- 

nse variable Y , where 1 2,X X  are independent with    

           1 ~ (0.5,0.3,0.2),X multinomial   

           2 ~ (0,1),X N   

and  

1 2 1 1

1 2

| , ~ ( [ 1] 3 [ 2]

                            5 [ 3] 10 ,1).

Y X X N I X I X

I X X

= + × =
+ × = +

  

We create missing values of Y from a model for the 
propensity to respond:  

1 2 2logit ( ( 0 | , ))P M X X X= = .   
 
We imputed the missing values of Y using predicted 
means from the following methods: 
(a) A correctly-specified ANCOVA model of Y  given 

1X , 2X , which we denote 1 2[ ]X X+ .  
(b) An incorrectly specified regression model for Y  
given 1X  and 2X , namely 1[ ]X . 

(c) The PSPP Method with null the g function, which 

we denote *[ ( )]s Y . 

(d) The PSPP Method with 1X  included, namely 
*

1[ ( ) ]s Y X+ . This model correctly specifies the mean of 
Y given the covariates. 
 
For all the penalized spline methods in this paper, we 
choose 20 equally spaced fixed knots and a truncated 
linear basis.  
 
 
Table 1. Marginal mean of Y (simulation 1) 
Methods Bias STD RMSE 
BD 5 39 31 
CC 420 43 420 
(a)Correct ANCOVA  [ 1 2,X X ] 6 38 31 

(b)Wrong ANCOVA [ 1X ] 419 43 419 

(c)PSPP  [ *( )s Y ] 6 39 31 

(d)PSPP  [ *
1( )s Y X+ ] 6 38 31 

Table 2. Conditional mean of Y given 1X (Simulation 1) 

 
We estimate the marginal mean of Y and the conditional 
means of Y given 1X  as the average of observed and 
imputed values from these methods. For comparison 
purposes we also analyze estimates from the data before 
deletion (BD) and estimates based on the complete 
cases (CC). Bias, empirical standard deviation (STD) 
and   root mean square error (RMSE) are summarized in 
Tables 1 and 2. CC analysis yields estimates with 
largest biases and RMSEs. The correctly specified 
ANCOVA model (a) yields unbiased estimates close to 
the BD estimates. The wrongly specified ANCOVA 
model (b) yields biased parameter estimates, with large 
biases and RMSEs. For the PSPP method, inclusion of 

1X  in the model is important for subgroup mean 

estimation. Without 1X  in the model, the PSPP method 
yields unbiased marginal mean estimate but biased con-  
ditional mean estimates; adding 1X in the PSPP method 
yields unbiased estimates of the marginal mean of 
Y and the conditional means of Y given 1X , with biases, 
STDs and RMSEs very close to those of BD.  
 
Example 2. Robustness studies of PSPP for estimati- 
ng conditional means: impact of misspecification of 
the mean structure. In the second simulation study, we 
generate 1X and 2X  as in Example 1; but the mean of Y  

given 1X and 2X  is simulated as:  

1 2

1 1 1

2
2 2 1 2

1 2

| ,

         ~ ( [ 1] 3 [ 2]+5 [ 3]

                     10 1 4 [ 1]

                     10 [ 2] ,1)

Y X X

N I X I X I X

X X I X X

I X X

= + × = × =

+ + − + × = ×
− × = ×

  

The missingness of Y depends on both 1X and 2X , with  

1 2

2
1 1 2 2

logit( ( 0 | , ))

[ 1] 0.5 [ 2] 0.5 0.5

P M X X

I X I X X X

=

= = − × = + × + −
 

 
Again, we simulate 100 datasets with sample size of 
1000 each. We impute the missing Y  as predicted 
means from the following methods: 

1 1X =  1 2X =  1 3X =  Methods 

Bias STD RMSE 

 

Bias STD RMSE 

 

Bias STD RMSE 

BD 3 52 41   10 62 51   0 75 60 

CC 417 58 417  422 73 422  415 90 415 

(a)Correct ANCOVA 
[ 1 2,X X ] 

3 52 41  10 62 52  0 75 60 

(b)Wrong ANCOVA 
 [ 1X ] 

417 58 417  422 73 422  415 90 415 

(c)PSPP  [ *( )s Y ] 74 51 75  -20 64 54  -127 78 130 

(d)PSPP  [ *
1( )s Y X+ ] 3 52 41   10 62 52   1 75 59 
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(a) A correctly specified regression model for Y , 
namely 2

1 2 1 2 2[ ]X X X X X+ + × + .  
(b) An incorrectly specified regression model for Y , 
namely 1 2 1 2[ ]X X X X+ + × . 

(c) The PSPP model without the g function, namely 
*[ ( )]s Y . 

(d) Model (c) with 1X included, that is, *
1[ ( ) ]s Y X+ . 

(e) Model (c) with the g function with centered 2X , 

namely, * *
2( ) ( )Y s Y g X= + . 

(f) Model (c) with the g function with uncentered 2X , 

namely, *
2( ) ( )Y s Y g X= + . 

 
The correctly-specified ANCOVA model yields unbias-  
ed estimates that are close to those of BD (Table 3 and 
4).  CC analysis and the wrongly specified ANCOVA 
model yield biased estimates. The PSPP methods yield 
consistent estimates for the marginal mean of Y but not 
the conditional means of Y given 1X . Unlike Example 1, 

adding 1X  or the g function does not correct the bias in 
estimating the conditional means. Biases and RMSEs 
from PSPP remain large compared to those of BD.  
     
For the first example, adding 1X  to the PSPP model 

correctly specifies the mean of Y given 1X  and yields 

unbiased subgroup means of Y given 1X ; but for the 

second example, adding 1X  into the PSPP methods but 

misspecifying the regression on 2X  yields biased sub- 

group mean estimates. Adding 1X  into the PSPP model 
implies an underlying assumption: for different levels of 

1X , the spline curves follow the same trend. That is not 
a correct assumption for the second example. We need a 
model that relaxes that assumption. One solution is to 
include the interaction of propensity score and 1X  into 
the model, yielding a stratified PSPP method. 
 
4. Stratified Penalized Spline Propensity Prediction 
for subgroup means 
     
Let 1cI =  if 1 ;X c=  0cI =  if 1 ,X c≠  1,...,c C= , and 

form the propensity in each category of 1X  : 
* * ,c

cY Y I= × 1,...,c C= . The stratified PSPP method is 
based on the following model:  
 

*1 *
2 1

* * 2
2 1

1

( | ,..., , ,..., ; )

~ ( ( ) ( , ,..., ; ), ),

C
p

C
c

pc p
c

Y Y Y X X

N s Y g Y X X

β

β σ

−

−
=

+∑
             (6) 

 
 

Table 3. Marginal mean of Y (Simulation 2) 
Methods Bias STD RMSE 
BD 5 33 27 
CC 233 53 233 
(a)Correct ANCOVA [ 2

1 2 1 2 2, , * ,X X X X X ]  5 32 27 

(b)Wrong ANCOVA [ 1 2 1 2, , *X X X X ]  17 33 30 

(c)PSPP  [ *( )s Y ] 0 42 35 

(d)PSPP  [ *
1( )s Y X+ ] 1 43 35 

(e)PSPP [ * *
2( ) ( )s Y g X+ ] 2 41 33 

(f) PSPP [ *
2( ) ( )s Y g X+ ] 1 41 33 

Stratified PSPP [ *( ( ))c
cs Y∑ ] 7 41 34 

 
where *( )c

pcs Y , 1,..., ,c C=   is a spline for the regressi- 

on of Y on *cY  ; g  is a parametric function indexed by 

unknown parameter β  . Within each category of 1X , 
*

1 2 1

* *
2 1

( | , , ,..., )

                      ( ) ( , ,..., ; ).

p

c
pc p

E Y Y X c X X

s Y g Y X X β
−

−

=

= +
  

This method yields consistent estimates for the 
conditional means of Y given 1.X  The marginal mean 
of Y is a weighted average of conditional means, which 
again has the consistency property. 
 
Example 2 continued 
We apply stratified PSPP to the data in the second 
simulation study, and the results indicate that the 
method yields consistent estimates of the marginal mean 
of Y  and the subgroup means of Y given 1X (Table 3-
4). For the marginal mean estimation, bias, STD and 
RMSE from stratified PSPP are close to those of BD 
analysis; for the conditional means, stratified PSPP 
yields estimates with smaller biases and RMSEs than 
those of PSPP. 
 
5. A Bivariate PSPP Method for estimating the 
conditional mean of Y given a continuous covariate. 
     
In this section we consider estimating the conditional 
mean of Y given a continuous variable 1X , based on a 

regression model for Y given 1X . To yield consistent 
parameter estimates for the regression coefficients, we 
again include the interaction of propensity score and 1X  
in the model for predicting the missing values of Y. 
Specifically, we propose the following bivariate PSPP 
method, based on the model: 
 

*
1 2 1

* * 2
1 2 3 1

( | , , ,..., ; )

~ ( ( , ) ( , , ..., ; ), ),

p

p

Y Y X X X

N s Y X g Y X X X

β

β σ
−

−+
           (7) 

where g  is a parametric function; *
1( , )s Y X  is a bivari- 

ate smoothing spline of *Y  and 1X . 
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Example 2 Continued 
We apply the bivariate PSPP method to the second 
simulation study in the section 3. We switch 1X and 2X , 

which means 1X is a standard normal and 2X is a multi- 

nomial variable. The mean of Y  given 1X and 2X  is 
simulated as:  

1 2

2
1 1 2 2

2 2 1

2 1

| , ~

                   (10 [ 1] 3 [ 2]

                       5 [ 3] 1 4 [ 1]

                       10 [ 2] ,1)

Y X X

N X X I X I X

I X I X X

I X X

+ + = + × =
+ × = − + × = ×
− × = ×

  

The missingness of Y depends on both 1X and 2X , with  

1 2

2
1 1 2 2

logit( ( 0 | , ))

0.5 [ 1] 0.5 [ 2] 0.5

P M X X

X X I X I X

=

= × + + = − × = −
 

 
We impute the missing Y  by the following methods: 
(a) A correctly specified regression model of Y  given 

1 2,X X  namely, 2
1 2 1[X X X+ +  1 2 ]X X+ × . 

(b) A wrongly specified regression model of Y  given 

1X  and 2X , namely, 1 2 1 2[ ].X X X X+ + ×  

(c) A spline prediction model for Y given 1X , namely, 

1[ ( )].s X  

 (d) Model (c) with 2X included as a predictor, namely, 

1 2[ ( ) ].s X X+  

(e) The PSPP method without the g function, that is 
*[ ( )].s Y  

(f) Model (e) with 2X included, that is, *
2[ ( ) ]s Y X+ . 

(g) Model (e) with a g function of centered 1X , namely, 
* *

1[ ( ) ( )]s Y g X+ . 

(h) Model (e) with a g function of uncentered 1X , 

namely, *
1[ ( ) ( )]s Y g X+ . 

(i) Model (e) with a smoothing spline of 1X , namely, 
*

1[ ( ) ( )]s Y s X+ . 

(j) The bivariate PSPP , namely, *
1[ ( , )]s Y X . 

 
We fit a regression model of Y  given 1X on the 
imputed datasets derived from the methods listed above, 
as well as the before deletion datasets and the complete 
cases. We are interested in the estimates of the intercept, 
regression coefficients of 1X and 2

1X . The correctly sp- 
ecified ANCOVA model yields unbiased regression 
coefficients with biases and RMSEs very close to the 
before deletion analysis (Table 5). CC analysis and the 
wrongly specified ANCOVA model yield biased 
parameter estimates, with relatively large biases. A 
spline of 1X  does not help in estimating the conditional 

mean of Y  given 1X . The spline regression models (c) 

and (d) and the PSPP methods (e), (f), (g), (h) and the 
PSPP model with a spline of 1X  (i) do not yield 
consistent estimates of the conditional mean of Y  given 

1X ; the parameters have larger biases compared to BD 
analysis. On the other hand, the bivariate PSPP method 
does yield consistent parameter estimates of the 
regression of Y  given 1X ; empirical biases and RMSEs 
are similar to those of BD analysis.  
 
6. Conclusion 
  
We have shown that that the PSPP method yields 
consistent estimate of the marginal mean of Y with a 
double robustness property, without the need to center 
the covariates in the g function. However the PSPP 
method does not have this property for conditional mean 
estimation. We have proposed two extensions of PSPP 
that extend the double-robustness property to condition- 
al means, namely stratified PSPP for a categorical 
predictor, and bivariate PSPP for a continuous predictor. 
The key property of these extensions is that they include 
the interaction of the propensity score and the covariate 
of interest in the prediction model. Simulations are 
presented to support the robustness properties of these 
extensions. 
     
These methods extend in obvious ways to inference for 
the conditional mean of Y  given a subset of the 
covariates 1( ,..., ),sX X  1s p< − although the curse of 
dimensionality comes into play as the size of s increases. 
A natural question is whether these propensity score 
methods can be extended to yield robust estimates for 
the regression given the complete set of covariates, such 
as, 1 1( ,..., )pX X − . We note that in our setting the cases 

with Y missing contribute no information to this 
regression, so there is no gain in developing an 
imputation model. If it is the covariates rather than the 
outcome that have missing values, however, then the 
incomplete cases do include information, and it remains 
an open question whether propensity methods can be 
used to increase the robustness of inference in such 
situations. This question deserves future study.  
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Table 4. Conditional mean of Y given categorical 1X  

 
Table 5. Regression of Y given continuous 1X  
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Appendix:   (1) Proof of Theorem 2   
 
Lemma 1:  

  

1 11

1

1

1

 Let    ,  ,  

1n n

y x

Y X

y x

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

M M M  

21 1 1 2 1 1 1

2

2 1 2 1

( * ) ( * )

 

( * ) ( * )

M M

n Mn n M n

x x x x x x

X

x x x x x x

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

K L

M O M M O M

L L

 

Where Y is a vector of the response variable; 1X  is a 

matrix containing 1x ; 2X contains the other covariates 

and interactions of 1x  and the other covariates. 

1 1X =  1 2X =  1 3X =  Methods 

Bias STD RMSE 

 

Bias STD RMSE 

 

Bias STD RMSE 

BD 8 55 44   2 12 10   3 69 52 

CC 296 76 296  45 22 45  410 104 410 

(a)Correct ANCOVA [ 2
1 2 1 2 2, , * ,X X X X X ] 8 55 44  3 14 11  3 70 54 

(b)Wrong ANCOVA [ 1 2 1 2, , *X X X X ]  18 55 46  19 33 30  14 72 56 

(c)PSPP  [ *( )s Y ] 99 62 101  -107 48 108  -81 83 97 

(d)PSPP  [ *
1( )s Y X+ ] 57 64 71  -172 55 172  123 88 127 

(e)PSPP [ * *
2( ) ( )s Y g X+ ] 29 61 56  24 47 43  -100 85 111 

(f) PSPP [ *
2( ) ( )s Y g X+ ] 30 61 56  21 47 42  -101 84 111 

(g) Stratified PSPP [ *( ( ))c
cs Y∑ ] 16 60 51   -1 37 27   0 85 68 

 Intercept   
1X    2

1X   Methods 

Bias STD RMSE 

 

Bias STD RMSE 

 

Bias STD RMSE 

BD 0 25 20   -3 36 29   -2 30 24 

CC -49 31 50  124 51 124  -35 37 42 

(a)Correct ANCOVA [ 2
1 2 1 2 1, , * ,X X X X X ] 1 24 20  -2 36 30  -2 30 24 

(b)Wrong ANCOVA [ 1 2 1 2, , *X X X X ] 44 23 44  27 38 40  -34 30 38 

(c)Spline on 1 1 [ ( )]X s X  -15 32 28  61 39 64  -18 33 31 

(d)Spline on 1 1 2 [ ( ) ]X s X X+  2 31 24  58 38 61  -19 33 32 

(e)PSPP  [ *( )s Y ] -69 33 69  -129 37 129  63 32 63 

(f)PSPP  [ *
2( )s Y X+ ]  -71 33 72  -119 40 119  66 31 66 

(g) PSPP [ * *
1( ) ( )s Y g X+ ] 24 28 31  21 46 42  -29 34 37 

(h)PSPP  [ *
1( ) ( )s Y g X+ ] 24 28 31  23 46 43  -30 34 38 

(i)PSPP +Spline on *
1 1 [ ( ) ( )]X s Y s X+   38 26 41  50 40 54  -45 35 48 

(j)Bivariate PSPP [ *
1( , )s Y X ] 1 25 20   -1 38 32   -4 31 26 
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 Let 
1 1 1 1 1 1

(1)

1 1 1 1

(( ) ) (( ) )

(( ) ) (( ) )

N

n N n

f X f X

X

f X f X

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

K

M O M

L

and       

      
1 2 1 2 2 1

(2)

1 2 2 2

(( ) ) (( ) )

(( ) ) (( ) )

N

n N n

g X g X

X

g X g X

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

K

M O M

L

 be matrices 

that contain functions of 1X and 2X as columns.  

 
Suppose we have the following models:  
(a) Linear regression model of Y given 1 2,X X  

with 1 2 (1) 1 (2) 2( | , )AE Y X X X Xγ γ= + , where    

1 2( | , )AE Y X X  is the conditional mean of Y given 

the covariates 1 2,X X  under the assumed model. 

Let 1 2ˆ ˆ,γ γ be the least squares estimates of 1γ and 

2γ , the predicted values of Y is written as 

1 1 2 (1) 1 (2) 2
ˆ ˆ ˆ( , ) * *Y X X X Xγ γ= + . 

(b) Linear regression model of Y given 1X  with 

1 (1) 1( | ) *AE Y X X β= . Let 1̂β  be the least squares 

estimate of 1β , the predicted values of Y is 

2 1 (1) 1̂
ˆ ( ) * .Y X X β=  

(c) Linear regression model of 2( )ig X  given 1X  

with 2 1 (1)( ( ) | ) *A i iE g X X X δ= , 1,..., 2i N= . Let 

îδ be the least squares estimates of iδ , the 

predicted values of 2( )ig X is 2 (1)
ˆˆ ( ) * .i ig X X δ=  

 Let (2) 1 2 2 2
ˆ ˆ ˆ[ ( ),..., ( )]NX g X g X= , 1 2

ˆ ˆ ˆ[ ,..., ]Nδ δ δ= . Subst- 

itute (2)X̂ into 1 1 2
ˆ ( , )Y X X of model (a) and obtain 

*
2 1 (1) 1 (2) 2
ˆ ˆˆ ˆ( ) * *Y X X Xγ γ= + . 

 

Then *
2 1 2 1
ˆ ˆ( ) ( )Y X Y X= . 

 

Proof:  To prove *
2 1 2 1
ˆ ˆ( ) ( )Y X Y X= , we need to show 

1 1 2
ˆ ˆˆ ˆ*β γ δ γ= + . 

 
Let (1) (2)[ , ],X X X=  1( ) ,T TH X X X X−=  and  

      1
1 (1) (1) (1) (1)( )T TH X X X X−= . 

 
From model (a): (1) 1 (2) 2ˆ ˆ ( )Y X X I H Yγ γ= + + −          (1) 

Multiply (1) by 1I H− and obtain 

1

1 (1) 1 1 (2) 2 1

( )

ˆ ˆ( ) ( ) ( )( )

I H Y

I H X I H X I H I H Yγ γ
−

= − + − + − −
 

Noting that: 

(i) 1 (1) 1̂( )I H Y Y X β− = −            (ii) 1 (1)( ) 0I H X− =  

(iii) 1 (2) (2) (1)
ˆ( )I H X X X δ− = −  

(iv) 1
1 (1) (1) (1) (1)( ) ( ) ( ) 0T TH I H Y X X X X I H Y−− = − =  

since 1( ) ( ( ) ) 0T T T T TX I H Y X Y X X X X X Y−− = − =  

 
We have  

(1) 1 (2) (1) 2
ˆ ˆ ˆ( ) ( )Y X X X I H Yβ δ γ− = − + −  

(1) 1 2 (2) 2
ˆ ˆ ˆ ˆ( * ) ( )Y X X I H Yβ δ γ γ= − + + −  

 

So 1 2 1 1 2 1
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ* *β δ γ γ β δ γ γ− = → = +  

 
Now need to show for the penalized smoothing splines 
we have the same property. 
 
Corollary: 
 
(d) Regress Y on 1,X 2X with 1 2( | , )AE Y X X =  

1 1 1 2 2 1 1 1 (2) 2( ; ) ( ; ) ( ; )s X g X s X Xγ γ γ γ+ = + , where  

1 2( | , )AE Y X X is the conditional mean of Y given 

the covariates 1 2,X X under the assumed model; 

1 1 1( ; )s X γ  is a spline of 1X  indexed by the 

parameter 1γ ; 2 2( ; )g X γ is a parametric function 

indexed by the parameter 2γ .  Let 1 2ˆ ˆ,γ γ be the 

restricted maximum likelihood estimates of 1γ and 

2γ , the predicted values of Y is written as 

1 1 2 1 1 1 (2) 2
ˆ ˆ ˆ( , ) ( ; ) *Y X X s X Xγ γ= + . 

(e) Regress Y on 1X with 1 1 1 1( | ) ( ; )AE Y X s X β= , 

1 1 1( ; )s X β  is a spline of 1X  indexed by the parameter 

1β . Let 1̂β  be the restricted maximum likelihood 

estimate of 1β , the predicted values of Y is 

2 1 1 1 1̂
ˆ ( ) ( ; ).Y X s X β=  

(f) Regress 2( )ig X on 1X with 2 1( ( ) | )A iE g X X =

1 1( ; ),is X δ 1,..., 2i N= ; 1 1( ; )is X δ  is a spline of 1X  

indexed by the parameter iδ . Let îδ be the restricted 

maximum likelihood estimates of iδ , the predicted 

value of 2( )ig X is 2 1 1
ˆˆ ( ) ( ; ).i ig X s X δ=  

Let (2) 1 2 2 2
ˆ ˆ ˆ[ ( ),..., ( )],NX g X g X= 1 2

ˆ ˆ ˆ[ ,..., ]Nδ δ δ= . 

Substitute (2)X̂ into 1 1 2
ˆ ( , )Y X X of model (a) and 

obtain *
2 1 1 1 (2) 2
ˆ ˆˆ ˆ( ) ( ; ) *Y X s X Xγ γ= + . 

 

Then *
2 1 2 1
ˆ ˆ( ) ( )Y X Y X→ as n → ∞ . 
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Proof: Consider the penalized spline with the linear 
basis:  
 

Let
11 11 1 1

(1)

1 1 1 1

1 ( ) ( )

1 ( ) ( )

n k

n n n k

x x k x k

X

x x k x k

+ +

+ +

− −⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟− −⎝ ⎠

K

M M M O M

L

, 

      
1 2 1 2 2 1

(2)

1 2 2 2

(( ) ) (( ) )

(( ) ) (( ) )

N

n N n

g X g X

X

g X g X

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

K

M O M

L

    

       ( )(1) (2)X X X=  

 
Then model (a) is: 
  

1 2 1 1 1 2 2

0 1 1 1 1 (2) 21

( | , ) ( ; ) ( ; )

* ( )

A

K

k kk

E Y X X s X g X

x x k X

γ γ

γ γ γ γ+=

= +

= + + − +∑
  

the fitting criterion is to minimize 
2 2 Ty X Dγ λ γ γ− + , 

with 0 1 2 11 1( , , , ,..., ) ,T
Kγ γ γ γ γ γ= 2 2diag(0 ,1 )N KD += . 

Using the mixed model presentation and restricted 
maximum likelihood, the fitted values are 

 2 1
1 1 2

ˆ ˆˆ ( , ; ) ( )T TY X X X X X D X Yλ λ −= + ,  

λ̂ is the estimated penalty.  When n → ∞ , ˆ 0λ → , thus 
1

1 1 2 1 1 2
ˆˆ ˆ( , ; ) ( , ;0) ( ) ,T TY X X Y X X X X X X Yλ −→ = the lea- 

st squares estimates of model (a).  
 
Similarly, for model (b), 

1 1 1 1 0 1 11 1 111
( | ) ( ; ) ( )

K

A k kk
E Y X s X x x kβ β β β +=

= = + + −∑
 as n → ∞ , 

1
2 1 2 1 (1) (1) (1) (1)

ˆˆ ˆ( ; ) ( ;0) ( )T TY X Y X X X X X Yλ −→ = . 

 
For model (c), 

 2 1 0 1 11 1 111
( ( ) | ) ( )

K

A i i i i k kk
E g X X x x kδ δ δ +=

= + + −∑  

as n → ∞ ,  
1

2 2 (1) (1) (1) (1) 2
ˆˆ ˆ( ; ) ( ;0) ( ) ( )T T

i i ig X g X X X X X g Xλ −→ =  and 

(2) (2)
ˆˆ ˆ( ) (0)X Xλ →  

 

By lemma 1, *
2 1 2 1
ˆ ˆ( ;0) ( ;0)Y X Y X= , we have,  

*
2 1 1 1 1 (2) 2

1 1 1 (2) 2 2 1

ˆ ˆ ˆˆ ˆˆ ˆ( ; ) ( ; , ) ( )

ˆ ˆˆ ˆ           ( ; ,0) (0) ( ;0)

Y X s X X

s X X Y X

λ γ λ λ γ

γ γ

= +

→ + =
 

as n → ∞ . 
 

From model (b),  2 1 2 1
ˆˆ ˆ( ; ) ( ;0)Y X Y Xλ →  as n → ∞ . 

So *
2 1 2 1
ˆ ˆ( ) ( )Y X Y X→ as n → ∞  and the proof is 

complete.  

Based on the corollary, the simplified PSPP method 
yields consistent marginal mean of the missing variable 
even when the g function is not specified correctly.  
 
We prove the case when the g  function is linear. We 

can approximate a nonlinear g function using a linear 
form and the corollary can be applied directly.  
 
(2) Proof of consistency of the stratified PSPP 
method  
Model:  
 

*1 * * 2
1 2 1~ ( ( ) ... ( ) ( , ,..., ), )c

C pY N s Y s Y g Y X X σ−+ + +  

 
Using mixed model presentation and based on the 
truncated power basis of degree p ,  

* * *

1 1
( ) ( ) ( ) , 1,...,

P Kc c j c P
c j k kj k

s Y Y Y c Cα µ τ += =
= × + − =∑ ∑

 
We know that,  

 1 1

1

ˆˆ ˆ( (0)) ( ( 0 ) (0 ) )

ˆ            ( )(0 ) 0

P Kj P
i j k kj k

K P
k kk

E s E

E

α µ τ

µ τ

+= =

+=

= × + −

= − =

∑ ∑

∑
 

 by mixed effects modeling with 2~ (0, )k uNµ σ .          
 
Let ,1 1iX = , we have 

*1 * *
1 ,2 , 1

*1 *
1 2 ,2 , 1

ˆ ˆ ˆ ˆ( ) ... ( ) ( , ,..., )

ˆ ˆ ˆ ˆ  ( ) (0) ... (0) ( , ,..., )

c
i i c i i i i p

i c i i i p

Y s Y s Y g Y X X

s Y s s g Y X X

−

−

= + + +

= + + + +
  

Take expectation:   
*1 *

1 ,2 , 12

*1 *
1 ,2 , 1

ˆ ˆ ˆ ˆ( ) ( ( )) ( (0)) ( ( , ,..., ))

ˆ ˆ        ( ( ) ( , ,..., ))

C

i i c i i i pc

i i i i p

E Y E s Y E s E g Y X X

E s Y g Y X X

−=

−

= + +

= +
∑

 

Then for each level of 1X c= , 

 
* *

,2 , 1

* *
,2 , 1

ˆ ˆ ˆ( ) ( ( ) ( , ,..., ))

ˆ ˆ        ( ( ) ( , ,..., ))

c
i c i i i p

c i i i p

E Y E s Y g Y X X

E s Y g Y X X

−

−

= +

= +
 

 
By PSPP method, within each level of 1X ,  

* * 2
2 1~ ( ( ) ( , ,..., ), )pY N s Y g Y X X σ−+ . 

So for the stratified PSPP,  
* *

,2 , 1
ˆ ˆ ˆ( ) ( ( ) ( , ,..., ))i c i i i pE Y E s Y g Y X X −= +  converges to 
* *

,2 , 1( ) ( , ,..., )i i i ps Y g Y X X −+ ,  which completes the 

proof. 
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