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Abstract*

Weights that are used for direct estimation using
survey data are often constructed using calibration
methods, such as benchmarking to auxiliary totals
and weight equalization. Benchmarking (forcing
certain estimates to match known totals) has been
shown to reduce variances for statistics correlated
with the auxiliary characteristics, and weight
equalization (forcing the weights within higher-level
units to be equal) has been shown to further reduce
variances for statistics measured on the higher-level
units. We will examine the effect of adding a family
equalization constraint to person level calibration
weights using data from the 2001 Panel of the Survey
of Income and Program Participation (SIPP). We also
consider weights that are an average of those with
and without equalization constraints, such that the
combined weights minimize variance of certain
statistics. Note that the combined weights will
maintain the benchmarking constraints.

Key words: weight equalization, integrated
weighting, raking, variance estimation, SIPP

1.  Introduction

The SIPP is a national household survey,
providing detailed information on the economic
situation of persons, households, and families. SIPP
data is often used to study wealth, well-being, and
participation in national assistance programs. Many
of the statistics that are of particular interest are
correlated with living in a low-income household.

At the design stage, we use stratified sampling
and weighting adjustments in an effort to improve
efficiency of such statistics. Currently, the weighting
adjustments at the benchmarking stage depend on
demographic characteristics of the individual,
without consideration of the makeup of the
individual's family. The purpose of this research is to
consider whether we can further improve the
precision of key SIPP statistics by incorporating
information about sampled families, such that an
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individual's final estimation weight depends in part
on the characteristics of other family members.
Primarily, we consider family-level weight
equalization, which was studied by Lemaitre and
Dufour [1987], who described their approach as an
integrated method of constructing weights for both
persons and families, and is now often referred to as
"integrated weighting." These authors found that the
precision of estimates on numbers of persons were
not substantially affected by the use of equalized
weights, but estimates of numbers of families
generally had improved precision when compared to
"principal person" methods. The principal person
method of estimation uses the weight of someone
selected in the family (or household) to assign to the
family, without first requiring that all persons in the
family have the same weight.

In our application to SIPP data, the results are
similar: the variance of an estimated number of
families is lowered, but there is little effect on any
other statistic we considered. Furthermore, there was
little or no improvement in efficiency resulting from
averaging the two calibration weights.

In this paper, we will describe the construction of
weights, provide numerical results in our application
to SIPP, and discuss practical concerns that could
affect the feasibility of equalizing weights within
families.

2.  Constructing Weights for Estimation

2.1  Design Weights

The adjustments we describe are used to fine-
tune design weights, which are valid estimation
weights that reflect the sampling design of the
survey. In particular, the design weight of a sampled
element is the inverse of its selection probability. The
use of design weights in practice may be just
hypothetical if we distinguish between the initial
probability of selection and the probability of
selecting a sample respondent. For this paper, we
assume the design weight is the inverse probability of
selecting a sample respondent, ignoring the fact that
this parameter is not known, but estimated. It is an
important distinction in discussing weight
equalization, which depends on the level at which the
design weights are equal.

The ultimate sampling unit clusters (USUs) in a
complex sample design consist of elements that are
selected together, and therefore have the same
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probability of selection. In our case, we will use this
term to refer to the clusters that are not only sampled
together, but undergo the same adjustment for non-
response.

2.2  Calibration

Calibration weighting offers a way to incorporate
auxiliary information into survey estimates so that, in
general, characteristics that are correlated with the
auxiliary variables are estimated with greater
precision. The information required for calibration is
a set of population control totals ΣU xk ,  where U is
the finite population universe and the xk are vectors
of auxiliary information that are known individually
only for elements in the respondent sample.
Calibration uses this information by constructing
weights such that Σs wk xk = ΣU xk ,  where s represents
the respondent sample and wk is the calibrated weight
for element k. Typically, there are many possible
choices of weights that satisfy this benchmarking
constraint. Calibration, by its classical definition,
produces the one that is closest to the design weights,
with closeness determined by a suitable distance
function (See Deville, Särndal, and Sautory [1993]
for details). So selecting a calibration estimator
reduces to the selection of a distance function.

There are two well-established estimators that
can be expressed as a weighted sum with the weights
defined by calibration: the generalized regression
estimator (GREG) and the raking ratio estimator. The
value of calibration is not that it offers an alternative
method of producing these estimators, but that its
flexibility may offer improvements to them. While
the weighted-sum form of the GREG may have
negative weights, for example, calibration allows for
range restrictions, which can force weights to be
positive. And the procedure for constructing raking
ratio weights, as described by Deming and Stephan
[1940], is used in cases where the auxiliary vectors
are indicators of membership in control groups.
Calibration techniques allow the use of continuous
auxiliary vectors, which we will show is the primary
reason weight equalization can be accomplished with
calibration and not the raking ratio algorithm as
currently implemented in SIPP.

2.3  Weight Equalization

When two sample elements have the same design
weight and the same values of their corresponding
auxiliary vectors, their calibrated weights will be the

same. This property leads to the method of equalizing
weights that we use.

The weights are constructed so they satisfy:

(a1)  Σs wk xk = ΣU xk

as well as many added constraints of the form:

(a2)  wk = wl

The trick is not to calibrate using the x-vectors,
but using alternative auxiliary vectors that lead to
conditions (a1) and (a2). The new vectors are
represented by zk , for k in U . To calibrate using
these, ΣU zk  must be known, and zk  must be known
for all k in s. And to satisfy (a1) and (a2), they are
constructed so that:

(b1) ΣU zk = ΣU xk

(b2)  Σs wk zk = Σs wk xk

(b3) zk = zl  wherever we want wk = wl , only
allowing the constraint if elements k and l
are in the same USU

The construction is simple - if we would like all
elements in group p to have the same weight after
calibration, define zk , for k in p, to be the average of
the x-vectors in p. That is, zk  = Σp xk /np, where np is
the number of elements in p. It is straightforward to
show (b1), (b2), and (b3) are satisfied in this case,
and therefore, so are (a1) and (a2).

There are two main reasons to require that
elements be in the same USU if we constrain their
weights to be equal. The first reason is that their
design weights will be equal, which was one of our
assumptions; this is a necessary condition for the
approach to lead to equal calibration weights.
Secondly, the z-vectors must be known for all
elements in sample. So, if zk  is a function of xk  and
the x-vectors of other elements, those other elements
should be guaranteed to be in sample whenever k is
in sample. Constraining these other elements to be in
the same USU as element k would satisfy this
requirement.

In our application, we look at equalizing weights
within each family. This will be referred to as family-
level weighting, as compared with weighting without
the constraint, which will be referred to as person-
level weighting.
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2.4  Range Restrictions

One of the benefits of calibration is that it offers
control over the distribution of weights, specifically
the g-weights. A g-weight is the ratio of the
calibration and design weights.

Each range-restricted estimator described in
Deville, Sarndal, and Sautory [1993], and similarly
Singh and Mohl [1996], forms a family of distance
functions defined by the upper and lower bounds
imposed on the g-weights. Their distance functions
generalize those of other calibration estimators. The
linear truncated estimator, for example, gives the
GREG if the range is wide enough to be effectively
unrestricted.

The choice of upper and lower bounds requires a
balancing of the desire to have all g-weights close to
one, while ensuring a solution to the calibration
equation exists and can be found in a reasonable
number of iterations.

2.5  Optimal-Average Weights

We consider a case where the weights are not
necessarily equal within each family, but will have
less variation within each family than the person-
level weights. This is accomplished by averaging the
person- and family-level weights. In particular, we
look at an optimal-average weight (equation 1,
below). In this expression, wp,k is the person-level
weight and wf,k is the family-level weight. The
optimal choice of α is the one that minimizes the
variance of an estimated total; this will have the form
given in (equation 2), where ^tp =Σ s wp,k yk , and ^tf

=Σs wf,k yk . Its variance is given in (equation 3),
where ^σp

2  is the estimated variance of ^tp , 
^σf

2  is the
estimated variance of ^tf , and ^σp f   is the estimated
covariance of the two statistics. The choice of α that
minimizes this variance is given in (equation 4).

wopt,k = α wp,k + ( 1 - α ) wf,k (1)

^t opt = α ^t p + ( 1 - α ) ^t f  (2)

^σ2  = α2  ^σp
2 + ( 1 - α )2 ^σf

2  + 2 α ( 1 - α )  ^σp f  (3)

α =
^σf

2 - ^σp f  
 ^σp

2 + ^σf
2 - 2 ^σp f

 (4)

2.6  Linearizing the Weight Adjustments

All calibration estimators are asymptotically
equivalent, and in practice, evidence has shown only
minor differences among the estimators even for
modest sample sizes, with the possible exception of
instances where tight range restrictions are imposed
[Singh and Mohl, 1996]. So it is often assumed that
the variance of any calibration estimator is
reasonably well approximated by treating it as though
it were the GREG. Suitable variance estimators for
the GREG are usually easy to compute, compared
with other calibration estimators, due to the fact that
the GREG does not require iterations to calculate. We
use a residual technique of variance estimation,
which was developed for the GREG.

In this case, the variance of a calibration
estimator, such as ^tp or ^tf , is approximated by the
variance of a weighted sum of residuals, Σs wk ek ,
which is treated as a linear statistic. This may also be
expressed as Σs dk gk ek , where dk and g k are the
design and g-weights, respectively. Since a linear
statistic is defined as one that is linear in the design
weights, this form more clearly identifies gk ek  as the
linearized var iable . See Binder [1996] for a
derivation of this result.

3.  Application

3.1  SIPP Sampling and Estimation

The 2001 panel of SIPP has a two-stage
sampling design, in which primary sampling units
(PSUs) are selected in the first stage from regionally
defined strata, and consist of groups of counties.
Some strata are comprised of a single PSU, which is
selected with certainty. Since the sample from these
PSUs is not weighted to represent any other
geographic area, the PSU is called self-representing
(SR). The remaining strata consist of multiple PSUs,
from which two are selected with probability
proportional to size, following Durbin's plan of
sampling without replacement [Durbin, 1967]. These
PSUs represent a larger stratum of PSUs and are
therefore non-self-representing (NSR). In the second
stage of sampling, clusters of housing units are
selected systematically from a list sorted on
demographic variables derived from the decennial
census.

The variance estimator we use treats the first
stage selection of NSR PSUs as though it were with
replacement – that there was a nonzero probability of
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choosing the same PSU twice. Variance estimation
that is unbiased for "with replacement" selection
generally incurs a small positive bias when sampling
occurs without replacement. We choose this biased
estimator due to its computational simplicity over the
alternative unbiased estimator. In this case, the two
PSUs form replicate clusters (half-samples) selected
from the strata. In SR PSUs, variance estimation for
the systematic sample is based on the paired
selections model of Kish [1965]. This results in
stratum and half-sample assignments, similar to the
NSR PSUs.

With two half-samples per stratum as we
described, a suitable variance estimator of a linear
statistic, in particular the weighted sum of residuals,
is:

^σi
2 = Σ h ( E i h 1 - E i h 2 ) 2 (5)

where i indexes the two calibration estimators (p and
f); h represents stratum; and E i h j  represents the wi,k -
weighted sum of residuals in stratum h, half-sample j.

Further details on SIPP weighting and applying
the residual technique of variance estimation to SIPP
estimates can be found in Rottach and Hall [2003].

3.2  Meeting All Constraints

The three sets of constraints imposed on the
estimation weights – benchmarking, equalization, and
range restrictions – are substantial, and it is possible
not all can be met. It would be desirable to impose
constraints that can be met with a high likelihood,
with some mechanism for loosening the constraints if
a solution cannot be found. This is especially
important if a replicate weighting approach to
variance estimation is used, where the procedure
should be repeatable without replicate-by-replicate
modifications.

One option is to form the final control groups
(cells) such that they meet certain requirements based
on the collected sample. When a given cell does not
meet the requirements, it is collapsed with another to
form a new cell. The SIPP employs this option,
requiring that each cell have some minimum sample
size, and that each population control divided by the
estimate of that control using design weights be
between 0.67 and 2. This should reduce the number
of occurrences of especially large or small final
weights relative to design weights, but does not
strictly impose upper and lower bounds on the g-
weights as would a range restriction.

Another possible approach would be that of
ridge regression in calibration, as described in Rao
and Singh [1997]. This procedure is only
approximate calibration, in that it allows for some
discrepancies between the population controls and
their estimates. We will not apply this method in our
examples.

Range restrictions have a substantial affect on
the rate of convergence. There does not appear to be
much advantage to imposing very tight bounds on
these. We chose a range of 0.2 to 5 since it
disallowed extremely small or large weights, but was
loose enough to allow convergence in a small number
of iterations for our application.

4.  Numerical Results

4.1  Programming

The methods we implemented were programmed
in SAS/IML using the algorithms described in Singh
and Mohl [1996]. The results presented here use
linear truncated calibration.

4.2  Differences in the Estimates

One of the assumptions we make for variance
estimation is that our calibration estimator is a close
approximation to the GREG. For validation, we
compared the estimates of poverty, health insurance
coverage, social security, and foodstamp
participation. In no case did the estimates using our
calibration estimator and the GREG differ by more
than 0.1%. This was true for calibration with and
without family-level equalization.

The relative precision (RP) of these estimates is
calculated as a ratio of standard errors, with the
numerator being that of person-level weighting. The
relative difference (RD) of the estimates is measured
relative to those with person-level weights.
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Table 1
Relative Differences and Relative Precisiona

Statistic RD (%) RP
Persons in Poverty
    FW -1.93 .99
    OW (α=.60) -.76 1.01
Families in Poverty
    FW -3.34 1.02
    OW (α=.28) -2.28 1.03
Number of Families
    FW .13 2.15
    OW (α=0) .13 2.15
Number Uninsured
    FW .11 .99
    OW (α=.62) .04 1.00
Social Security Recipiency
    FW -.47 .97
    OW (α=.97) -.01 1.00
AFDC/TANF
    FW -2.63 1.01
    OW (α=.38) -1.63 1.02
Food Stamps
    FW -1.93 1.04
    OW (α=.11) -1.27 1.04
aFW=family-level weighting; OW=optimal weighting

4.3  Distribution of Weights

The person-level calibration weights were in
some way the ones closest to the design weights that
satisfied the benchmarking constraint, so it follows
that the family-level weights will be further from the
design weights in this respect. The greater dispersion
of g-weights resulting from equalization constraints
is clearly seen in Figure 1. In general, when
estimation weights have added variability, so do the
statistics computed using the weights. So, the
reduction in variance we might expect by
incorporating information about families could be
counteracted by the effect of a wider distribution of
g-weights.

The wider dispersion we saw in our application
was different for different populations, such as the
age groups shown in Figure 2 (last page).

Figure 1
Distribution of g-weights
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5.  Conclusion

In our application, we found that weight
equalization improved the precision of estimates of
numbers of families, reducing the standard errors by
half. All other statistics were only minimally
affected, including the estimated number of families
in poverty. We do not consider the statistic “number
of families” itself of particular importance in our
study, but a reduction in its variance could indicate a
reduction in variance of (possibly correlated)
statistics that are fundamental to the survey.

So the advantage of using this approach for
improved efficiency of key SIPP statistics remains a
conjecture, and one that would need to be weighed
against practical concerns, such as those related to
convergence.
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Figure 2
Distribution of g-weights by Age Group
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