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Abstract 

 
For the special audit data where the qualified invoice 
amount is somewhere between zero and the full 
invoice amount, we have discussed in Part I of this 
paper(Liu, Batcher and Scheuren, 2005) about stratum 
boundaries, sample size calculation and sample size 
allocations.  In design-based approach, the properties 
of the two estimation methods - Mean Per Unit 
estimation and Ratio estimation are well known.  Here, 
we compare the two estimation methods from a 
different approach.  We compare their bias and 
variance using the realization process.  We also 
perform simulations to compare the balance of number 
of strata and stratum sample size under different 
settings.    
 
Key words: mixture distributions; audit sampling; 
stratified sampling; Mean Per Unit (MPU) estimation; 
Ratio Estimation; realization process. 

 
  

1.  Introduction 
 

One typical audit situation is that there exists a list of 
invoice with a known invoice amount.  The 
distribution of the invoice amounts is highly skewed, 
as shown in Figure 1.  For each invoice, there is a 
qualified amount associated with it, whether qualified 
for taxable amount or for tax credit.  In part I of this 
paper, we discussed two types of populations that we 
often face in auditing.  One is the special population 
where invoices are divided into two categories 
according to whether or not invoices are qualified, 
called Population One.  The other population type 
arises when some invoices have a qualified amount 
between zero and the full invoice amount, called 
Population Two.  Figure 2 and Figure 3 show the 
scatterplot of the qualified amount against the invoice 
amount for these two populations.   
 
Assume that the population parameter to be estimated 
is the total qualified amount.  The typical estimation 
methods used in this type of audit data are Mean Per 
Unit (MPU) method and Ratio method (or combined 
ratio method in stratified sampling design).   
 
The properties of these two methods are well known 
when design-based approach is taken.  It is known, for 
example, that unconditionally, the MPU estimate is 
unbiased while the ratio estimate is biased.  It is also 

known that the variance estimator of MPU estimate is 
exact and unbiased while the variance estimator of the 
ratio estimate is approximate and biased.   
 

Figure 1.  Typical Frequency Distribution of 
Invoice Amount (x) 
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Figure 2.  Population One 
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Figure 3.  Population Two 
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For the stratified sampling with small stratum sample 
size, it is often thought that the MPU estimator is 
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“safer” than the ratio estimator.  By “safer”, we mean 
that it has better properties in terms of bias and 
stability of variance estimation.  In this paper, we look 
at theses properties from a different approach using a 
“realization process” that generates the audit 
populations.  

 
 
2.  Realization Process of Population One 
 

To characterize the population distribution, we assume 
that qualified invoices and non-qualified invoices are 
randomly distributed among the N  population units.  
Let ix  be the known invoice amount for invoice i  and 

iy  be the unknown qualified amount for invoice i .  

According to Roberts (1978), the N  population units 
in Population One (Figure 2.) may be characterized as 
a realization of the following process: 

iy = Ni
p

pxi ,,2,1,
)-(1y probabilitwith ,0

y probabilitwith ,
L=

⎩
⎨
⎧

                                              

                                                                                (2.1) 
 
The properties of this process in terms of averages over 
all possible realizations are denoted as pE .  Some 

important results for MPU estimator and ratio 
estimator are given by Roberts (1978). 
 
For the MPU estimator, it can be shown that 
 

yNY =ˆ ,                                                                 (2.2) 
 
and for ratio estimator, that 
 

 XRYR
ˆˆ =                                                                (2.3) 

 
where 
 

x

y
R =ˆ ,  ∑=
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i

iy
n

y
1
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x
1
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The corresponding variances are  
                                     

2)1/()ˆ( ySnNNYV −= ,                                        (2.4) 

2)1/()ˆ( dR SnNNYV −= ,                                       (2.5) 

where 2
yS  is the variance of y  and 2

dS  is the 

variance of iii Rxyd −= . 

Under the realization process (2.1), Roberts (1978) 
proves that  
 

( )222 )1()( XpSpSE xyp −+≈ ,                             (2.6) 

and                                                                             

( )222 )1()( XSppSE xdp +−≈ ,                             (2.7) 

when the population size, N , is reasonably large.   

Combining equations (2.6) and (2.7), we have 

( )2
yp SE ( ) 222

xdp SpSE += .                                 (2.8)     

 
 

3.  Realization Process of Population Two 
 

 
As described in Part I of this paper, we also developed 
a realization process for Population Two.  Let iz  (in 

order to distinguish from iy  in Population One) be the 

unknown qualified amount of invoice i .  There could 
be many scenarios for Population Two.  One scenario 
is that points of iz  are randomly scattered around the 

line ipx .  This can be characterized as a realization of 
the following process: 
 

iz  = ,
)-(1y probabilitwith ,

y probabilitwith ,)1(

⎩
⎨
⎧

−
−+

pupxpx

pxpupx

ii

ii      

Ni ,,2,1 L=                                                          (3.1) 
 
where u  is a random number from )1,0(Uniform . 
 
The MPU estimator and ratio estimator for the total 
qualified amount are: 
 

zNZ =ˆ ,                                                                  (3.2) 
         

 ZRZ R
ˆˆ =                                                                (3.3) 

 
where 
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The corresponding variances are  
                                     

2)1/()ˆ( zSnNNZV −= ,                                        (3.4) 

2
)()1/()ˆ( zdR SnNNZV −= ,                                   (3.5) 

where 2
zS  is the variance of z  and 2

)( zdS  is the 

variance of iii Rxzzd −=)( . 
 
Under the realization process (3.1), it can be shown 
that   
 

( )2
zp SE ( ) 222

)( xzdp SpSE += .                               (3.6) 

 
The proof of (3.6) is given in the following. 
 

Since )ˆ(REp = , under model (3.1), we have  
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iii Rxzzd −=)( ii pxz −≈  
 
Taking the variance on both sides of the equation: 
 

ii pxz −  )(zdi≈ ,  
 
we have 
         

),(2222 xzpCovSpS xz −+ 2
)( zdS= .                     (3.7) 

 
From the realization process (3.1), it is immediate that  
 

)(zxE p
22 XppS x += . 

 
 Therefore, 
 

)()()(),( xEzEzxExzCov pppp −=  

                      2
xpS= .                                             (3.8) 

 
Substituting equation (3.8) into equation (3.7), we 
obtain equation (3.6). 
 
Since from Part I of this paper (Liu, Batcher and 
Scheuren, 2005) it can be shown that 
                                                                     

)(
3

1
)( 22

)( dpzdp SESE = .                                       (3.9) 

The variances of the two estimators under the 
realization process (3.1) can be obtained from 
equations (2.7), (3.4), (3.5), (3.6) and (3.9). 
 
 

4.  Bias Comparison - MPU Versus Ratio 
Estimator 

 
Population One.  Estimators from the simple random 
samples in Population One are known to be such that 
unconditionally, the MPU estimate (2.2) is unbiased 
while the ratio estimate (2.3) is biased.  Conditionally, 
for the given sample ( nxxx ,,21 ,

L

), under realization 

process characterized by equation (3.1) of Population 
One, the MPU estimate is conditionally biased while 
the ratio estimate is unbiased.  The conditional biases 

of Ŷ  and  RŶ  under the Population One realization 
process are 
 

)()ˆ( XxNpYYE p −=−                                         (4.1) 

 

0
)(

)ˆ( =−=− YX
x

yE
YYE p

Rp .                           (4.2) 

 
The MPU estimator would underestimate the 
population total if Xx < ; and overestimate if Xx > .  
The audit populations here are typically very skewed 
to the right and it is often the case that Xx < .  To 
keep the bias small, a balanced sample is desired.   
That is, a sample that satisfies Xx ≈ .  

 
Population Two.  In a way that parallels our 
Population One results, it can be shown that this same 
conclusion holds under Population Two, as 
characterized by equation (3.1).  The conditional biases 
in this second case are:  
 

 )()ˆ( XxNpZZE p −=−                                        (4.3) 

 

 0)ˆ( =− ZZE Rp                                                     (4.4)  

 
Achieving Balance.  Stratification on invoice amount 
x  is often used, which can help the sample to be better 
balanced.  Stratum boundaries and sample size 
calculation are discussed in part I of this paper.  The 
conditional biases under stratification for Population 
One are: 
 

)()ˆ( hhh

h

p XxNpYYE −=− ∑                                                   

                 )ˆ( XXp st −= .                                      (4.5) 
 

YX
x

yE
YYE st

st

stp
CRp −=−

)(
)ˆ(                                               

                       0=−= Y
x

xp

st

st .                                (4.6) 

 
Similarly, for Population Two,  
 

)ˆ( ZZE p − )ˆ( XXp st −= .                                   (4.7) 

 

0)ˆ( =− ZZE CRp .                                                (4.8) 

 
 

5.  Variance Comparison – MPU Versus Ratio 
estimator 

 
The variance of the ratio estimator is smaller than the 
mean per unit estimator for both a simple random 
sample design and a stratified sampling design and 
under both realization processes (2.1) and (3.1).  The 
differences in the variances of the two estimators are 
given below. 
 
From equations (2.4) and (2.5), the expected variances 
of the two estimators under simple random sample and 
realization process (2.1) of Population One are 
 

( ) ( )2)1/()ˆ( ypp SEnNNYVE −= ,                           (5.1) 

 

( ) ( )2)1/()ˆ( dpRp SEnNNYVE −= .                         (5.2) 

 
Using equations (2.8), (5.1) and (5.2), the variance 
difference of two estimators is 
 

( ) ( ) ( ) 221)ˆ()ˆ( xRpp SpnNNYVEYVE −=−             (5.3) 

                                     >0 
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For the stratified sample design, similar conclusions 
hold: 
 

( ) ( ))ˆ()ˆ( CRpstp YVEYVE −  

     ( ) 22 1 hxhhh
h

SnNNp −= ∑                                 (5.4) 

      >0   
 
Similarly, under the realization process (3.1) of 
Population Two, we have 
 
 

( ) ( )2)1/()ˆ( zpp SEnNNZVE −= ,                          (5.5) 

 

( ) ( )2
)()1/()ˆ( zdpRp SEnNNZVE −= .                    (5.6) 

 
Using equations (3.6), (5.5) and (5.6), we get the 
following: 
 

( ) ( ))ˆ()ˆ( Rpp ZVEZVE −                                                             

( ) 221 xSpnNN −= .                                              (5.7) 
 

( ) ( ))ˆ()ˆ( CRpstp ZVEZVE −                                         

( ) 22 1 hxhhh

h

SnNNp −= ∑ .                                          (5.8) 

  
Note that (5.3), (5.4), (5.7) and (5.8) show that the 
variance differences of two estimators are the same 
under both realization processes.  But actual variances 
under the two realization processes are different, which 
is shown by equation (3.9). 
 
 

6.  Comparison of Sample Estimates Using 
Simulations 

 
Theoretically, to summarize sections 2 through 5, we 
have compared MPU estimator and ratio estimator for 
the special audit populations.  From the realization pint 
of view, we have shown that 
 

• The MPU estimator is biased and the ratio 
estimator is unbiased, 

• The degree of bias depends on the how 
close x  is to X , 

• The variance of ratio estimator is smaller 
than the variance of MPU. estimator 

 
This assumes that the populations follow the 
realization process models (2.1) or (3.1) exactly.   
 
In practice, real populations do not follow models 
exactly and we need to estimate the variance using 
sample data.  Since the stratified sample design in 
often used, an important issue is the balance between 
the number of strata and the stratum sample size.  For 
example, for a fixed sample size of 90 units, we can 
use the setting of 9 strata with 10 units per stratum or 

the setting of 3 strata with 30 units per stratum.  A 
deep stratified sample may result in smaller bias 
because of x  closer to X .   
 
On the other hand, it is intuitive that the stability of the 
estimated variance needs a larger stratum sample size.  
In the following simulations, we will look at the bias 
and the variance estimates of the two estimation 
methods from sample data under different settings.  
For this exercise, the typical design-based variance 
estimates for MPU estimator and for combined ratio 
estimator are used, see Cochran (1977). 
 
The simulation population includes 3,865 invoices.  
Four variables are generated as described in Table 1.  
For a fixed sample size of 90 invoices, two design 
settings are used, as described in Table 2. 

 
 

Table 1.  Four Simulated Variables 
 

Variable 
Name 

Population 
Model 

Value of 
p 

1y  Equation (2.1) 0.3 

2y  Equation (2.1) 0.7 

1z  Equation (3.1) 0.3 

2z  Equation (3.1) 0.7 

 
 
Table 2.  Two Design Settings 

 

Total 
sample size 

Number of 
Strata 

Number of 
Invoices Per 

Stratum 
90 3 30 
90 9 10 

 
 
The stratum boundaries are set up using the results 
from Part I of this paper: 

12 +hxh CVX = C , Lh ,,2,1 L= .                        (6.1)                

where hxCV  is the coefficient of variation of x  for 

stratum h  and C  is a constant. 

 
For each setting in Table 2, we drew 2,000 samples 
and calculated the estimated qualified amount and its 
corresponding estimated variance using both MPU 
method and combined ratio method 
 
Bias Comparisons.  The relative biases Bias )( 1y , 

Bias )( 2y , Bias )( 1z  and Bias )( 2z  are calculated for 

each of the 2,000 samples.  Here 1ˆ)( 111 −= YYyBias  
and so forth.  For each variable, the 2,000 bias values 
are sorted in increasing order; the ordered values of the 
four variables are merged together in order.  To 
compare the two estimation methods – MPU estimator 
and ratio estimator, we look at the linear regression of 
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MPU bias on the ratio bias through the origin for each 
variable and each sample design setting.  The 
following Table 3 gives the regression coefficient.   
 
Table 3.  The Regression Coefficient of MPU Bias 
on Ratio Bias 
 

Variable 
Setting of 3 

Strata 
Setting of 9 

Strata 

1y  1.003 1.026 

2y  1.019 1.132 

1z  1.008 1.077 

2z  1.068 1.365 
 

The value of 2R  is larger that 0.99 for all regressions 
in Table 3.  It shows that ratio estimator has a smaller 
bias, in general, for both design settings.   
 
Further, we look at the four scenarios of two design 
settings and two estimation methods.  We take the ratio 
method and 9 strata setting as the benchmark and 
regress the bias of the each scenario on it.  Table 4 
gives the coefficient of linear regression through the 

origin.  All the 2R  values are greater than 0.99. 
 
Table 4.  The Regression Coefficient of Bias on  
Bench Mark Bias  
 

Variable 

Ratio 
9 

Strata 

MPU 
9 

Strata 

Ratio 
3 

Strata 

MPU 
3 

Strata 

1y  1.000 1.003 1.059 1.087 

2y  1.000 1.019 1.039 1.178 

1z  1.000 1.008 1.063 1.146 

2z  1.000 1.068 1.055 1.447 
 
 
Table 4 indicates that the ratio method in the 9 strata 
setting has the smallest bias in general; the scenario of 
MPU and 9 strata and the scenario of Ratio estimation 
and 3 strata are close; and the MPU estimation and 3 
strata is the worst scenario.  Table 4 also suggests that 
if MPU estimator is used, deep stratification can 
reduce the bias, especially when the ratio type 
relationship between qualified amount and invoice 
amount (that is, variable 2z ) is stronger.    
 
Note that the simulation comparisons here are in terms 
of repeated samples.  Bias properties by equations 
(4.5) – (4.8) are in terms of repeated generations of 
qualified amount 1y  ( 2y , 1z  and 2z ) by the model for 
a given sample.   Under both scenarios, a better 
balanced sample and the ratio method reduce bias. 
 

The graph for variable 2z  is given in the following 
Figure 4.  For other variables, the bias distributions are 
not much different. 
 
 

 
                 Figure 4.  Distribution of Bias 
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Relative Precision Comparisons.  Another way of 
measuring the closeness between the estimated 
qualified amount and the true qualified amount is to 
use the relative width of the confidence interval or 

relative precision, defined as 
1

1 )ˆ()(

Y

Yvdftα  for 1y ; 

with similar definitions for the other variables.  The 
degrees of freedom ( df ) is 87 for the 3 strata setting 

and df =81 for the 9 strata setting.  90% confidence 
level is used.  The same comparison technique in bias 
comparison is used here. 
 
For each variable, the 2,000 relative precision values 
are sorted in increasing order; the ordered values of the 
four variables are merged together in order. First, we 
compare the two estimation methods – MPU estimator 
and ratio estimator.  For each variable and each sample 
design setting, we fit a linear regression of relative 
precision of MPU estimate on the relative precision of 
ratio estimate through origin.  The following Table 5 
gives the regression coefficient.   
 
Table 5.  Coefficient of Regression of MPU     
Relative Precision on Ratio Relative Precision  
at 90% C.L. 
 

Variable 
Setting of 3 

Strata 
Setting of 9 

Strata 

1y  1.034 1.003 

2y  1.146 1.023 

1z  1.084 1.010 

2z  1.386 1.071 
 

The value of 2R  is larger that 0.99 for all regressions 
in Table 5.  The table shows that ratio estimator has a 
smaller value of relative precision or a better precision 
in both design settings.   
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Next, we look at the four scenarios from two design 
settings and two estimation methods.  We take the ratio 
method and 9 strata setting as the bench mark and fit 
the linear regression through origin for the relative 
precision of each scenario.  Table 6 gives the 
coefficient of linear regression through origin.  All the 

2R  values are greater than 0.99. 
 
Table 6 indicates that the ratio method in the 9 strata 
setting has a better precision in general; the scenario of 
MPU and 9 strata and the scenario of ratio estimation 
and 3 strata are close; the MPU estimation with 3 strata 
design is the worst under these scenarios.    
 
Table 6.  The Regression Coefficient of Relative 
Precision on Benchmark Relative Precision at 90% 
C.L. 
 

Variable 

Ratio 
9 

Strata 

MPU 
9 

Strata 

Ratio 
3 

Strata 

MPU 
3 

Strata 

1y  1.000 1.003 1.064 1.100 

2y  1.000 1.023 1.059 1.213 

1z  1.000 1.010 1.062 1.151 

2z  1.000 1.071 1.062 1.473 
 
 
Coverage Rate Comparison.  The coverage rate is a 
measure closely related to relative precision.  Table 7 
gives the coverage rate, the proportion of simulated 
samples whose confidence intervals contain the true 
population value at a 90 percent confidence level.   
 
Table 7.  Coverage Rate at 90% C.L. 
 

Variable 

Ratio 
9 

Strata 

MPU 
9 

Strata 

Ratio 
3 

Strata 

MPU 
3 

Strata 

1y  89.8% 89.2% 90.0% 89.7% 

2y  89.8% 89.5% 90.3% 91.1% 

1z  89.9% 90.1% 89.5% 89.4% 

2z  90.0% 89.4% 89.6% 90.7% 
 
 
As shown in Table 7, coverage rates are similar for 
each variable, each design setting and each estimation 
method.  They are all close to their nominal level of 
90%.  Therefore, the performance comparison depends 
on the bias and relative precision. 
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