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ABSTRACT 

 U.S. Census Bureau staff conducted a simulation study 
into alternative estimators for the Quarterly Financial 
Report (QFR). The QFR collects income statement and 
balance sheet data quarterly from samples of manu-
facturing, mining, wholesale trade, and retail trade 
companies. QFR data was first published in 1947 by the 
Federal Trade Commission and was transferred to the 
Census Bureau in 1982. The QFR uses a post-stratified 
estimator that does not directly use the sample weights. 
The post-strata totals are unknown so that they are 
estimated by projecting forward sample estimates 
(weighted) from previous years. Several research 
projects have been conducted looking into aspects of this 
estimator but none have been a comprehensive 
investigation looking at all aspects of the sample design 
and estimation. In 2003 and 2004, the Census Bureau 
conducted such an investigation through a simulation 
study. This involved generating time series data for each 
of the companies in an artificial population. This paper 
discusses modeling the QFR data and generating the time 
series. 

Keywords: Time series, Mixed model, Markov chain, 
Student-t distributed noise 

1. Introduction 

The Quarterly Financial Report (QFR) program is a 
quarterly survey that provides up-to-date aggregate 
statistics on the financial results and position of U.S. 
corporations. The QFR publishes estimated statements of 
income and retained earnings, balance sheets, and related 
financial and operating ratios for the domestic operations 
of manufacturing, mining and trade corporations. The 
statistical data are classified by industry and by asset 
size. The primary users of the QFR are governmental 
organizations charged with economic policy-making 
responsibilities. QFR data have "principal economic 
indicator" status and are essential to the calculation of 
such key national economic performance measures as the 
Gross Domestic Product and Flow of Funds Accounts. 
(QFR Web Page) 

                                                 
 * Disclaimer: This report is released to inform interested 
parties of research and to encourage discussion. The 
views expressed on statistical and methodological issues 
are those of the author and not necessarily those of the 
U.S. Census Bureau. 

The basic sample design and estimator used for the 
QFR have remained unchanged since the 1950's. The 
sampling unit is a corporation. The QFR has a rotating 
panel design in which eight panels are in the survey for 
any given quarter. Each year, the QFR draws a new ‘half 
sample’ for the noncertainty strata from the annual 
corporate tax returns from the most recent tax year and 
splits it into four panels. Each quarter, the QFR 
introduces one of the four new panels and drops the 
oldest panel from the previous year’s half sample. The 
QFR stratifies each half sample by industry (called 
sample industry) and asset class, a classification into six 
size groups primarily by assets. The selection is with 
equal probability within each stratum. (Sands, 1984) 

The QFR estimator of a total differs from a 
traditional design-based estimator because the QFR does 
not base the weight for a sample corporation on its initial 
probability of selection. Instead, the QFR assigns 
weights based on a post-stratification defined by the 
industry reported by the corporation during enumeration 
(called the enumeration industry) and the original asset 
classes. The weight for a corporation equals the ratio of 
the estimated total number of corporations in its post-
stratum to the number of sample corporations in the post-
stratum. The total number of corporations in a post-
stratum is not known so it must be estimated. This is 
accomplished using a moving average of estimated post-
strata totals that are estimated using the sample weights. 
The moving average is over the estimated totals for the 
current year and previous year or previous two years 
(Sands, 1992). 

The history of the development of the estimator is 
not known. After the QFR program migrated to the 
Census Bureau from the Federal Trade Commission in 
December 1982, there were several efforts to study the 
properties of the estimator (Trager and Zarrett, 1993) and 
compare it to a fixed weight, design-based estimator 
(Chapman and Biemer, 1984). These efforts indicate that 
the QFR estimator is biased (with respect to repeated 
sampling) but may have a smaller variance than the fixed 
weight estimator. Phil Kott (1990) developed a combined 
model and design-based approach that suggests that the 
QFR estimator could be unbiased (in a combined model 
and design-based sense), if the specified model is 
correct. 

In 2003, a team was formed to investigate the QFR 
estimator and to make recommendations on changes to 
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this estimator as needed. The two most important issues 
addressed by this team (Caldwell, 2005) are: 

Issue 1: ‘Some sample units are classified in one 
industry when selected for sample, but in 
another industry when reporting… Should the 
estimator's weighting reflect the original 
probability of selection, or the sample frequency 
in the (post-) strata at the time of reporting?’ 

Issue 2: ‘The population changes in size over time. 
Meanwhile, the sample rotation groups [panels], 
selected according to the population at a 
specific time, typically are of different sizes, 
and can change in size further due to random 
and nonrandom effects. How should the 
estimator's weighting account for the uncer-
tainty in the size of the population?’  

The team decided to conduct a simulation study. The 
advantage of this would be that ‘truth’ would be known 
and all major features of the design and estimation could 
be simultaneously represented. For the simulation study 
to produce valid results, the artificial populations must 
mimic the salient features of the QFR populations in the 
distribution of the data in any quarter and, particularly, 
the change in company data over time. 

Along with the current estimator, the study investi-
gated nine other estimators that varied in the estimation 
of the post-strata totals. As in the current estimator, the 
final weights for companies did not use their sample 
weights but were the same for each company in a post-
stratum. The study also investigated the simple expan-
sion estimator that used the sample weights without post-
stratification. 

The study selected five variables for the analysis – 
sales; inventory; net property, plant and equipment 
(NPPE); net income before taxes (NIBT); and net 
income after taxes (NIAT). The study simulated sixty 
quarters of data that reflected for each company the 
dynamics and variability of the QFR data. The modeling 
and simulation had two components 

• Data simulation for quarters 1 and 2 (Caldwell, 
2005) 

• Change model – The change models simulated 
the dynamic change in the data over time. The 
variables sales, inventory and NPPE, which are 
strictly non-negative, and NIBT and NIAT, 
which can take on negative as well as positive 
values, are inherently different. Different 
modeling strategies were used for the non-
negative variables versus NIBT and NIAT. The 
model for NIBT and NIAT can be found in 
(Caldwell, 2005).  

 This paper discusses the modeling and simulation of 
the data for sales, inventory and NPPE.  Section 2 

presents the models used to simulate the quarterly 
change for three variables – sales, inventories, and 
NPPE. Section 3 presents an evaluation of the models, 
section 4 discusses some aspects of the generation of the 
simulated data, and section 5 presents an evaluation of 
the simulated data. Section 6 presents a few concluding 
remarks. 

2. Change Modeling for Sales, Inventories, and 
NPPE 

The purpose of the change model was to project 
forward for 58 additional quarters the time series for 
each company created in the simulation study. The 
change model models the change for companies from 
one quarter to the next. We do this by modeling the log 
of the ratio of current quarter to previous quarter. Eight 
quarters of QFR data were available to develop the 
models. There are three components to the change model 
for sales, inventory, and NPPE. We modeled each study 
variable separately. The three models examined were: 

1. Zero observation model, 
2. Zero/non-zero change model, and  
3. Non-zero change model.  

These are summarized next and the latter two described 
in more detail below. 

Zero observation model. The log of zero does not 
exist so that a change model based on logs cannot predict 
a zero observation. Inspection of the QFR data indicated 
that if a value of an item for a company was zero in one 
quarter then it was usually zero in the other quarters. The 
model for zero observations is – if the value is zero for 
the first quarter, all subsequent quarters would be zero. If 
the first value is non-zero then the following two model 
components are used. 

Zero/non-zero change model. The non-zero change 
model is a model for continuous variables and, as such, 
simulated values of zero change have probability zero of 
occurring. However, small companies can often have 
zero changes and these zero changes do not occur at 
random. That is, whether a quarterly change is zero or 
not depends on whether the changes for the previous 
quarters are zero or not. Because of the shortness of the 
data series available for modeling – from one up to seven 
changes per company, models in which the probability of 
change depended on more than the most recent change 
were not investigated. A model where the probability of 
a zero change only depends on whether the previous 
quarterly change is zero or not is a Markov chain. We 
used a Markov chain model to determine whether a 
change will be zero or whether we use the non-zero 
change model to create the value of a change. The 
zero/non-zero change model was used only for inventory 
and NPPE for the asset classes 03 and 07, the asset 
classes for the smallest companies, because there were 
few zero changes for the larger companies and for sales. 
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The table 1 shows the percentages of zero changes for 
each variable for assets classes 03 and 07. 

Separate models by asset classes would be able to 
capture dependency on size. The effect of industry on the 
probability of a zero change was explored through 
nominal logistic regressions for each of these two asset 
classes. These analyses did not detect significant industry 
effects.  

It might be expected that companies within an asset 
class would have different transition probabilities in the 
Markov chain model. Some companies might persist 
with zero changes more often than other companies. This 
was explored by a hierarchical, random effects model 
using a Dirichlet distribution, which is conjugate for the 
multinomial distribution that was used in the modeling of 
the transition probabilities. See section 2.1 for a detailed 
discussion of this model. 

Non-zero change model. We used a first-order auto-
regressive model for the non-zero change model, that is, 
a change is proportional to the previous change plus a 
random disturbance. Instead of modeling the random 
disturbances using a normal distribution, we used a t-
distribution. Analysis of the distribution of non-zero 
changes showed that large (non-outlier) changes occur 
much more frequently than would be expected from a 
normal distribution. A t-distribution can be used to 
model this feature of the data. We established upper and 
lower bounds for the relative change that decreased with 
the size of the previous quarter’s level. For example, a 
company with high sales in the previous quarter would 
be limited to a smaller relative increase than a company 
with low sales and vice versa. See section 2.2 for a 
detailed discussion of this model. 

2.1 Zero/non-zero Change Model 

 The zero/non-zero change model is a two-state ran-
dom effects Markov chain model. Let zit = 1 if the change 
is nonzero and 0 otherwise for company i at time t. Let 
the joint distribution of zi,t-1 and zit be p(zi,t-1 = j, zit = k) = 
πjk(i) for j, k ∈ {0, 1} and let π0(i) = π00(i)+ π01(i) and 
π1(i) = π10(i)+ π11(i) be the marginal probabilities of 
being in states 0 and 1. The transition probabilities in the 
two-state Markov chain are then  

p(zit = k | zi,t-1 = j) = pjk(i) = πjk(i)/ πj(i). 

The probabilities, πjk(i) for j, k ∈ {0, 1}, will be 
modeled as random company effects, that is, each com-
pany will have a different set of probabilities which are 
generated from a common distribution. The πjk(i) are 
modeled as Dirichlet with parameters (a00, a01, a10, a11). 
Redefine these parameters as μjk = ajk /τ where τ = a00 + 
a01 + a10 + a11. The first two moments for πjk(i) are mean 
= μjk and variance = μjk(1−μjk)/(τ+1). τ is comparable to a 
sample size and small τ indicates a substantive company 
effect. The Dirichlet distribution has the form 
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The Dirichlet distribution was used to generate the πjk(i) 
for a company. The transition probabilities pjk(i) for a 
company were determined from these πjk(i) and the 
evolution of whether a change will be zero or not were 
based on these transition probabilities. The initial change 
was determined by the data simulation for the first two 
quarters (Caldwell, 2005). 

An extension of this model whereby the probability 
of a zero change might depend on the value of the 
change from the previous quarter (not just whether it was 
zero or not) was not explored. 

To fit the parameters π00, π01, π10, π11 and τ, let for 
company i,  

 x00(i) = # of changes from zero to zero, 
 x01(i) = # of changes from zero to non-zero, 
 x10(i) = # of changes from non-zero to zero, 
 x11(i) = # of changes from non-zero to non-zero, 

and 
 ni = x00(i) + x01(i) + x10(i) + x11 (i) 

then the (xjk(i) , j, k ∈ {0, 1}) are multinomial with 
parameters (πjk(i) , j, k ∈ {0, 1}, ni). 

Combining the model for the xjk(i) with the Dirichlet 
model for the πjk(i), we have that the (xjk(i) , j, k ∈ {0, 
1}) are distributed Dirichlet-multinomial with parameters 
(μjk, j, k ∈ {0, 1}, τ, ni). The probability distribution 
function for the Dirichlet-multinomial is  
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SAS™ PROC NLP was used to fit this model. 

2.2 Non-zero Change Model 

2.2.1 Preliminary Analysis of Log Ratio Change of 
Sales, Inventory and NPPE  

The distribution of the log ratio change for these series 
were initially investigated through histograms, normal 
quantile plots, and estimates of moments. The initial 
exploration was by asset class. This analysis showed 
substantial kurtosis for all of the series after removal of a 
few extreme outliers and little skewness for sales and 

Table 1. Percentages of Zero Changes in Log Ratio 
Asset Class Sales Inventory NPPE 

03 1.37 23.68 13.06 
07 0.22 11.04 4.51 
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inventory and moderate skewness for NPPE. The table 2 
shows the skewness and kurtosis by asset class for each 
of the variables after removing extreme changes. The 
asset classes are 03, 07, 08, 14, 16, and 18 where 03 is 
the asset class for the smallest companies, 16 is the asset 
class for the largest non-certainty companies, and 18 is 
the certainty asset class. Large kurtosis can be modeled 
by a t-distribution. For a t-distribution, the kurtosis κ = 
6/(ν − 4) where ν is the degrees of freedom. In terms of 
the kurtosis, the degrees of freedom ν = 4 + 6/κ. The 
comparable degrees of freedom are also shown in the 
following table. 

For a normal distribution, the skewness and kurtosis 
would be zero and the degrees of freedom infinite. T-
distributions with degrees of freedom 30 or greater are 
considered approximately normal. All of these distribu-
tions show marked departures from normality.  

2.2.2 Tree Partition  

Since one of the effects that the study was trying to 
emulate was the reclassification of industries, it was felt 
that a change model should reflect both sample industry 
and enumeration industry along with asset class. 
Including either one or the other might under represent in 
the simulated data the variation caused by the 
reclassification. One approach to modeling would be to 
stratify the data by asset class, sample industry, and enu-
meration industry and fit different models in each 
partition. However, the sample sizes in these would be 
relatively small for estimating well the parameters in the 
change model. One way to improve the parameter 
estimation would be to borrow strength from the other 
industries.  

To this end, SAS™/Enterprise Miner was used to 
form tree partitions of the data. The partitioning variables 
would be asset class, sample industry, and enumeration 
industry. The target variable for forming the partitions 
was the absolute value of the residual where the residuals 
were obtained from an initial run of the mixed model 
described below. Partitions were formed so that they 

differed by the average absolute residuals. In 
this way, differences in variation among 
companies in different asset classes, sample 
industries, and enumeration industries could 
be explained by the model. During the 
partitioning, an attempt was made to create 
partitions within a single asset class because 
asset class was not subject to change in the 
survey and substantial variation would be 
expected for different sizes companies. 
Subsequent to an initial manual partitioning 
using Enterprise Miner, partitions with few 
observations were combined with other 
partitions so that there would be 
approximately a minimum of 800 observa-
tions in each partition. This minimum sample 

size was felt to ensure adequate sample to estimate well 
the parameters in the change model. The partitions were 
combined if they had similar average absolute residuals 
and standard deviations of the absolute residual. After 
this, the following mixed model was estimated separately 
in each partition. 

2.2.3 Mixed model  

Initially, an autoregressive (AR) 1 model (Box and 
Jenkins, 1976) was fit to the log ratio change data for 
each of the partitions. The AR coefficients were usually 
negative indicating that the expected change in the 
current quarter would be in the opposite direction from 
the change in the previous quarter. Examination of the 
residuals and absolute residuals indicated, in general, 
negative correlations of each of these with the log of the 
previous quarter’s data. The former would indicate that a 
company change in the current quarter would be less 
when the previous quarter’s estimate was large and 
greater when it was small. The latter would indicate that 
the spread in the log ratio change (relative change in the 
original scale) would be less when the previous quarter’s 
estimate was large and greater when it was small. 
Preliminary models were fit to examine this using 
loglinear variance models (Harvey 1976, Carroll and 
Ruppert 1988) in JMP. These models have the general 
form 

mean model: E(y) = Xb 
variance model: log(Variance(y)) = Zλ. 

Based on this preliminary modeling, the following 
mixed model was selected to model the QFR data. It was 
estimated separately for each partition. 

it it ity eμ= +  
where 

i = company, 
t = time,  
μit = ri yi,t−1+ α + β log(xi,t−1) 
xit = reported data for company i and quarter t, 
yit = log ( xit / xi,t−1 ), log ratio change, 

Table 2. Skewness and Kurtosis for Log Ratio Change 
Variable Moment 03 07 08 14 16 18 

Skewness −0.35 −0.11 −0.54 −0.20 −0.13 −0.72
Kurtosis 6.10 7.10 16.44 8.81 14.90 25.13

Sales 

Degrees of 
Freedom 4.98 4.85 4.36 4.68 4.40 4.24

Skewness −0.20 0.10 −0.27 −0.44 0.16 −0.67
Kurtosis 8.55 8.17 8.38 8.99 17.05 29.91

Inventory 

Degrees of 
Freedom 4.70 4.73 4.72 4.67 4.35 4.20

Skewness 0.67 1.59 1.37 1.60 1.75 −1.35
Kurtosis 10.15 21.07 18.24 25.03 43.47 85.50

NPPE 

Degrees of 
Freedom 4.59 4.28 4.33 4.24 4.14 4.07
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ri = random autoregressive effect for company i with 
mean ρ and variance v, 

eit = t-distributed random effect for company i and 
time t with degrees of freedom df, mean 0, and 
variance parameter 2

iσ  where 

 , ( ) ( )2
, 1log logi ia b xσ σσ −= + t

and β and bσ represent the expected inverse 
relationships of the log ratio and ( )2log iσ  

with . ( ), 1log i tx −

The model fitting was conducted in two steps. 
First, the linear model was fit using SAS™ PROC 
MIXED. The residuals were output and the variance 
model described above for eit was fit using SAS™ 
PROC NLP.  

3. Evaluation of the Models 

3.1 Zero/non-zero Change Model 

Table 3 provides the parameters and transition 
probabilities for the Dirichlet model for inventory 
and NPPE. The standard errors for the parameter 
estimates are in parentheses. 

τ is the equivalent of the sample size. The small 
τ’s indicate a substantive company effect. Each 
πjk(i) is equal to a gamma (μjkτ, 1) random variate 
divided by the sum over j and k (μjkτ, 1) random 
variates. Johnson and Kotz (2000) show that if Y0, 
Y1, … Ym have a joint Dirichlet distribution with 
parameters θj (j = 0,1, … , m) then each 

0

m

j j
i

Y X X
=

= ∑ i where the Xj are χ2 with 2θj degrees 

of freedom. It is easy to show that Xj = 2Zj where Zj 
is gamma (θj, 1). When μijτ is small, the gamma 
random variates are skewed and highly kurtotic. For 
inventory and asset class 07, for example, μ00τ is 
about 0.15, the skewness is about five and the 

kurtosis is about 40. This led 
to microscopic gamma 
random variates and very 
unstable πjk(i). τ was arbi-
trarily multiplied by 10 to 
increase stability. This was an 
expedient solution to this 
problem. If time had per-
mitted, further investigation 
would have been desirable. A 
subsequent analysis, while 
preparing this paper, based on 
a simulation from the gamma 
distributions indicated that 
this adjustment might not 
have been necessary. 

 
 

3.2 Mean Component of the Mixed Model 

Tables 4, 5, and 6 provide summaries of the 
modeling for each of the variables. The square root of ν 
is given instead of ν to aid in the comparison with ρ. 

The autoregressive coefficient is usually negative for 
sales (15 out of 16) and inventory (11 out of 11) as 

Table 4. Parameter Analysis for Sales Mixed Model 

Parameter No. of 
Nodes Min Med Max 

No. 
p-

values 
≤ 0.01 

No. 
p-

values 
≤ 0.05 

ρ 16 −0.374 −0.210 0.056 15 15 
√ν 16 0.073 0.235 0.465 13 14 
α 16 −0.043 0.183 0.646 9 9 
β 16 −0.095 −0.023 0.003 7 11 

Table 3. Dirichlet Model for Inventory 

Parameters Transition 
Probabilities 

Variable Asset 
Class 

μ00 μ01 μ10 μ11 τ 

Zero to 
Non-
zero 

Change 

Non-
zero to 
Non-
zero 

Change 

03 0.107 
(0.011) 

0.112 
(0.011) 

0.107 
(0.011) 

0.675 
(0.018) 

2.935 
(0.405) 0.511 0.863 

Inventory 
07 0.049 

(0.006) 
0.054 

(0.006) 
0.072 

(0.007) 
0.825 

(0.011) 
2.935 

(0.405) 0.523 0.919 

03 0.044 0.081 0.084 0.791 4.170 
(0.007) (0.010) (0.010) (0.015) (0.813) 0.650 0.904 

NPPE 
07 0.016 0.031 0.034 0.918 4.170 

(0.004) (0.005) (0.005) (0.008) (0.813) 0.658 0.964 

Table 5. Parameter Analysis for Inventory Mixed Model 

Parameter No. of 
Nodes Min Med Max 

No. 
p-

values 
≤ 0.01 

No. 
p-

values 
≤ 0.05 

ρ 11 −0.235 −0.167 −0.038 8 9 
√ν 11 0.194 0.265 0.353 9 11 
α 11 −0.015 0.097 0.339 6 7 
β 11 −0.046 −0.012 0.001 5 7 

Table 6. Parameter Analysis for NPPE Mixed Model 

Parameter No. of 
Nodes Min Med Max 

No. 
p-

values 
≤ 0.01 

No. 
p-

values 
≤ 0.05 

ρ 16 −0.072 0.110 0.249 9 10 
√ν 16 0.163 0.273 0.544 12 15 
α 16 −0.067 −0.027 0.060 1 3 
β 16 −0.008 0.003 0.009 1 3 
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expected but it was positive 15 out of 16 times for NPPE. 
They are not large but the p-values indicate they are 
significantly different from zero. The p-values for the 
mixed model variance parameter, ν, are also significant 
indicating that there is substantive variation among com-
panies. The values are large enough to indicate that com-
panies can have both positive and negative auto-
correlations with a bias toward negative correlation for 
sales and inventory and positive correlation for NPPE. 
The slope coefficient, β, was negative all but once for 
sales and inventory and showed significant p-values 
though less often than that of ρ and ν. The coefficients 
are, in general, not large and might have been removed 
from the model. The slope and constant, α, are highly 
negatively correlated (−0.9) and the constant would have 
been removed along with the slope. The slope and 
constant for the NPPE models were not significant and 
should have been omitted. 

3.3 Variance Component of the Mixed Model 

The tables 7, 8, and 9 provide summaries of the 
modeling for each of the variables in the variance 
component of the mixed model. 

The slope coefficients, bσ , are almost always nega-
tive for sales (15 out of 16) and always negative for 
inventory and NPPE as was expected. The p-values 
indicate that they are significantly different from zero in 
general. The degrees of freedom are all small and always 

less than four. Thirteen out of sixteen times the degrees 
of freedom for NPPE were estimated to be less than two 
indicating a t-distribution without a finite second 
moment. 

The mixture of t-distribution was also fit for NPPE. 
The results are not shown here but they were less 
successful. Generally, either one of the degrees of 
freedom in a mixture was estimated with a very large 
standard deviation or the degrees of freedom were not 
substantively different. The means were generally near 
zero indicating that skewness was not identified by this 
modeling. 

4. Generation of the Simulated Data 

This section discusses a few issues in the generation 
of the simulated data series. 

4.1 Generating the Random Autoregressive Effect ri 

The autocorrelation coefficient, ri, must fall in the 
interval (−1, 1). Using normal random variates to 
generate a company’s autocorrelation coefficient might 
generate a coefficient outside of this range. In order to 
generate reasonable ri, it was assumed that a transform-
ation of the ri into the (0, 1) interval had a Beta 
distribution. The parameters in the Beta distribution were 
found through the method of moments. The expected 
value of ri is ρ and its variance (v) was estimated from 
the mixed model. Define qi = ½(ri+1) then qi falls in the 

interval (0, 1) and has expectation Q=½(ρ + 1) and 
variance V=¼v. qi was modeled using a Beta 
distribution with positive parameters a and b. The 
expectation and variances for a Beta distribution are 

( ) ( )
( ) ( )2and .

1
i i

a aE q Var q
a b a b a b

= =
+ + + +

b  

By matching the moments, the Beta parameters are  

( )( ) ( ) ( )( )1
1  and 1

QQa Q Q V b Q Q V
V V

−
= − − = − − .  

Substituting for Q and V we have that 

( ) ( )2 21 1 1 11  and 1
2 2

a v b
v v

ρ ρρ ρ+ − v= − − = − −  

For the method of moments to work, ρ 2 + v < 1 
which was found to be true in all cases. The qi are 
generated from the Beta distribution with these 
parameters and ri = 2qi−1. 

4.2 Generation of a t Random Variate 

The t-distribution is a mixture of a normal and a 
gamma distribution. Let y | μ , t be distributed N(μ, 
t−1) where t is the precision, i.e., replace σ 2 by t −1 in 
the standard parameterization. This parameterization 
is more convenient for generating a t-distributed 
random variate when a gamma random number 

Table 9. Variance Parameter Analysis for NPPE Mixed Model 

Parameter No. of 
Nodes Min Med Max 

No. 
p-

values 
≤ 0.01 

No. 
p-

values 
≤ 0.05 

aσ 16 −3.267 −1.924 −0.566 16 16 
bσ 16 −0.426 −0.154 −0.035 16 16 
df 16 1.235 1.862 2.186 15 16 

Table 7. Variance Parameter Analysis for Sales Mixed Model 

Parameter No. of 
Nodes Min Med Max 

No. p-
values 
≤ 0.01 

No. p-
values 
≤ 0.05 

aσ 16 −2.747 −0.767 0.153 9 11 
bσ 16 −0.196 −0.119 0.042 10 13 
df 16 1.928 2.977 3.898 16 16 

Table 8. Variance Parameter Analysis for Inventory Mixed 
Model 

Parameter No. of 
Nodes Min Med Max 

No. 
p-

values 
≤ 0.01 

No. 
p-

values 
≤ 0.05 

aσ 11 −2.190 −0.950 0.092 9 10 
bσ 11 −0.291 −0.125 −0.010 10 10 
df 11 1.767 2.501 3.514 11 11 
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generator is available. (If we had used σ 2 as the random 
variable instead of t then σ 2 would have had an inverse 
gamma distribution.) Let t be a random variable where t 
= σ  −2χ 2 / df where χ 2 is distributed chi-square with df 
degrees of freedom and σ 2 is a constant. A chi-square 
distribution is a gamma distribution with parameters α = 
½ df and β = 2. It follows that t | df,σ 2 is distributed 
gamma with parameters α = ½ df and β = 2(dfσ  2) −1 so 
that E t  = σ −2 and var(t) = 2σ −4/df. To generate a t 
random variate y, generate a gamma random variate z 
from a Γ(½df ,  1) and let t = βz  = (2z /df)σ −2. Generate 
a t random variate y = μ + t −½u where u is distributed 
N(0, 1). 

4.3 Estimation of xit  

The naïve estimate of ( ), 1 expit i t itx x −= y  has a posi-

tive bias. First, ( ) , 1 , 1exp | , , ,it i i t i ty r t x y− −

− )
, 1 , 1exp | , , ,it i i t i tE y r t x y− − ( )1½it tμ −+

 is log normal 

because  is . Thus 

 = exp . Finally,  

, 1 , 1| , , ,it i i t i ty r t x y− ( 1,itN tμ −

( )( )

( ) ( )( )
( )

, 1 , 1 , 1 , 1 , 1

1
, 1

| , , , exp | , , ,

exp ½ .
it i i t i t i t it i i t i t

i t it

E x r t x y E x y r t x y

x tμ

− − − − −

−
−

=

= +
 

A biased corrected estimate is ( )1
, 1 exp ½it i t itx x μ −

−= − t

d lower bounds are linear functions of 
the 

wer

time and unit subscripts are not needed for the 
follo

change y″ to 
be 

. 

4.4 Controlling Extreme Changes 

The above-generated extreme changes fell outside 
the changes found in the data. This can be seen in table 
10 for log ratio change sales for asset class 03. The table 
shows that the simulation generated a change outside the 
lower range for the QFR data. Other variables and asset 
classes showed extreme changes in the simulated data 
both above and below the observed ranges of the QFR 

data. This can have the consequence of generating level 
estimates well above the range of the observed data or 
generating microscopic level estimates. Inspection of the 
data indicated that the size of the largest positive changes 
decreased as the level, xi,t−1, increased and the size of the 
largest negative changes decreased as the level, xi,t−1, 
decreased. This section describes the development of 
upper and lower bounds for the change in the log ratio. 

See Figure 1 for a plot of the log ratio change data for 
sales for asset class 03 and the upper and lower bounds. 

The upper an
log of the level of the variable from the previous 

period. Let zit = log(xit) and zi,t−1 = log(x i,t−1) be the logs 
at times t and t−1. The upper bound for the change, yit is 
ubi = au + bu zi,t−1 and the lower bound is lbi = aR + bR zi,t−1.  

The linear functions for the upper and lower bounds 
e developed by plotting the log ratio change (yit) 

versus the log of the variable from the previous time 
(zi,t−1). Using data from all industries within an asset 
class, upper and lower bounding points along the range 
of zi,t−1 were selected by hand excluding observed 
outliers. For each asset class, separate regression lines 
were fit to these bounding points to generate the above 
regression coefficients. Because all of the points used to 
estimate the regressions were considered acceptable and 
using the estimated regressions lines would now identify 
‘half’ of these bounding points as outliers, a constant of 
0.1 was added to the upper bound and 0.1 was subtracted 
from the lower bound. This constant was chosen so that 
the adjusted bounds, ubi = 0.1 + au + bu zi,t−1 and lbi = 
−0.1 + aR + bR zi,t−1, included almost all of the bounding 
points.  

The 
wing development and will be omitted. The upper 

and lower bounds were applied to the adjusted log ratio 
change y′= y − ½τ −1. If the generated random variate y′ 
was greater than ub, it was reduced to ub and, if it was 

less than lb, it was increased to lb. These bounds would 
have the effect of biasing the simulated data. The 
following was used to correct for this bias. 

Define the bounded adjusted log ratio 

Table 10. Extreme Observations for Log Ratio Sales 
for Asset Class 03 

QFR Data Simulated Data 
Lowest Highest Lowest Highest 
-3.13927 1.52364 -10.52255 1.30225 
-2.59650 1.66575 -2.15833 1.41523 
-2.56110 1.72238 -1.98180 1.41787 
-2.12124 1.84124 -1.98180 1.46206 
-1.77834 2.01292 -1.78077 2.48730 Figure 1. Upper and Lower Bounds for Log Ratio Sales for 

Class 03
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A bias corrected estimate is 
( ) ( ) ( )( )exp exp expx x y E yμ τ′′ ′′ ′′= . 

4.5 Bounding the Level Estimates 

Despite the bounding of extreme changes the gener-
ated level estimate at time t, xit = xi,t−1 yit″, still showed 
values noticeably outside the observed range of the QFR 
data. One final adjustment was used to correct for this. If 
xit was greater than exp(MAX) then it was set to 
exp(MAX). If it was less than exp(MIN) then it was set 
to exp(MIN). MAX and MIN were by asset class and 
were identified using the QFR data omitting data not in 
the test-enumerated industries since the data in the study-
enumerated industries had a smaller range than the data 
as a whole. These bounds were rounded and adjusted so 
that they were monotonically increasing with asset class. 
No adjustment was made for the biasing due to this 
bounding. 

5.  Evaluation of Simulated Data 

A simulated dataset paralleling the QFR dataset was 
used to evaluate the adequacy of the simulated data. For 
each company, a simulated series was created starting 
with the initial value for the company in the QFR dataset. 
The above change models were then used to generate the 
artificial series for the number of quarters that the 
company appeared in the QFR dataset. The initial values 
were then dropped because they would be the same in 
both datasets. Histograms and the first four moments 
were compared for asset classes crossed by test 
enumeration industries. Examination of the histograms 
and moments indicated that the original and simulated 
data had similar distributions. This is summarized in the 
following table for the moments. The table shows the 
coefficients of regressions of the moments from the 
simulation study as the dependent variable and the 
moments from the original data as the independent 
variable. The intercept was not included in the 
regressions. A coefficient of one would indicate that the 
simulated moment was on average equal to the moment 

from the original data. The table shows that in almost all 
cases the coefficients were less than one. For skewness 
and kurtosis except for the sales’ kurtosis, the 
coefficients were close to one indicating that these 
aspects of the variation in the data were reasonably 
represented in simulated data. 

Table 11. Analysis of Moments of Simulated Data 
Variable Mean Standard 

Deviation 
Skewness Kurtosis 

Sales 0.875 0.854 0.935 0.869 
Inventory 0.875 0.879 1.027 1.030 
NPPE 0.893 0.887 0.972 0.941 

6. Discussion 

The modeling captured the variation over time and 
between companies in the QFR data and the simulated 
data closely approximated the distributions of the 
variables sales, inventory, and NPPE. In retrospect, some 
streamlining of the models would have been appropriate 
and a more unified approach for modeling some of the 
components would have been preferable.  
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