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Abstract

In case-control studies, covariate information often is col-
lected on a genetic factor and a continuous attribute such
as age. In some instances, it is reasonable to assume the at-
tribute and genetic factor occur independently in the pop-
ulation. Under this independence assumption, we develop
maximum likelihood estimators of parameters in a logistic
model of disease risk. Estimates are based on data from
both patients and controls and may be obtained by fit-
ting a polychotomous regression model of joint disease and
genetic status. Our results extend previous log-linear ap-
proaches to imposing independence between a genetic factor
and a categorical attribute, thereby avoiding potential loss
of information from discretizing a continuous attribute. In
this paper, we apply the method to investigate age-specific
associations between type 1 diabetes and a variant of the
glutamate-cysteine ligase catalytic subunit. The results are
compared to those obtained from a standard logistic regres-
sion analysis, which does not make use of the independence
assumption.

Keywords: Genetic associations; Likelihood inference;
Case-control study.

Introduction

Many complex disorders with a genetic component share
the feature of requiring certain key environmental expo-
sures to manifest the disease state (e.g. Merikangas and
Risch 2003). In fact, differences in key environmental ex-
posures among study populations has been proposed as one
possible explanation for the lack of replication of many ge-
netic associations (Hoffjan et al. 2005). Within a popula-
tion, an environmental exposure may increase disease risk
in a genetically susceptible subgroup but have little or no
effect outside this subgroup. Alternatively, a genetic vari-
ant may increase disease risk in individuals with a specific
set of attributes but have little or no effect in the rest of
the population. Consequently, there is increasing interest
in investigating the effect of genes in conjunction with envi-
ronmental exposures or non-genetic attributes, such as age
and gender (e.g. Hunter 2005). This paper focusses on rare
diseases (e.g. frequencies ≤ 1%), for which a case-control
study design is standard. When the aim of a case-control
study is to detect statistical interaction between genetic and
nongenetic factors, adequate power is a concern, even for
studies with relatively large sample sizes (Greenland 1983,
Hwang et al. 1994). A useful rule-of-thumb is that the sam-
ple size required to detect interaction is at least four times
that required to detect main effects of the same magnitude
(Smith and Day 1984).

A number of approaches have been proposed to increase
the efficiency of the statistical analysis when it is reasonable
to assume that the genetic and non-genetic factors occur in-
dependently in the population. For categorical non-genetic
covariates, Umbach and Weinberg (1997) developed maxi-
mum likelihood (ML) estimators of disease risk based on a
log-linear model that enforces independence of the genetic
and nongenetic risk factors under a rare-disease assumption.
They achieved mildly enhanced precision for estimates of
main effects and much enhanced precision for estimates of
statistical interactions. Chatterjee and Carroll (2005) de-
velop ML estimators of association parameters in a logistic
regression model of disease penetrance by adopting a semi-
parametric framework that allows the distribution of non-
genetic covariates to be completely nonparametric, under
arbitrary disease frequencies. They show that the intercept
parameter of the logistic regression model is theoretically
identifiable from the retrospective case-control likelihood
under independence of the genetic and nongenetic risk fac-
tors. However, for rare diseases, they note that estimation
of this intercept term is problematic, unless the marginal
probability of disease is known.

We develop a complementary ML approach for case-
control studies of rare diseases which circumvents the need
to estimate the intercept parameter in the logistic regression
model. Our semi-parametric approach, like that of Chat-
terjee and Carroll, is applicable to continuous non-genetic
covariates and may be viewed as an extension to the work
of Umbach and Weinberg (1997). In order to reduce the
potential bias arising from dependence between genetic and
nongenetic covariates (Albert et al. 2001), we also discuss a
strategy for relaxing the independence assumption. Finally,
we present results from a limited simulation study investi-
gating: statistical efficiency of the proposed method relative
to ordinary logistic regression, robustness of the proposed
method to the assumption of independence and the reduc-
tion in bias achieved by relaxing the independence assump-
tion

Methods

Maximum likelihood estimation

Throughout, we use the notation “pr” to denote densities or
mass functions as appropriate. A logistic model for disease
status given covariates may be written as

log
[
pr(D = 1 | x)
pr(D = 0 | x)

]
= β0 + xβ

where D is a binary disease indicator with value 1 indicating
disease and value 0 indicating non-disease; β0 is an inter-
cept term; β is a column-vector of regression parameters;
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and x is a row-vector of covariates. However, under case-
control sampling, we sample covariates given disease status.
Covariates are derived from risk factors. The risk factors
we consider are categorical genetic variables G and possibly
continuous non-genetic attributes A. Let G = {g0, . . . , gK}
denote the set of possible genetic categories and hence val-
ues of G. Let A denote the possible values of A. Let x(g, a)
denote the covariate vector corresponding to (G = g,A = a)
in the logistic regression model. From equation (6) of Pren-
tice and Pyke (1979),

pr(G = g,A = a | D = i)
= ci(ξ, β) exp (ξ(g, a) + ix(g, a)β) ,

where ξ(g, a) = log
[

pr(G = g,A = a | D = 0)
pr(G = g0, A = a0 | D = 0)

]
for baseline values g0 and a0 of the genetic and non-genetic
risk factors, and where ci(ξ, β) is a normalizing constant.
We further define

δ0 ≡ δ0(ξ, β) = log(c0(ξ, β)n0/n) and
δ ≡ δ(ξ, β) = log(c1(ξ, β)n1/n)− δ0 (1)

so that

pr(G = g,A = a | D = i)

=
n

ni
exp(δ0 + iδ + ξ(g, a) + ix(g, a)β),

where n0 is the number of controls, n1 is the number of
cases and n = n0 + n1.

We start by assuming independence of G and A in con-
trols, which for a rare disease is approximately the same
as independence in the population. The independence as-
sumption implies that

ξ(g, a) = γ(g) + α(a) (2)

where

γ(g) = log

»
pr(G = g | D = 0)

pr(G = g0 | D = 0)

–
and

α(a) = log

»
pr(A = a | D = 0)

pr(A = a0 | D = 0)

–
.

Hence

pr(G = g, A = a | D = i) =
n

ni
exp(δ0 + iδ+γ(g)+α(a)+ ix(g, a)β),

(3)
where δ0 and δ may now be viewed as functions of γ, α

and β. When one or more of the non-genetic attributes are
continuous, α(·) is an infinite-dimensional nuisance param-
eter. γ(·) is a function whose domain is G and so can be
viewed as a finite dimensional parameter. Index individuals
within disease category i (i = 0, 1) by j = 1, . . . , ni. Then
the likelihood is proportional to

L(γ, α, β) =

1Y
i=0

niY
j=1

exp (δ0 + iδ + γ(gij) + α(aij) + ix(gij , aij)β) (4)

Maximization of (4) is complicated by the infinite-
dimensional parameter α(·), and by the dependence of δ0

and δ on γ, α and β through the constants of integration

ci(ξ, β) as specified in equations (1) and (2). Using argu-
ments similar to Prentice and Pyke (1979), we show that
there is a reparametrization of (4) that eliminates δ0 from
the likelihood and which allows us to treat δ as a free param-
eter when maximizing the likelihood. Furthermore, maxi-
mization of the reparametrized likelihood with respect to
its infinite dimensional parameter turns out to be straight-
forward. This reparametrization is derived in Appendix A,
which shows that L(γ, α, β) can be re-expressed as

L(γ, pA
v , β) =

"
1Y

i=0

niY
j=1

exp (iδ + γ(gij) + ix(gij , aij)β)P1
l=0

P
g∈G exp (lδ + γ(g) + lx(g, aij)β)

#

×

"
1Y

i=0

niY
j=1

pA
v (aij)

#
≡ L1(γ, pA

v , β)× L2(p
A
v )

where δ may be defined as the solution to equation (A-4)

1 =
n

n1

Z
A

X
g∈G

exp (δ + γ(g) + x(g, a)β)P1
l=0

P
g′∈G exp (lδ + γ(g) + lx(g, a)β)

pA
v (a) da,

and pA
v is the marginal distribution of A under a variant

sampling scheme (VSS), discussed in more detail in Ap-
pendix A, in which a total of n subjects are sampled. Under
this variant sampling scheme, a case is sampled with prob-
ability n1/n and a control with probability n0/n. In the
reparametrized likelihood, pA

v (·) replaces α(·) as the infinite
dimensional parameter. At first glance the reparametrized
likelihood appears to have no advantage over the original
likelihood (4), since δ still depends on the model parame-
ters indirectly through the set of constraints (A-4), includ-
ing the infinite dimensional parameter pA

v (·). However, we
now show that if we treat δ as a free parameter, maximiza-
tion with respect to the infinite dimensional parameter pA

v

is straightforward, and the maximizer of the resulting over-
parametrized likelihood satisfies the constraint that defines
δ. It follows that the unconstrained maximizer gives MLEs
of the odds-ratio parameters of interest.

Maximization of an overparametrized likelihood

Write L̃1(δ, γ, β) for the expression L1 when δ is considered
as a free parameter:

L̃1(δ, γ, β) =

1Y
i=0

niY
j=1

exp (iδ + γ(gij) + ix(gij , aij)β)P1
l=0

P
g∈G exp (lδ + γ(g) + lx(g, aij)β)

(5)

The overparametrized likelihood is L̃(δ, γ, pA
v , β) ≡

L̃1(δ, γ, β) × L2(pA
v ). The factorization implies that the

maximizer of L̃ with respect to pA
v would be obtained by

maximizing L2 alone and that the maximizer of L̃ with
respect to (δ, γ, β) would be obtained by maximizing L̃1

alone. The term L2(pA
v ) is a marginal likelihood for a non-

parametric distribution function pA
v . Hence the maximizer

of L2(pA
v ) is the empirical distribution of A from the case-

control sample. Since δ, γ and β are all finite-dimensional,
the maximizer of L̃1(δ, γ, β) is obtained in the usual way,
by taking derivatives of L̃1 and setting the resulting equa-
tions equal to zero. Taking derivatives of L̃1 is simplified
by writing iδ + γ(g) + ix(g, a)β as a linear combination of
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a single parameter vector θ. That is, we wish to define a
row vector Λ(i, g, a) and a column vector θ of parameters
such that iδ + γ(g) + ix(g, a)β = Λ(i, g, a)θ. Towards this
re-expression, write the function γ(·) as a linear combina-
tion of K parameters, where K + 1 = |G|. Let z(gk) be
an indicator row vector of K elements for the kth genetic
category (k = 1, . . . ,K) or a vector of all zeros for the base-
line genetic category when k = 0. Let ~γ denote the column
vector (γ(g1), . . . , γ(gK))T . Then z(g)~γ takes on value γ(g)
for g ∈ (g1, . . . , gK) and value 0 when g = g0. If we define
Λ(i, g, a) = [i, z(g), ix(g, a)] and θ = (δ,~γT , βT )T , we have
as desired that

iδ + γ(g) + ix(g, a)β = Λ(i, g, a)θ.

When genetic categories are genotypes, modelling of
genotype probabilities is also possible, in which case ~γ is
specified by a parameter vector ω with fewer than K el-
ements, where K + 1 is the number of genotypes. For
example, for a genetic locus with M + 1 alleles and with
Hardy-Weinberg proportions in controls, the K + 1 =
(M + 1)(M + 2)/2 genotype frequencies in controls can be
expressed in terms of M allele frequencies. In this case, it
is possible to define z(g) and ω so that γ(g) = κ(g)+z(g)ω,
where κ(g) is a known constant that depends on the value
of the genotype g, and ω is a vector whose ith elementis the
generalized logit of the control frequency of the ith allele
relative to a baseline allele, as follows. Let the alleles be
m0,m1, . . . ,mM . Take m0 as a baseline allele, and m0/m0

as a baseline genotype. Let

ωi = log
[

pr(mi | D = 0)
pr(m0 | D = 0)

]
.

Let H(g) be 1 if g is a homozygous genotype and 2 if het-
erozygous. Then, for a particular genotype g = mi/mj , we
have

γ(mi/mj) = log

»
pr(G = mi/mj | D = 0)

pr(G = g0 | D = 0)

–
= log

»
H(g)pr(mi | D = 0)pr(mj | D = 0)

pr(m0 | D = 0)2

–
= κ(g) + ωi + ωj

where κ(g) = log H(g). Redefine z(g) to be a row vector
of length M with ith element equal to the number of copies
of allele i, i = 1, . . . ,M . Then γ(g) = κ(g) + z(g)ω, where
ω = (ω1, . . . , ωM )T . With this alternate definition of z(g),
let Λ(i, g, a) = (iδ, z(g), ix(g, a)) as before and define θ =
(δ, ωT , βT )T . Then we obtain

iδ + γ(g) + ix(g, a)β = κ(g) + Λ(i, g, a)θ.

It is easily verified that inclusion of the “offset” term κ(g)
does not change the final expressions for the estimating
equations or the asymptotic variance calculations in the de-
velopments below. Thus, assuming Hardy-Weinberg pro-
portions in controls involves changing the definition of z(g)
in Λ and the definition of the parameter vector θ, but the
estimating equations for the maximum-likelihood estima-
tor of the parameters of interest and the expression for its
asymptotic variance are the same functions of Λ and θ as
before. For simplicity of exposition, however, we proceed

as though the control genotype frequencies are not mod-
elled and the values of G are arbitrary genetic categories.
Re-write L̃1(δ, γ, β) = L̃1(θ) as"

1Y
i=0

niY
j=1

exp (Λ(i, gij , aij)θ)P1
l=0

P
g∈G exp (Λ(l, g, aij)θ)

#
(6)

Let

l̃1(θ) = log L̃1(θ)

=

1X
i=0

niX
j=1

(
Λ(i, gij , aij)θ − log

1X
l=0

X
g∈G

exp (Λ(l, g, aij)θ)

)

Then the maximizer θ̂ of L̃1 is the solution to the estimating
equations

0 =
∂l̃1
∂θ

=

1X
i=0

niX
j=1

(
Λ(i, gij , aij)

T−
1X

l=0

X
g∈G

Λ(l, g, aij)
T

exp (Λ(l, g, aij)θ)P1
l′=0

P
g′∈G exp (Λ(l′, g′, aij)θ)

)
Or, defining

pig(a; θ) =
exp (Λ(i, g, a)θ)P1

l′=0

P
g′∈G exp (Λ(l′, g′, a)θ)

, (7)

we obtain the estimating equations

0 =
∂l̃1
∂θ

˛̨̨̨
θ̂

=

1X
i=0

niX
j=1

"
Λ(i, gij , aij)

T −
1X

l=0

X
g∈G

Λ(l, g, aij)
T plg(aij ; θ̂)

#
.

In Appendix C, we verify that the unconstrained maximiz-
ers θ̂ and p̂A

v satisfy the constraints. Thus (θ̂, p̂A
v ) are the

ML estimators.

Asymptotic distribution of estimators

Let θ0 denote the “true” value of θ. Recall θ = (δ,~γT , βT )T ,
but that θ1 = δ is a nuisance parameter, while θ2 =
(~γT , βT )T are the parameters of interest. A Taylor series
expansion shows that

√
n(θ̂ − θ0) = I(θ∗)S(θ0)

where θ∗ is between θ0 and θ̂ and

I(θ∗) = − 1
n

∂2 l̃1
∂θ∂θT

∣∣∣∣∣
θ∗

, S(θ0) =
1√
n

∂l̃1
∂θ

∣∣∣∣∣
θ0

.

Under regularity conditions I(θ∗) converges in probability
to G(θ0) = E(I(θ0)), which can be consistently estimated
by I(θ̂). We will show E(S(θ0)) = 0, where the expectation
is taken under the true probability model at θ0. Therefore,
S(θ0) d→ N(0,Σ(θ0)), where Σ(θ0) = V (S(θ0)), and the
variance is taken under the true probability model at θ0

(Prentice and Pyke 1979). Then, by Slutsky’s theorem,
√

n(θ̂n − θ0) = I(θ∗)S(θ0) d→ N(0, G(θ0)−1Σ(θ0)G(θ0)−1).

Let G = G(θ0) and Σ = Σ(θ0) so that the asymptotic vari-
ance of θ̂ is G−1ΣG−1. We will show that the asymptotic
variance matrix [G−1ΣG−1]22 corresponding to the param-

eters of interest θ̂2 = (~̂γ
T
, β̂T )T is equal to (G−1)22, which

can be consistently estimated by [I(θ̂)−1]22
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Establishing E
(
S(θ0)

)
= 0

From the definition of S(θ0),

E(S(θ0)) = 0 ⇐⇒ E

„
∂l̃1
∂θ

˛̨̨̨
θ0

«
= 0

To simplify notation, let pig(a) = pig(a; θ0). Then, from
the calculations leading up to the estimating equations, we
have

E

„
∂l̃1
∂θ

˛̨̨̨
θ0

«
= E

(
1X

i=0

niX
j=1

"
Λ(i, Gij , Aij)

T−
1X

l=0

X
g∈G

Λ(l, g, Aij)
T plg(Aij)

#)

=
1X

i=0

E

(
niX

j=1

"
Λ(i, Gij , Aij)

T−
1X

l=0

X
g∈G

Λ(l, g, Aij)
T plg(Aij)

#)

=
1X

i=0

ni E

"
Λ(i, Gi1, Ai1)

T −
1X

l=0

X
g∈G

Λ(l, g, Ai1)
T plg(Ai1)

#

From equation (A-2),

pr(G = g,A = a | D = i) =
n

ni
pig(a) pA

v (a).

Hence

E

„
∂l̃1
∂θ

˛̨̨̨
θ0

«
=

1X
i=0

ni

Z
A

X
g∈G

"
Λ(i, g, a)T−

1X
l=0

X
g′∈G

Λ(l, g′, a)T

plg′(a)

#
n

ni
pig(a) pA

v (a) da

= n
1X

i=0

Z
A

"X
g∈G

Λ(i, g, a)Tpig(a)−
X
g∈G

1X
l=0

X
g′∈G

Λ(l, g′, a)T

plg′(a) pig(a)

#
pA

v (a) da

=n
1X

i=0

Z
A

"X
g∈G

Λ(i, g, a)T pig(a)−
1X

l=0

X
g′∈G

Λ(l, g′, a)T

plg′(a)
X
g∈G

pig(a)

#
pA

v (a) da

= n

Z
A

 1X
i=0

X
g∈G

Λ(i, g, a)Tpig(a)−
1X

i=0

1X
l=0

X
g′∈G

Λ(l, g′, a)Tplg′(a)
X
g∈G

pig(a)

ff
pA

v (a) da

= n

Z
A

 1X
i=0

X
g∈G

Λ(i, g, a)Tpig(a) −
1X

l=0

X
g′∈G

Λ(l, g′, a)Tplg′(a)
1X

i=0

X
g∈G

pig(a)

ff
pA

v (a) da

= n

Z
A

0 pA
v (a) da = 0

as claimed since
∑1

i=0

∑
g∈G pig(a) = 1.

Expression for G(θ0)

It can be shown that

∂2 l̃1
∂θ∂θT

˛̨̨̨
θ0

= −
1X

i=0

niX
j=1

(
1X

l=0

X
g∈G

»
Λ(l, g, aij)

T −

1X
l′=0

X
g′∈G

Λ(l′, g′, aij)
T pl′g′(aij)

–⊗2

plg(aij)

)
,

where v⊗2 = vvT and plg(a) is as defined above. Hence,

G(θ0) = E

„
− 1

n

∂2 l̃1
∂θ∂θT

˛̨̨̨
θ0

«

=
1

n
E
X

i

X
j

8<:
1X

l=0

X
g∈G

24Λ(l, g, Aij)
T−

1X
l′=0

X
g′∈G

Λ(l′, g′, Aij)
T pl′g′(Aij)

35⊗2

plg(Aij)

9=;
=

1

n

X
i

niE

8<:
1X

l=0

X
g∈G

24Λ(l, g, Ai1)
T−

1X
l′=0

X
g′∈G

Λ(l′, g′, Ai1)
T pl′g′(Ai1)

35⊗2

plg(Ai1)

9=;
=

1

n

X
i

ni

Z
A

X
g∈G

(
1X

l=0

X
g′∈G

24Λ(l, g′, a)T−
1X

l′=0

X
g′′∈G

Λ(l′, g′′, a)T pl′g′′(a)

35⊗2

plg′(a)

)
n

ni
pig(a) pA

v (a) da

after substituting

pr(G = g,A = a | D = i) =
n

ni
pig(a) pA

v (a)

from equation (A-2) in the last line. In the above expression
for G(θ0), nothing in the curly brackets depends on the
indices i and g, and so we can move the corresponding outer
sums past this term. After appropriate cancelling of the n
and ni terms, this gives

G(θ0)

=

Z
A

(
1X

l=0

X
g′∈G

24Λ(l, g′, a)T−
1X

l′=0

X
g′′∈G

Λ(l′, g′′, a)T pl′g′′(a)

35⊗2

plg′(a)

)
1X

i=0

X
g∈G

pig(a) pA
v (a) da

=

Z
A

1X
i=0

X
g∈G

24Λ(i, g, a)T−
1X

l=0

X
g′∈G

Λ(l, g′, a)T plg′(a)

35⊗2

pig(a) pA
v (a) da

since
P1

i=0

P
g∈G pig(a) = 1.

Expression for Σ(θ0)

We have

Σ(θ0) = V (S(θ0)) =
1

n

1X
i=0

niX
j=1

V

„
∂l̃1ij

∂θ

˛̨̨̨
θ0

«
,

where the last equality follows by the independence of sub-
jects and where

∂l̃1ij

∂θ

˛̨̨̨
θ0

= Λ(i, Gij , Aij)
T −

1X
l=0

X
g∈G

Λ(l, g, Aij)
T plg(Aij)
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is the contribution of the jth subject in the ith disease
category to ∂l̃1

∂θ

∣∣∣
θ0

. Within disease categories, the subjects
are iid and so

Σ(θ0)

=
1

n

1X
i=0

ni V

 
Λ(i, Gi1, Ai1)

T −
1X

l=0

X
g∈G

Λ(l, g, Ai1)
T plg(Ai1)

!

=

1X
i=0

ni

n


E

„
[ Λ(i, Gi1, Ai1)

T−
1X

l=0

X
g∈G

Λ(l, g, Ai1)
T plg(Ai1) ]⊗2

«
−
„

E[ Λ(i, Gi1, Ai1)
T−

1X
l=0

X
g∈G

Λ(l, g, Ai1)
T plg(Ai1) ]

«⊗2 ff
=

1X
i=0

ni

n

 Z
A

X
g∈G

[ Λ(i, g, a)T −
1X

l=0

X
g′∈G

Λ(l, g′, a)T plg′(a) ]⊗2

n

ni
pig(a) pA

v (a) da −
„Z

A

X
g∈G

[ Λ(i, g, a)T −
1X

l=0

X
g′∈G

Λ(l, g′, a)T plg′(a) ]
n

ni
pig(a) pA

v (a) da

«⊗2ff
=

1X
i=0

Z
A

X
g∈G

[ Λ(i, g, a)T −
1X

l=0

X
g′∈G

Λ(l, g′, a)T plg′(a) ]⊗2

pig(a) pA
v (a) da −

1X
i=0

n

ni

„Z
A

X
g∈G

[ Λ(i, g, a)T −

1X
l=0

X
g′∈G

Λ(l, g′, a)T plg′(a) ] pig(a) pA
v (a) da

«⊗2

= G(θ0) −
1X

i=0

n

ni

„Z
A

X
g∈G

[ Λ(i, g, a)T −
1X

l=0

X
g′∈G

Λ(l, g′, a)T plg′(a) ] pig(a) pA
v (a) da

«⊗2

= G(θ0) −
1X

i=0

n

ni
B⊗2

i ,

where Bi =
R
A

P
g∈G[ Λ(i, g, a)T −P1

l=0

P
g′∈G Λ(l, g′, a)T

plg′(a) ] pig(a) pA
v (a) da

Simplified expression for G−1ΣG−1

Following Prentice and Pyke, we wish to show
1X

i=0

n

ni
B⊗2

i = G

»
X 0
0 0

–
G =

»
G11XG11 G11XG12

G21XG11 G21XG12

–
,

where

X =
1X

i=0

n

ni
and G =

»
G11 G12

G21 G12

–
= G(θ0).

X is a scalar quantity and G, the expectation of a normal-
ized Hessian, is symmetric. Hence,

G

»
X 0
0 0

–
G=X

»
G11G11 G11G12

G21G11 G21G12

–
=X

»
G11

G21

–
[G11G12]=X

»
G11

G21

–⊗2

.

Therefore, we wish to show
1X

i=0

n

ni
B⊗2

i = X

»
G11

G21

–⊗2

.

Then, setting Σ(θ0) = Σ, we have

Σ = G−G

»
X 0
0 0

–
G,

so that

G−1ΣG−1 = G−1(G−G

»
X 0
0 0

–
G)G−1

= G−1GG−1 −G−1G

»
X 0
0 0

–
GG−1

= G−1 −
»

X 0
0 0

–

From this equality, it follows that the asymptotic vari-
ance matrix [G−1ΣG−1]22 for the parameter estimators
θ̂2 = (b~γT

, β̂T )T of interest is equal to (G−1)22, which is
consistently estimated by [I(θ̂)−1]22.

Here, we will first show that B1 = −B0. In deriving
E(S(θ0)) = 0, we established that

1X
i=0

Bi =
1

n
E

„
∂l̃1
∂θ

˛̨̨̨
θ0

«
= 0.

Thus, B1 = −B0, so that

1X
i=0

n

ni
B⊗2

i =

1X
i=0

n

ni
B⊗2

1 = B⊗2
1

1X
i=0

n

ni
= XB⊗2

1 .

Next, we show that small

B1 =
[

G11

G21

]
,

the first column of G. For any column vector v, the first
column of v⊗2 is

[v⊗2]·1 = v1v,

where v1 is the first element of v. Taking

v = Λ(l, g, a)T −
1X

l′=0

X
g′∈G

Λ(l′, g′, a)T pl′g′(a),

we get that the first element is

v1 = l −
1X

l′=0

X
g′∈G

l′pl′g′(a)

because the row vector Λ(l, g, a) = [ l, z(g), lx(g, a) ]. It
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follows that the first column of G is»
G11

G21

–
=

Z
A

1X
l=0

X
g∈G

„»
l −

1X
l′=0

X
g′∈G

l′pl′g′(a)

–»
Λ(l, g, a)T −

1X
l′=0

X
g′∈G

Λ(l′, g′, a)T pl′g′(a)

–
plg(a)

«
pA

v (a) da

=

Z
A

1X
l=0

X
g∈G

„»
l −

X
g′∈G

p1g′(a)

–»
Λ(l, g, a)T −

1X
l′=0

X
g′∈G

Λ(l′, g′, a)T pl′g′(a)

–
plg(a)

«
pA

v (a) da

=

Z
A

 »
−
X
g′∈G

p1g′(a)

– X
g∈G

»
Λ(0, g, a)T −

1X
l=0

X
g′∈G

Λ(l, g′, a)T plg′(a)

–
p0g(a) +

»
1−

X
g′∈G

p1g′(a)

– X
g∈G»

Λ(1, g, a)T −
1X

l=0

X
g′∈G

Λ(l, g′, a)T plg′(a)

–
p1g(a)

ff
pA

v (a) da

=

Z
A

 »
−
X
g′∈G

p1g′(a)

– 1X
l=0

X
g∈G

»
Λ(l, g, a)T −

1X
l′=0

X
g′∈G

Λ(l′, g′, a)T pl′g′(a)

–
plg(a) +

X
g∈G

»
Λ(1, g, a)T −

1X
l′=0

X
g′∈G

Λ(l′, g′, a)T pl′g′(a)

–
p1g(a)

ff
pA

v (a) da

Within the integral, the expression in the first summand

1X
l=0

X
g∈G

»
Λ(l, g, a)T −

1X
l′=0

X
g′∈G

Λ(l′, g′, a)T pl′g′(a)

–
plg(a) = 0

because
P1

l=0

P
g∈G plg(a) = 1. Hence, as required,»

G11

G21

–
=

Z
A

X
g∈G

»
Λ(1, g, a)T−

1X
l′=0

X
g′∈G

Λ(l′, g′, a)T pl′g′(a)

–
p1g(a) pA

v (a) da

= B1.

Extension to Hardy-Weinberg proportions in controls

In the special case of Hardy-Weinberg proportions in con-
trols,

L̃1 =
1Y

i=0

niY
j=1

pigij (aij ; θ),

where pig(a; θ) is re-defined as

pig(a; θ) =
exp(κ(g) + Λ(i, g, a)θ)P1

l′=0

P
g′∈G exp(κ(g′) + Λ(l′, g′, a)θ)

,

and the offset term κ(g) is a known constant. With this
alternate definition of pig(a; θ), the calculations of the es-
timating equations, hessian I(θ), expectations G(θ0) and
Σ(θ0), and variance-covariance matrix G−1ΣG−1 all remain
exactly the same. To see this, the key points are as follows.
First, the derivative of κ(g) + Λ(i, g, a)θ with respect to θ
is the same as the derivative of Λ(i, g, a)θ with respect to
θ. Thus derivatives of pig(a; θ) with respect to θ are of the

same form as before. Since L̃1 is a product of terms of the
form pigij

(aij ; θ), we obtain the same score-like equations
and the same hessian as before. Moreover, for G(θ0) and
Σ(θ0), the expected values are taken with respect to the
probability

pr(G = g, A = a | D = i) =
n

ni
pig(a) pA

v (a).

We use a new definition of pig(a), but the expression for
pr(G = g,A = a | D = i) continues to be of the same form in
pig(a). Hence expressions for expectations stay of the same
form as well. Similarly, nothing changes in the algebra to
simplify the variance-covariance matrix G−1ΣG−1

Extension to allow dependence between G and A

The assumption that genetic susceptibility and environmen-
tal exposures or other attributes are independent in the
population is a strong one. If an exposure or attribute,
such as smoking or body-mass index, depends on a sub-
ject’s behaviour, the independence assumption is question-
able (Chatterjee and Carroll 2005). Albert et al. (2001)
showed that methods that incorrectly impose independence
can yield anticonservative inference about multiplicative in-
teraction. Recall that in the development of the likelihood,
the probability of covariates given disease status was de-
scribed by a model that included the parameter

ξ(g, a) = log

»
pr(G = g, A = a | D = 0)

pr(G = g0, A = a0 | D = 0)

–
.

Independence of G and A in controls implies that

ξ(g, a) = log

»
pr(G = g | D = 0)

pr(G = g0 | D = 0)

–
+ log

»
pr(A = a | D = 0)

pr(A = a0 | D = 0)

–
.

To allow for dependence, write

ξ(g, a) = log

»
pr(G = g | A = a, D = 0)

pr(G = g0 | A = a0, D = 0)

–
+log

»
pr(A = a | D = 0)

pr(A = a0 | D = 0)

–
= log

»
pr(G = g | A = a, D = 0)

pr(G = g0 | A = a0, D = 0)

pr(G = g0 | A = a, D = 0)

pr(G = g0 | A = a, D = 0)

–
+

log

»
pr(A = a | D = 0)

pr(A = a0 | D = 0)

–
= log

»
pr(G = g | A = a, D = 0)

pr(G = g0 | A = a, D = 0)

pr(G = g0 | A = a, D = 0)

pr(G = g0 | A = a0, D = 0)

–
+

log

»
pr(A = a | D = 0)

pr(A = a0 | D = 0)

–
= log

»
pr(G = g | A = a, D = 0)

pr(G = g0 | A = a, D = 0)

–
+

log

»
pr(G = g0 | A = a, D = 0)

pr(G = g0 | A = a0, D = 0)

pr(A = a | D = 0)

pr(A = a0 | D = 0)

–
= log

»
pr(G = g | A = a, D = 0)

pr(G = g0 | A = a, D = 0)

–
+log

»
pr(G = g0, A = a | D = 0)

pr(G = g0, A = a0 | D = 0)

–
= γa(g) + α0(a)

where

γa(g) = log

»
pr(G = g | A = a, D = 0)

pr(G = g0 | A = a, D = 0)

–
and

α0(a) = log

»
pr(G = g0, A = a | D = 0)

pr(G = g0, A = a0 | D = 0)

–
.

ASA Section on Survey Research Methods

3069



Under independence of G and A in controls, γa(g) and
α0(a) reduce to γ(g) and α(a), respectively. Other than the
substitutions of γa(g) for γ(g) and α0(a) for α(a) in equa-
tion (4), the remaining development of the likelihood up to
the overparametrized likelihood L̃1(δ, γa, β) in equation (5)
remains the same. In order to keep L̃1(δ, γa, β) parametric,
we introduce a parametric model for γa(g). In particular,
we propose the polychotomous regression

γa(g) = log

»
pr(G = g | A = a, D = 0)

pr(G = 0 | A = a, D = 0)

–
= νg + aτg.

We now show that this polychotomous regression holds if
the attribute A is a continuous, count or categorical variable
that, in controls, has a conditional distribution given G from
the exponential family. The mean but not the dispersion
parameter of this conditional distribution may depend on
the level of the genetic factor. In quantitative genetics, it
is common to assume that a continuous trait has constant
dispersion across genotypic groups.

Justification of the polychotomous regression model

Case 1: The attribute is a count or continuous variable

When A is a continuous or count variable, we suppose that
the conditional density of A given G = g in controls is from
the exponential family, as defined in McCullagh and Nelder
(1989; page 28):

pr(A = a | G = g, D = 0) = exp{[aϑg − b(ϑg)]/α(φ) + c(a, φ)},

where the canonical parameter ϑg (which relates to the
conditional mean of A) but not the dispersion parameter φ
depends on the level g of G. The joint distribution of A and
G in controls is thus

pr(A = a, G = g | D = 0) =

exp{[aϑg − b(ϑg)]/α(φ) + c(a, φ)}pr(G = g | D = 0).

The conditional mass function for G given A = a and D = 0
is

pr(G = g | A = a, D = 0)

=
exp{[aϑg − b(ϑg)]/α(φ) + c(a, φ)}pr(G = g | D = 0)

pr(A = a | D = 0)

and so

log pr(G = g | A = a, D = 0) =
aϑg − b(ϑg)

α(φ)
+ c(a, φ) +

log pr(G = g | D = 0)− log pr(A = a | D = 0).

Let g0 be a baseline genetic category with corresponding
canonical parameter ϑ0. Then

log

»
pr(G = g | A = a, D = 0)

pr(G = g0 | A = a, D = 0)

–

=
[aϑg − b(ϑg)]

α(φ)
+ c(a, φ) + log pr(G = g | D = 0)−

[aϑ0 − b(ϑ0)]

α(φ)
+ c(a, φ) + log pr(G = g0 | D = 0)

ff

= a
ϑg − ϑ0

α(φ)
+ log pr(G = g | D = 0)− log pr(G = g0 | D = 0)−

b(ϑg)− b(ϑ0)

α(φ)

= νg + aτg,

where

νg = log pr(G = g | D = 0)− log pr(G = g0 | D = 0)−
[b(ϑg)− b(ϑ0)]/α(φ)

and
τg = (ϑg − ϑ0)/α(φ).

Hence the conditional distribution of G given A = a and
D = 0 follows a polychotomous regression model that
is linear in the attribute a. In summary, so long as the
conditional distribution of A given G is in the exponential
family with a constant dispersion parameter across the
levels of G, the proposed polychotomous regression model
should capture the dependence between G and A.

Case 2: The attribute is a categorical variable
Suppose now that A is categorical with categories
a0, a1, . . . , ap, where a0 is a baseline category. Then
A has a multinomial distribution one trial and p + 1
categories. Write the conditional probability for A
given G in controls in exponential family from. Let
πig = pr(A = ai | G = g,D = 0), i = 1, . . . , p, and
π0g = pr(A = a0 | G = g,D = 0) = 1 −

∑p
i=1 πig. For

an observed value a of A, let ~a = (a1, . . . , ap) denote an
indicator row-vector with ith element 1 if a = ai, or a vector
of all zeros if a = a0. Further define a0 = 1 −

∑p
i=1 ai.

Then the conditional mass function for A given G = g in
controls is

pr(A = a | G = g, D = 0) =

pY
i=0

πai
ig

= exp

 
pX

i=0

ai log πig

!

= exp

 
(1−

pX
i=1

ai) log π0g +

pX
i=1

ai log πig

!

= exp

 
log π0g +

pX
i=1

ai[log πig − log π0g]

!

= exp

 
log π0g +

pX
i=1

ai log[πig/π0g]

!

Let ϑig = log πig/π0g, ϑg = (ϑ1g, . . . , ϑpg)T , b(ϑg) =
− log π0g = − log(1 −

∑p
i=1 πig), α(φ) = 1 and c(a, φ) = 0.

Then

pr(A = a | G = g, D = 0) = exp

(
pX

i=1

aiϑig − b(ϑg)

)
= exp {~aϑg − b(ϑg)}
= exp {[~aϑg − b(ϑg)]/α(φ) + c(a, φ)}

Keeping in mind that now ~a is a row vector and ϑg is a
column vector, we obtain

pr(G = g | A = a, D = 0) = νg + ~aτg

where, using the fact that α(φ) = 1,

νg = log pr(G = g | D = 0)−log pr(G = g0 | D = 0)−[b(ϑg)−b(ϑ0)]

and
τg = ϑg − ϑ0.
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This is a saturated model with different probabilities for
each value of G given A. The form of the model for pr(G =
g | A = a,D = 0) when A is categorical is nearly identical
to the model when A is a count or continuous variable. The
only exception is that, in the categorical case, an indicator
vector ~a appears in the linear model instead of a itself. In
fact, adopting the convention that the observed attribute is
the indicator vector ~a, the model may be viewed as the same
for count, continuous or categorical data. For simplicity,
however, we use the notation from the case where A is a
count or continuous variable.

Estimating equations and asymptotic variances under de-
pendence

Under independence of G and A, the derivation of estimat-
ing equations and the asymptotic variance of estimators was
facilitated by the definition of a row vector Λ(i, g, a) of ob-
served variables and a column vector θ of parameters such
that iδ + γ(g) + ix(g, a)β = Λ(i, g, a)θ. Specifically, we
had Λ(i, g, a) = [i, z(g), ix(g, a)], where z(gk) is an indi-
cator row vector of K elements for the kth genetic cate-
gory (k = 1, . . . ,K) or a vector of all zeros for the base-
line genetic category when k = 0, and θ = (δ,~γT , βT )T ,
where ~γ denotes the column vector [γ(g1), . . . , γ(gK)]T . The
definition of z(g) and ~γ were such that z(g)~γ = γ(g).
We now wish to re-define Λ(i, g, a) and θ such that iδ +
γa(g) + ix(g, a)β = Λ(i, g, a)θ. Define a column vector
η = (ν1, τ1, . . . , νK , τK)T . Then, for a particular value a
of the scalar attribute,h

z(gk)⊗ (1, a)
i
η = νgk + aτgk = γa(gk),

where, for row vectors a and b with p and q ele-
ments respectively, a ⊗ b denotes the Kronecker prod-
uct (a1b, a2b, . . . , apb). Hence, re-defining Λ(i, g, a) =
[i, z(g)⊗ (1, a), ix(g, a)] and θ = (δ, ηT , βT )T , we obtain

iδ + γa(g) + ix(g, a)β = Λ(i, g, a)θ.

When A is categorical and the observed values are indicator
vectors ~a, we may still define a row-vector Λ(i, g,~a) and a
column-vector of parameters θ such that

iδ + γ~a(g) + ix(g,~a)β = Λ(i, g,~a)θ.

For categorical A with p + 1 categories, the observed data
are taken to be the indicator vector ~a = (a1, . . . , ap) and
the column vector τg of regression coefficients is defined as
τg = (τ1g, . . . , τpg)T . Let η = (ν1, τ

T
1 , ν2, τ

T
2 , . . . , νK , τT

K)T .
Then h

z(gk)⊗ (1,~a)
i
η = νgk + ~aτgk = γa(gk).

Hence, re-defining Λ(i, g,~a) = [i, z(g) ⊗ (1,~a), ix(g,~a)] and
θ = (δ, ηT , βT )T , we obtain

iδ + γ~a(g) + ix(g,~a)β = Λ(i, g,~a)θ.

Hence, regardless of whether the attribute is continuous,
count or categorical, independence between G and A in
controls can be seen to be a special case of the dependence
model with each τg equal to zero and ν ≡ (ν1, . . . , νK)T = ~γ.
Other than the re-definition of Λ and θ, the derivations of
estimating equations and asymptotic variances of estimators
are unchanged.

Hardy-Weinberg proportions and dependence between G and
A

Under independence of G and A in controls, and when the
values of G were genotypes, we observed a reduction in the
number of model parameters if, in addition, it was possible
to assume genotype frequencies in controls followed Hardy-
Weinberg proportions. It is of interest to see if a similar
reduction in the number of model parameters results from
assuming Hardy-Weinberg proportions in controls under de-
pendence. Under the proposed dependence model,

log

»
pr(G = g | A = a, D = 0)

pr(G = g0 | A = a, D = 0)

–
= νg + aτg

where νg = log pr(G = g | D = 0) − log pr(G = g0 | D =

0) − [b(ϑg) − b(ϑ0)]/α(φ) and τg = (ϑg − ϑ0)/α(φ). The con-
trol genotype frequencies pr(G = g | D = 0) appear only
through the intercept terms νg. Therefore, a model for geno-
type frequencies can at best reduce the number of param-
eters needed to express the νg terms. However, because
the terms [b(ϑg) − b(ϑ0)]/α(φ) in νg involve the genotype-
specific parameters ϑg, it is not generally possible to specify
νg as a function of allele-specific parameters. Therefore, the
assumption of Hardy-Weinberg proportions in controls does
not lead to a reduction in the number of parameters in the
dependence model between G and A.

Simulation study

Proposed structure of this section: Description of study
goals and simulation parameters. Relate selected param-
eters for the simulation study back to Ji-Hyung’s applica-
tion to real data. Cite her thesis. Simulation results un-
der G-A independence – compare logistic regression (LR)
to LUCA:Ind and LUCA:Ind+HWP Simulation results un-
der general G-A dependence – compare LR to LUCA:Ind
and LUCA:Dep. Can mention that LUCA:Ind+HWP sim-
ilar to LUCA:Ind Simulation results under conditional G-
A independence given a confounder C – compare LR to
LUCA:Dep, and maybe also LUCA:Ind Conclusions from
the study. Can follow the structure of Ji-Hyung’s JSM talk

Simulation study goals and parameters

Simulation parameters are as follows: Penetrance model pa-
rameters βG = 0.7, βA = 0.1, βGA = 0.2, and β0 chosen so
that the disease prevalence is 0.0009; in models with the
confounder C, βC = 0.1 and there is no G× C interaction;
risk allele frequency is 25%; ncas = ncon = 500; and the
number of replications is 10,000.

Results under G-A independence

We will put description of comparisons of interest here. Pre-
liminary version of the table showing results is Table 1. In-
corporating valid G-A independence assumption improves
power and precision to detect G×A interaction.

Results under G-A dependence

The gain in precision over standard logistic regression is
very small under general dependence structures.
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Table 1: Bias (in parameter estimates, standard errors and 95% confidence interval coverage probabilities) and efficiency
results for simulations under Hardy-Weinberg proportions (HWP) or not (HWP)

Bias Efficiency
Config Param Method Estimate Std.Err Cov.Prob Std.Dev. Power
HWP βG LR∗ 0.004 −0.002 −0.007 0.105 1.000

LUCA:Ind† 0.002 −0.002 −0.004 0.104 1.000
LUCA:Ind+HWP‡ −0.000 −0.001 −0.007 0.100 1.000

βA LR 0.000 −0.001 0.001 0.093 0.193
LUCA:Ind 0.000 0.000 0.001 0.083 0.226
LUCA:Ind+HWP 0.002 −0.001 0.000 0.083 0.228

βGA LR 0.002 −0.001 0.002 0.104 0.495
LUCA:Ind −0.000 0.000 0.001 0.065 0.879
LUCA:Ind+HWP −0.001 0.001 0.001 0.064 0.881

HWP βG LR 0.006 0.000 0.000 0.094 1.000
LUCA:Ind 0.004 0.000 0.002 0.093 1.000
LUCA:Ind+HWP 0.132 −0.009 −0.234 0.108 1.000

βA LR −0.001 −0.001 −0.003 0.091 0.190
LUCA:Ind 0.000 0.000 0.000 0.083 0.231
LUCA:Ind+HWP −0.034 −0.004 −0.036 0.089 0.129

βGA LR 0.004 −0.002 −0.008 0.097 0.575
LUCA:Ind 0.001 −0.001 −0.002 0.059 0.936
LUCA:Ind+HWP 0.040 −0.006 −0.075 0.070 0.956

∗ LR – Logistic Regression.
† LUCA:Ind – Assume independence of genetic and non-genetic factors in the controls.
‡ LUCA:Ind+HWP – Besides independence, assume Hardy-Weinberg proportions for
control genotypes.

Results under conditional G-A independence given
a confounder C

Incorporating valid conditional independence assumption
between genetic and non-genetic factors given a third con-
founding variable C improves power and precision to detect
G×A interaction.

Simulation conclusions

Incorporating valid G−A assumptions improves power and
precision to detect G×A interaction for the method under
independence assumption (LUCA:Ind) and the one under
conditional independence assumption (LUCA:Dep). How-
ever, the methods are not robust to dependence of ge-
netic and non-genetic factors. Lastly, incorporating HWP
(LUCA:Ind+HWP), in addition to G − A independence,
gains little in precision over LUCA:Ind and may cost anti-
conservative bias if there are departures from HWP.

Discussion

Comparison of GMS and CC dependence models

We have proposed a simple model for dependence between
G and A. Chatterjee and Carroll (2005) also allow for de-
pendence between genetic factors and non-genetic factors.
We wish to compare our approach to theirs. However, we
make assumptions about the distribution of covariates in
controls, while Chatterjee and Carroll impose assumptions

on the distribution of covariates in the population. Hence
our methodology is not directly comparble to theirs, except
under a rare disease assumption. Therefore, to compare
our approach to allow for dependence to that of Chatterjee
and Carroll, suppose a rare disease. We first describe the
specific form of dependence considered by Chatterjee and
Carroll. Then we discuss our dependence model under this
form of dependence. Under the rare disease assumption,
our model is seen to include that of Chatterjee and Carroll
as a special case.

Allowing for dependence: Chatterjee and Carroll

Chatterjee and Carroll consider dependence between G and
environmental exposures E through a stratum variable S;
that is, G and E are dependent, but are conditionally inde-
pendent given S. The joint distribution of G, S and E is
then pr(G = g, S = s,E = e) = pr(G = g | S = s)pr(S =
s,E = e). The term pr(S = s,E = e) in the above ex-
pression is left unspecified. The term pr(G = g | S = s)
is considered in more detail. When S is categorical with
only a few categories, no modelling of pr(G = g | S = s) is
necessary; i.e, pr(G = g | S = s) is described by a saturated
model with separate probabilities for each value of G given
S. Otherwise, Chatterjee and Carroll note that modelling
of pr(G = g | S = s) is required. They suggest a logistic
regression model if G is binary, e.g.

log

»
pr(G = 1 | S = s)

pr(G = 0 | S = s)

–
= ν + sτ,

but do not discuss more general models for non-binary G.
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To summarize, Chatterjee and Carroll allow for depen-
dence between G and E through a stratum variable S, and
the model for pr(G | S) is either a saturated model if S
is categorical with few categories, or a logistic regression
model if G is binary.

Allowing for dependence: Graham, McNeney, Shin

Our model for dependence (see section Extension to
allow dependence between G and A) is a polychoto-
mous regression for G given A in controls with intercept
and slope that may depend on the level of G:

γa(g) = log

»
pr(G = g | A = a, D = 0)

pr(G = 0 | A = a, D = 0)

–
= νg + aτg.

We now discuss this model under the form of dependence
considered by Chatterjee and Carroll; that is, when G and
E are conditionally independent given S. In our context,
the analogous conditional independence is of G and E given
S in controls. Let A = (S, E) and suppose conditional in-
dependence of G and E given S in controls. Then

pr(G = g | A = a, D = 0) = pr(G = g | S = s, E = e, D = 0) =

pr(G = g | S = s, D = 0).

Hence, the appropriate polychotomous regression model to
account for dependence between G and A is

log

»
pr(G = g | S = s, D = 0)

pr(G = 0 | S = s, D = 0)

–
= νg + sτg.

For categorical S, the polychotomous regression is a satu-
rated model that allows separate probabilities for each value
of G given S, as discussed in section ?.?, and therefore paral-
lels that of Chatterjee and Carroll. Furthermore, our model
of dependence includes logistic regression for a binary out-
come G given information on S in controls. To summarize,
our model of dependence can allow for conditional indepen-
dence of G and E given a stratum variable S in an analogous
way to Chatterjee and Carroll’s model of dependence.
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Appendix A: Reparametrization of the likelihood

In this appendix we justify the reparametrization of the
likelihood in (4) in terms of γ, α and β to the likelihood
in equation (5) in terms of γ, pA

v and β.

Overview

The original likelihood in equation (4) is,

L(γ, α, β) =
1Y

i=0

niY
j=1

exp (δ0 + iδ + γ(gij) + α(aij) + ix(gij , aij)β) .

Up to a constant, this expression is a product of terms of
the form given in equation (3):

pr(G = gij , A = aij | D = i)

=
n

ni
exp(δ0 + iδ + γ(gij) + α(aij) + ix(gij , aij)β). (A-1)

The reparametrized likelihood in equation (5)

L(γ, pA
v , β) =

"
1Y

i=0

niY
j=1

exp (iδ + γ(gij) + ix(gij , aij)β)P1
l=0

P
g∈G exp (lδ + γ(g) + lx(g, aij)β)

#

×

"
1Y

i=0

niY
j=1

pA
v (aij)

#

is based on two claims. The first of these claims is that

pr(G = gij , A = aij | D = i)

=
n

ni

exp (δ0 + iδ + γ(gij) + ix(gij , aij)β)P1
l=0

P
g∈G exp (δ0 + lδ + γ(g) + lx(g, aij)β)

pA
v (aij)

=
n

ni

exp (iδ + γ(gij) + ix(gij , aij)β)P1
l=0

P
g∈G exp (lδ + γ(g) + lx(g, aij)β)

pA
v (aij)(A-2)
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Comparing (A-1) to (A-2), the first claim amounts to show-
ing

exp (α(aij)) =
pA

v (aij)P1
l=0

P
g∈G exp (δ0 + lδ + γ(g) + lx(g, aij)β)

or

pA
v (aij) = exp (α(aij))

1X
l=0

X
g∈G

exp (δ0 + lδ + γ(g) + lx(g, aij)β)

(A-3)

The second claim is that the reparametrization is valid; i.e.
the mapping (δ, γ, α, β) 7→ (δ, γ, pA

v , β) is one-to-one, and
both parametrizations are subject to the same constraint

1 =

Z
A

X
g∈G

pr(G = g, A = a | D = 1) da

For the parametrization (δ, γ, pA
v , β) the constraint is

1=
n

n1

Z
A

X
g∈G

exp (δ + γ(g) + x(g, a)β)P1
l=0

P
g′∈G exp (lδ + γ(g) + lx(g, a)β)

pA
v (a)da(A-4)

and the parameter δ defined as the solution is a function of
γ, pA

v and β. We establish each of these two claims in the
following subsections.

Derivation of pA
v

The derivation of pA
v relies on a hypothetical variant sam-

pling scheme used implicitly throughout the arguments of
Prentice and Pyke 1979. This is a two-stage sampling de-
sign with random sampling of disease status and covariates,
but in which the total number of subjects is fixed to n. The
first step is Bernoulli sampling of disease status on each of n
subjects, with probability n1/n of sampling a case and n0/n
of sampling a control. Thus the expected number of cases
sampled is n1 and the expected number of controls sampled
is n − n1 = n0. In the second step, covariates are sampled
from the appropriate conditional distributions of covariates
given disease status. The conditional distributions in this
second step are the same conditional distributions as in the
true case-control sampling scheme.

Under this variant scheme, disease-covariate pairs are
sampled jointly. However, covariates are sampled indepen-
dently conditional on disease status. By contrast, in true
case-control sampling (basic stratified sampling), disease
status is fixed rather than random. However, covariates
are still sampled independently conditional on disease sta-
tus. Adopt the general convention that prv denotes proba-
bilites or densities under the variant sampling scheme (VSS)
and pr denotes probabilities or densities under sampling
from the true population (population sampling). By def-
inition, the distribution of risk factors given disease status
is the same under VSS and population sampling; that is,
prv(G, A | D) = pr(G, A | D). Hence

pr(G = g, A = a | D = i) =
prv(G = g, A = a, D = i)

prv(D = i)

=
n

ni
prv(G = g, A = a, D = i),

which, from the likelihood equation (A-1), is also

n

ni
exp(δ0 + iδ + γ(g) + α(a) + ix(g, a)β).

Thus
prv(D = i, G = gij , A = aij)

= exp(δ0 + iδ + γ(gij) + α(aij) + ix(gij , aij)β). (A-5)

The above model can be shown to reduce to the log-linear
model of Umbach and Weinberg (1997) when the attribute
A is categorical. This connection is discussed in Appendix
B. It then follows that

pA
v (aij) =

1X
l=0

X
g∈G

prv(G = g, A = aij , D = l)

=
1X

l=0

X
g∈G

exp (δ0 + lδ + γ(g) + α(aij) + lx(g, aij)β) .

= exp(α(aij))

1X
l=0

X
g∈G

exp (δ0 + lδ + γ(g) + lx(g, aij)β) .

This is equation (A-3), which, as noted in the Overview,
establishes the first claim (equation A-2).

Validity of the reparametrization

To establish the second claim, that (δ, γ, α, β) 7→
(δ, γ, pA

v , β) is one-to-one, we must be able to write pA
v as

a function of (δ, γ, α, β) and conversely α as a function
of (δ, γ, pA

v , β). In establishing equation (A-3), we have
already shown that pA

v can be written as a function of
(δ, γ, α, β). We now show that α can be written as a func-
tion of (δ, γ, pA

v , β). Start by rearranging (A-3):

exp(α(a)) = pA
v (a)

"
1X

i=0

X
g∈G

exp (δ0 + iδ + γ(g) + ix(g, a)β)

#−1

.

We now show that δ0 can also be written as a function of
(δ, γ, pA

v , β). From (A-1)

pr(G = g0, A = a0 | D = 0) =
n

n0
exp(δ0)

From (A-2)

pr(G = g0, A = a0 | D = 0)

=
n

n0

"
1X

l=0

X
g∈G

exp(lδ + γ(g) + lx(g, a)β)

#−1

pA
v (a0)

Thus, we have

exp(δ0) =

"
1X

l=0

X
g∈G

exp(lδ + γ(g) + lx(g, a)β)

#−1

pA
v (a0)

Hence δ0 is also a function of (δ, γ, pA
v , β). Conclude that α

can be written as a function of δ, γ, pA
v and β. The original

parametrization was constrained so that
∫
A

∑
g∈G pr(G =

g,A = a | D = 1) da = 1. By definition, the new
parametrization must also satisfy this constraint, given by
equation (A-4).

Appendix B: Connections to log-linear models

Overview

From equation (3), the jth individual in the ith disease
category contributes the term

pr(G = gij , A = aij | D = i)

=
n

ni
exp (δ0 + iδ + γ(gij) + α(aij) + ix(gij , aij)β)
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to the likelihood. Since the constants n/ni can be ignored,
we end up maximizing equation (4)

L(γ, α, β) =
1Y

i=0

niY
j=1

exp (δ0 + iδ + γ(gij) + α(aij) + ix(gij , aij)β) .

From equation (A-5), the terms of the above product may
be interpreted as joint probabilities of disease status, the
genetic factor and the attribute under a variant sampling
scheme (VSS) in which a fixed number n of subjects is sam-
pled, cases with probability n1/n and controls with proba-
bility n0/n:

prv(D = i, G = gij , A = aij)

= exp (δ0 + iδ + γ(gij) + α(aij) + ix(gij , aij)β) . (B-1)

We now show that the log-linear model of Umbach and
Weinberg (1997) is a special case of the above model for
prv(D = i, G = g,A = a) for discrete attributes.

The general model with binary G and A

Without loss of generality, we consider the simplest possible
case of binary disease status D taking value 1 for diseased
and 0 for non-diseased, binary genetic factor G with baseline
value g0 = 0 and non-baseline value g1 = 1, and binary non-
genetic factor A with baseline value a0 = 0 and non-baseline
value a1 = 1.

Recall that γ(g0) = α(a0) = 0. Let γ = γ(g1) so that
γ(g) = gγ, for g = 0, 1. Similarly, let α = α(a1) so that
α(a) = aα, for a = 0, 1.

Let the penetrance model have main effects for G and A,
as well as a term for G-by-A interaction; i.e.,

log

»
pr(D = 1 | g, a)

pr(D = 0 | g, a)

–
= β0+gβG +aβA +gaβGA = β0+x(g, a)β

where x(g, a) = (g, a, ga) and β = (βG, βA, βGA)T . Then
the general model (B-1) for prv(D = i, G = g,A = a) sim-
plifies to

log [prv(D = i, G = g, A = a)]

= δ0 + iδ + gγ + aα + ix(g, a)β

= δ0 + iδ + gγ + aα + i(gβG + aβA + gaβGA)

= δ0 + iδ + gγ + aα + igβG + iaβA + igaβGA (B-2)

Log-linear models for contingency tables

Log-linear models are typically formulated for expected cell
counts in a contingency table but may be equivalently used
to model cell probabilities since these are expected cell
counts divided by the sample size n. For binary D, G and
A, the observed data may be arranged in a 2 × 2 × 2 con-
tingency table.

Equation (B-2) is a model for the cell probabilities in
such a table with δ0 as an intercept term, δ as the main
effect for disease status, γ as the main effect for the genetic
variable, α as the main effect for the attribute, βG as the
two-way interaction between D and G, βA as the two-way
interaction between D and A, and βGA as the three-way

interaction between D, G and A. The log-linear model (B-
2) thus has no term for two-way interaction between G and
A. Hence, model (B-2) is a saturated log-linear model with
the two-way interaction between G and A constrained to
equal zero; this is precisely the log-linear model in equation
(4) of Umbach and Weinberg (1997).

Appendix C: Unconstrained maximizer satisfies
the constraint

The constraint

The constraint (A-4) that the parameters θ = (δ, γ, β) and
pA

v must satisfy is

1 =
n

n1

Z
A

X
g∈G

exp (δ + γ(g) + x(g, a)β)P1
l=0

P
g′∈G exp (lδ + γ(g) + lx(g, a)β)

pA
v (a) da.

From the definition of pig(a; θ) in equation (7), we can re-
write the constraint as

1 =
n

n1

Z
A

X
g∈G

p1g(a; θ)pA
v (a) da.

The estimators

The estimator θ̂ satisfies

0 =
∂l̃1
∂θ

˛̨̨̨
θ̂

=

1X
i=0

niX
j=1

"
Λ(i, gij , aij)

T −
1X

l=0

X
g∈G

Λ(l, g, aij)
T plg(aij ; θ̂)

#
,

and, in particular, from the first element i of Λ(i, g, a),

0 =

»
∂l̃1
∂θ

˛̨̨̨
θ̂

–
1

=

1X
i=0

niX
j=1

"
i−

1X
l=0

X
g∈G

lplg(aij ; θ̂)

#

= n1 −
1X

i=0

niX
j=1

X
g∈G

p1g(aij ; θ̂). (C-1)

The estimator p̂A
v (a) of pA

v (a) is the empirical distribution
that puts mass 1/n at each observed value of A.

The estimators satisfy the constraint
Evaluating the constraint at (θ̂, p̂A

v (a)) gives

1 =
n

n1

Z
A

X
g∈G

p1g(a; θ̂)bpA
v (a) da =

n

n1

1X
i=0

niX
j=1

X
g∈G

p1g(aij ; θ̂)
1

n

=
1

n1

1X
i=0

niX
j=1

X
g∈G

p1g(aij ; θ̂),

since an integral with respect to p̂A
v (a) is simply a sum

over the observed values aij , i = 0, 1, j = 1, . . . , ni, with
weight 1/n assigned to each value. The above equation is
equivalent to (C-1). Hence the unconstrained maximizers
(θ̂, p̂A

v (a)) satisfy the constraint (A-4).
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