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1. Introduction

The Accuracy and Coverage Evaluation Survey
(A.C.E.) covers many local areas such as states, con-
gressional districts and census field offices. However,
there is often not a large enough sample to pro-
vide precise design-based estimates of local coverage.
As an alternative to direct estimates, the synthetic
method of small area coverage estimation applies na-
tional post-stratum level coverage estimates to local
census counts, instead of using local coverage esti-
mates. Although it is acknowledged that the cover-
age rate will vary geographically within post-strata,
a coverage estimate based on a synthetic estimate
that ignores this level of geography is still perceived
as being better than reporting no coverage estimate
at all.

An alternative to using either a synthetic estimate
or a design-based estimate is to use a borrowing
strength estimator, i.e., one that combines features
of both a design-based estimator and a synthetic es-
timator. Borrowing strength estimators have been
used extensively in small area estimation (see, e.g.
Rao, 2003). Although the borrowing strength meth-
ods proposed will require intensive computing, stan-
dard algorithms for doing so are available. We inves-
tigate the use of borrowing strength estimators that
are appropriate to the coverage estimation problem
by incorporating a random effect model to help as-
sess small area variability and aid in prediction.

We choose the local census offices (LCOs) as the
small areas to be initially investigated. There are
540 LCOs covering the U.S. which can provide in-
formation on the geographic variation and patterns

1This report is released to inform interested parties of
ongoing research and to encourage discussion of work in
progress. The views expressed on statistical, methodologi-
cal, technical, or operational issues are those of the authors
and not necessarily those of the U.S. Census Bureau. The au-
thors would like to thank colleagues at the Bureau, especially
Tom Mule and Eric Schindler for their help on the project
and additionally thank Stephen Ash, Donna Kostanich and
Smanchai Sae Ung for reviewing the manuscript.

across the U.S. Being administrative units for non-
response followup data collection, information about
LCO coverage could be of use for planning purposes.
Estimates at the LCO level (by post-strata) can still
be synthetically carried down to smaller (or differ-
ent) areas and can also incorporate any LCO-specific
covariates.

The nature of small area estimation precludes
comparison of estimates against the truth because
only small sample sizes are available for making
design-based estimates. Our primary evaluation will
be to determine whether our model can describe
the A.C.E. data better than a comparable synthetic-
estimation model and whether the incorporation of
the random effects results in substantially different
estimates of coverage. We will evaluate a key as-
sumption of the synthetic estimation model that
coverage rates (i.e., correct enumeration rates and
matching rates) are relatively constant across small
areas (LCOs). The first part of the evaluation will
be accomplished by nesting a synthetic estimation
model in our random effects model and then assess-
ing whether the variance components are negligible,
or not (based on posterior confidence intervals). If
the variance components are negligible, then this
would be evidence that the synthetic assumption
is valid. The second part will be accomplished by
making estimates from the two models and assessing
their differences. Ultimately, we plan on providing
evidence whether, or not, the addition of small area
random effects could improve synthetic estimation.

This project is exploratory in nature. We do not
evaluate the fit of the data to the model. We simply
have embedded a synthetic estimation model into
a larger one in order to evaluate possible improve-
ments in using a larger, random effects, model. The
main contribution of this project is the evaluation
of the synthetic model, which has a large number
of parameters, and implementation of an estimation
procedure which takes into account that the sample
selected is not from a simple random sample. Model
fitting and careful evaluation of the sample design
adjustment will be pursued only if this project indi-
cates that this method may offer gains over synthetic
estimation.
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2. Census Coverage Estimation
Overview: From the National

Level to Small Areas

Conceptually, coverage estimation follows a cap-
ture/recapture approach (see, e.g. Seber(1987) )
That is, the first capture, of N1 people, is from the
census and the second capture, of N2 is from the
coverage survey. Given that the chance of being
captured is independent between sources and that
M persons match, an estimate of the total popula-
tion is: N1N2/M , providing a coverage estimate of
N2/M . There are other sources of error present in
Census coverage that require making changes to the
preceeding estimate, (see, e.g. Hogan (2003, 1993)).
Four primary sources of error are: 1) the occurrence
of erroneous enumerations in census, 2) lack of infor-
mation to match records, 3) availability of coverage
survey data for only a sample of areas (due to cost
limitations) and 4) heterogeneous probability of be-
ing selected in sample. Each Census record does
not match a single person due to the fact that there
are fictitious persons and duplicates in the Census,
hence N1 is not known. In addition, some census
records are believed to represent real people but do
not contain enough (extraneous) information to de-
termine whether, or not, they match to anyone in the
coverage sample. Since N1 cannot be determined, an
estimate of the total number of persons with census
records that are matchable, is used instead. The de-
termination of the correct, matchable enumerations
are carried out on only a sample basis, as are the
number of persons in the coverage survey, N2, and
the number of matches, M . Taking the first three
types of errors into account, the form of the modi-
fied capture/recapture estimate looks more like the
following:

Cen × PDD × P̂CE/P̂M

representing the Census count, Cen, the propor-
tion of census records that are matchable, PDD,
(the “DD” stands for “Census Data Defined”, which
refers to census records that do contain enough infor-
mation on them to warrant any attempt at match-
ing, e.g. imputed records), the sample estimates of
the correct enumerations rate in the Census, P̂CE ,
and the sample estimate of the match rate between
the data defined records and the coverage survey,
P̂M . These estimators are generally referred to as
“dual system estimators”. The resulting coverage
estimator looks like:

PDDP̂CE/P̂M

The fourth source of error, heterogeneous capture
probabilities, is common in many capture/recapture
settings. The bias caused by ignoring this fact is
reduced by stratifying the samples in more homoge-
neous post-strata. For census coverage, the census
records (collected in the “e-sample”) and the cover-
age records (collected in the “p-sample”) are strati-
fied differently in the U.S. Census Bureau’s estimates
referred to as “revision II”. A final estimate of cover-
age at the national level is based on producing esti-
mates of population for each post-stratum type, i,j,
and then aggregating. An estimate of total coverage
would take the following form

∑
i,j CenijPDDijP̂CEi/P̂Mj∑

i,j Cenij
.

Note that it is assumed the correct enumeration
probabilities, PCEi, are homogeneous within the e-
sample post-strata, i, and the coverage probabil-
ities, PMj, are homogeneous within the p-sample
post-strata, j. There are 480 post-strata defined
for the P-sample. These post-strata are constructed
from a cross-classification of the groups within the
categories: Race/Hispanic Origin, Tenure, Size of
Metropolitan Statistical Area, Type of Census Enu-
meration Area, Return Rate Indicator, Region,
Age,and sex. The e-sample post-strata are not based
on the same set of variables. In fact, some sample
post-strata cannot be defined for p-sample cases be-
cause they are based on census information. The
full e-sample consists of 525 post-strata defined by
cross classifications of groups based on the following
characteristics: Proxy Status, Race/Hispanic Origin
Domain, tenure, Household Relationship, Household
Size, Type of Census Returns (mail back vs non-mail
back), Date of Return (early vs. late), age and sex.
The report “Accuracy and Coverage Evaluation of
Census 2000: Design and Methodology” (2004) pro-
vides the explicit definition of both the e-sample and
p-sample post-strata. There are a number of other
errors that are accounted for in the coverage error
estimation of the Census and this report provides
further details on that as well as details on the over-
all estimation process.

If the coverage is homogeneous within all crossed
post-strata, the estimated coverage rates apply to
any aggregate level of sample within post-strata. For
an arbitrary area, k, one partitions the area by post-
stratum and produces a separate estimate resulting
in the synthetic estimate of coverage for the area, k,:

ˆCCFk =

∑
i,j CenijkPDDijP̂CEi/P̂Mj∑

i,j Cenijk
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Where Cenijk is the number of census records in
post-strata combination i, j in area k. Note that a
synthetic assumption was also applied to the data-
defined rate for production estimates.

The explicit aim of this paper is to evaluate this
homogeneity assumption, by allowing heterogeneity
between LCOs , within post-strata. Before the inclu-
sion of random effects to account for this small area
heterogeneity is evaluated, a corresponding model is
needed. The following sections describe the model
to be used and cover the problems of model fitting
using data disproportionately sampled from its pop-
ulation.

3. The Finite Population and
Sample Design

Only the aspects of the sample selection that are rel-
evant to this problem will be described. A detailed
account of the design can be found in “Accuracy
and Coverage Evaluation of Census 2000: Design
and Methodology” (2004).

The basic sampling unit is a block cluster which,
generally, consists of a typical city block or a col-
lection of geographically contiguous housing units
about the same size as a city block. The median
target block cluster size is about 30 housing units
but ranges considerably between zero housing units
and 80+. The population of block clusters totaled
over 3.5 million. These block clusters were strati-
fied by State and crossed by whether or not they
are located on an American Indian Reservation and,
if not, by three levels of estimated size (0-2, 3-79
or 80+ housing units). A sample of about 29,000
block clusters was selected from these strata. Sub-
sequent to this initial selection, oversampling was
employed to achieve a variety of objectives such as
requiring adequate sample size for each state and for
race/ethnicity groups. Double sampling was then
employed in most of these primary strata reduc-
ing the original sample down to about 11,000 block
clusters. For medium and large block clusters, this
second phase is a sub-sample from sub-strata con-
structed from information collected in the original
sample on such items as actual measured size of the
block clusters (in terms of housing units), match-
ing rates of housing units between the census list
of housing units and the independent list used to
take the sample, minority percent based on the orig-
inal 1990 census estimates, as well as block clusters
whose actual size were very different from their es-
timated size. As in the first-phase sample, oversam-
pling is employed. In this second phase, block clus-
ters that had a poor address match rate between

the Census address list and the independent sample
listing of the follow-up survey were oversampled, as
were minority block clusters. Unusually large block
clusters were further sampled to reduce the work
load. The primary features of the design that are
different from a simple random sample of people in
the U.S (or of census records) consist of the cluster-
ing of individuals in housing units and contiguous
geographic areas, the initial stratification based on
strata identifiers that may be related to coverage,
and sub sampling based on second-phase strata. Of
all these features, subsampling based on the initial
match between housing units must be accounted,
perhaps most of all, to ensure that estimates from
the model will not be biased.

4. Population Model

We do not try to completely specify a unit-level
population model for the coverage process. Doing
so would entail including one capture probability
denoting the chance that a person is included
in the census frame and another denoting the
chance that a person is included in the coverage
survey frame, a probability denoting the chance
of a erroneous census record, including duplicates
and fictitious records, accounting for differential
coverage due to geo-coding error, movers and a
number of other sources of error in “Accuracy and
Coverage Evaluation of Census 2000: Design and
Methodology” (2004), report. Instead we specify
a relatively simple model for the probability of a
match and the probability of a correct enumeration,
use the sample design to account for differential
selection and correlation and, lastly, condition on
the e-sample and p-sample totals to make inference
about the coverage as a function of only two types of
unknowns, the probability for correct enumeration
and the probability of a match.

Model Assumption 1 Define the probability that a
person in the sample of matchable census records
(e-sample) is a correct enumeration, given they are
in small area k, e-sample post-strata, i, as: p(CE,i,k).

Model Assumption 2 Analogously, define the proba-
bility that a person in the coverage sample matches
a correct, matchable census record, given they are
in small area k, p-sample post-strata, j, as: p(M,j,k).

Within LCO, k, the following parameterization of
p(CE,i,k) and p(M,j,k) is assumed:

p(CE,i,k) = eθCEik/(1 + eθCEik)
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p(M,j,k) = eθMjk/(1 + eθMjk ) (1)

We will require a complete parametric model, in or-
der to obtain confidence intervals based on poste-
rior distributions. A parametric model will be built,
within an LCO based on the following reasoning:
1) Starting with the specification of the marginal
means in equation (1), a pseudo-likelihood is formed
by treating each observation as independent but us-
ing the sample weights so that the sampled log-
likelihood is a design-unbiased estimate of the pop-
ulation log-likelihood (based on independence).
2) This pseudo-likelihood is scaled down, exponen-
tially, to reflect the effective sample size due to clus-
tering, and increased variability due to some design
features not being included in the model.

Note that the use of a pseudo-likelihood is of-
ten used in modeling survey data, see Skinner et al.
(1989) for more details. The following provides ad-
ditional details on the justification of this approach.

4.1 Step 1: Pseudo-Likelihood

Fixing the parameters p(CE,i,k) and p(M,j,k), the fol-
lowing pseudo-likelihood can be used to determine
their MLEs:
∏

i

p
mCE,i,k

(CE,i,k)(1 − p(CE,i,k))nCE,i,k−mCE,i,k

×
∏

j

p
mM,j,k

(M,j,k)
(1 − p(M,j,k))nM,j,k−mM,j,k (2)

where, mCE,i,k and nCE,i,k are, possibly rescaled,
unbiased estimators of the total number of correct
enumerations and population total, respectively, in
e-sample post-strata i and LCO k. The terms mM,i,k

and nM,i,k are defined analogously for the p-sample.
These estimates incorporate missing value adjust-
ments as well as the Revision II adjustments.

As an illustration for the e-sample term, mCE,i,k

and nCE,i,k are unbiased estimates of the total num-
ber of correct enumerations rescaled by aCE,i,k:

mCE,i,k =
∑

b∈s

aCE,i,k wb mCE,i,k,b

and
nCE,i,k =

∑

b∈s

aCE,i,k wb nCE,i,k,b,

where, b denotes a block/cluster sampling unit, b ∈ s
denotes all block clusters in sample, wb is the sam-
pling weight, mCE,i,k,b and nCE,i,k,b are the actual
counts of correct enumerations and counts of census
records observed in block cluster, b. Lastly, aCE,i,k is
any arbitrary positive constant which will be spec-
ified later in order to force the variances from the

MLEs to be comparable with those resulting from a
cluster sample.

Note that the log-pseudo likelihood is an unbiased
estimator of a population log-likelihood based on an
independent sample of people in the p-sampled and
an independent sample of census records in the e-
sample. This assumption clearly may not represent
the actual random structure of the sample, as per-
sons (or census records) are likely to be correlated
within housing units and within blocks. Follow-
ing Huber(1967), the MLEs from the above pseudo-
likelihood will still be consistent estimates of θCEik

and θMjk as long as the total expectation of the
pseudo-log likelihood, under the correct population
model is maximized at θCEik and θMjk, which is true
in this case.

4.2 Step 2: Scaled Pseudo-Likelihood

Following the pseudo-likelihood approach, we pick
a constant aCE,i,k to adjust the sample size so
that variances of MLEs based on the pseudo-
likelihood match up to variances based on the sam-
ple design/model specification. As pointed out by
Graubard and Korn (2002), model based estimation
from sampled data must account for variability of
the design parameters, if they are not part of the
model. We obtain variance estimates of MLE es-
timators by boot-strapping block clusters, includ-
ing bootstrapping the initial strata and substrata
identity. The use of the bootstrap should account
for variability of the sample selection, variability of
the assignment of block clusters to the design pa-
rameters and model-based correlation within block-
clusters. In this present work, a conservative esti-
mate of variance has been used. In particular, the
average variance of rates determined within LCO by
collapsed post-stratum have been used. (See Ap-
pendix A for collapsed post-strata definitions). This
approach is conservative because it includes the vari-
ability due to changes of post-strata sample size
within collapsed post-strata. We have also assumed
independence between block-clusters.

Note that this approach is taken because the task
of completely modeling the individual responses in
lieu of correlation within clusters, and the effect
of the sample design is daunting. Also, assuming
asymptotic Normality for each component is not ap-
propriate since the sample sizes in many cases are
too small. Although there are 521 LCOs out of 540
that have some data, data is needed at the LCO by
e-sample and p-sample post-strata level in order to
account for both the original post-strata effects and
LCO effects. There are 125,212 of these e-sample
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cells and 46,059 of these p-sample cells with non-
zero sample sizes. These e-sample cells have sample
sizes that range between 1 and 610, 25% have only
a sample of one, 50% have a sample of 3 or less and
75% have a sample size of 6 or less. These p-sample
cells have sample sizes that range between 1 and 647,
25% have only a sample of 2, 50% have a sample of
6 or less and 75% have a sample size of 16 or less.

5. Random Effect Model

Many, if not all, of the parameters, θCEik and θMik

will not have enough sample size to provide esti-
mates to assess the variability across LCOs within
post-strata. In order to assess the small area vari-
ation, random effects models are used. Within an
LCO, k, by e-sample post-strata cell, i, and p-sample
post-strata cell, j, we specify the following model as:

θCEik = βCEi + µCEk + αCEik

θMjk = βMj + µMk + αMjk (3)

The random effects are assumed to be normally
distributed, with unknown variances that will be
estimated from the data. Specifically, defining
(µCEk, µMk)=µ

k
, the LCO random effects are given

the distribution:

µk ∼ N (0, Σ) (4)

The terms, αCEik and αMjk are added to represent
model error that may be differentially present within
post-strata cells. Although adding these terms will
not account for all modeling error (modeling at the
individual level would be needed), these terms are
added as a way to assess possible future work where
more modeling may be needed. Specifically, the
model errors are given the distribution:

αCEik ∼ N (0, γ2
ce(i))

αMjk ∼ N (0, γ2
cp(j)) (5)

where ce(i) collapses the original 525 e-sample post-
strata into 11 cells and cp(j) collapses the original
480 p-sample cells into 8, (specified in Appendix
A). As summarized in section 6., there is usually
very little sample available to model variance com-
ponents at the LCO by post-strata level. The orig-
inal 525 e-sample post-strata and the original 480
p-sample post-strata are still incorporated into this
model as fixed effects, in order to evaluate the syn-
thetic model.

If a model were used to produce the Revision II
estimates, it could be based on the assumption that
θCEik=βCEi and that θMj=βMjk, i.e. post-strata
are homogeneous across LCOs.

6. Estimation and Inference

We use a Bayesian approach with non-informative
priors to assess the variance components γ2

ce
, γ2

cp

and Σ.
The likelihood component includes both the

Scaled Pseudo-likelihood of (2)described in sections
and and the random effects distributions specified in
(4) and (5). These distributions, combined together,
are proportional to:

∏

k

(∏

i

p
mCE,i,k

(CE,i,k)(1 − p(CE,i,k))nCE,i,k−mCE,i,k

×
∏

j

p
mM,j,k

(M,j,k)(1 − p(M,j,k))nM,j,k−mM,j,k (6)

×|Σ|−1
2 e−

1
2 µ

′
kΣ−1µk

×
∏

i

γ−1
ce(i)e

− 1
2 α2

CEik/γ2
ce(i)

∏

j

γ−1
cp(j)e

− 1
2 α2

Mjk/γ2
M(j)




The aim of small area estimation is to provide esti-
mates that include the effects: µ

k
, αCEik and αMjk.

We will use MCMC methods to obtain their pos-
terior distribution and, in turn, construct estimated
coverage rates based on the posterior distribution of:

ˆCCFk =

∑
i,j CenijkPDDijPCEi/PMj∑

i,j Cenijk
, (7)

where PCEi and PMj are functions of the parame-
ters βCEi, µCEk, αCEik, θMjk, βMj , µMk and αMjk.
(see formulas (1) and (3)). The joint posterior dis-
tribution of these parameters, along with Σ and the
γ2

ce(i)’s and γ2
cp(j)’s, is intractable but realizations

from the joint posterior were obtained via MCMC
methods and inferences were made based on numer-
ical methods.

The prior distribution of each β is specified as an
improper distribution consisting of independent uni-
form, essentially over the entire real line. We follow
Gelman’s advice (Gelman 2005) and use uniform pri-
ors on the square root of all variance parameters. A
uniform prior between -1 and 1 was used for the cor-
relation coefficient of Σ.

7. Results

All estimates are based on MCMC moments. Using
two different starting values for the hyper parame-
ters, the MCMC appeared to converge to a station-
ary distribution before the first hundred iterations.
As a conservative measure, the first 500 iterations
were discarded. A total of 40,000 iterations were
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run, each, to obtain estimates for the random effects
model and for the synthetic model.

The following two figures summarize the variance
component estimates using box plot with endpoints
at the 5% and 95% quantiles. Figure 1 provides a
summary of the LCO random effects and Figure 2
provides a summary of the model error random ef-
fects. As can be seen, although the variance compo-
nents all indicate a positive effect, the model errors
are consistently larger than the LCO effect by more
than an order of magnitude. A simple explanation
of a single ”LCO effect”, in addition to the post-
strata effects, does not look possible in light of these
results. In addition, the covariance term of the LCO
effect did not appear to explain any systematic LCO
error between the p-and e-sample.

Figure 1: Summary of Posterior Distribution of
LCO Error Covariance Components
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Figure 2: Summary of Posterior Distribution of
Model Error Variance Components
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The Coverage rate, as seen in (7), is a non-linear
function of the Post-strata parameters and the ran-
dom effects. One way to examine the influence of
the components of (7) is to linearize it, in a Taylor
series. Expanding around the prior mean of each

Table 1: Summary of Post-Strata Variability and
Average Model Error Variability

Post-Strata Average Model
Variability Error Variability

e-sample 0.585 0.361
p-sample 0.395 0.365

random effect around its prior mean and each post-
strata around their respective average e-sample and
average p-sample post strata average one has a lin-
ear approximation for the post-strata and random
effects.

Table 1 compares the variability of the linearized
post-strata parameters with the variability of the
model-errors (LCO effects were not evaluated due
to their relatively small size). Both terms appear to
contribute equally to the variability of the LCO cov-
erage rate, indicating that the errors not accounted
for by post-strata terms may be of equal magnitude
as those accounted for. However, disentangling the
relationship between the post-strata parameters and
the model errors needs to be accomplished before
any conclusive statements are made.

Another evaluation of the random effect model on
coverage estimates was made by generating values
from the posterior distribution of (7) based on the
posterior distribution of the parameters from the
two models in question. The posterior mean was
estimated from the synthetic model, the posterior
distribution of the coverage estimates, based on the
random effects model, was used to compare how far
off the estimates based on the synthetic model was
from the random effects model. Note that inference
is only on the 521 LCOs with sample. The nineteen
other LCOs are small, containing a total of forty-six
census records.

Figure 3 exhibits a wide range of differences. How-
ever as the 90% probability intervals (based on the
shortest, contiguous quantile intervals) indicate in
Figure 4, there is quite a lot of error involved. There
is still evidence that LCO coverage rates should vary
more than indicated by the synthetic model. There
were 28 of 521 with intervals that did not cover zero,
possibly a chance occurrence. Using a simultane-
ous rectangular confidence region for all 521 differ-
ences, however, we can still state that one LCO inter-
val does not include zero. The confidence intervals
are large, indicating that our goal of appending a
random effects model to an already large, synthetic
model, may not have enough data to draw precise
inference about LCO coverage. Another feature of
Figure 4 is the fact that the length of the coverage
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intervals are only mildly attenuated by sample size,
indicating a more complex relationship between the
precision of the model components.

Figure 3: Random Effects Model Estimate of Cov-
erage Error: Random Effect Model Estimate - Syn-
thetic Model Estimate
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Figure 4: 95% probability intervals of the differ-
ences
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8. Conclusions

An overall LCO effect did not seem important (based
on its estimated variance component) while, sur-
prisingly, individual LCO by grouped post-strata ef-
fects exhibited variability comparable to the vari-
ability between post-strata. One unanswered ques-
tion is whether the collapsed-post-strata random ef-
fects represent extra small area effect or just repre-
sent an attempt of the random effect model to re-
verse bias caused by the synthetic assumption. Fur-

ther modeling and reduction of post-strata along
with a random effects model may help clear up this
question. Another question is whether the collapsed
post-strata by LCO effects are, themselves, hetero-
geneous. Answering this last question through data-
analysis may become problematic due to small sam-
ple size but, may not be an issue, if a simpler fixed
effect model can be shown to replace the current
post-strata.

Based on the correctness of the random effects
model, it appears that there may be local area effects
that are not captured by the synthetic model, as evi-
denced by estimates of relatively large variance com-
ponents for LCO by post-strata effects. However,
based on the random effects model used, the confi-
dence intervals surrounding small area estimates of
LCO coverage are relatively large and do not usu-
ally provide for improved prediction of coverage. As
intended, this project used random effects to supple-
ment a large fixed-effects model in order to assess the
synthetic estimates. If alternative estimates of cov-
erage for small areas are desired, other models could
be considered to try to increase overall precision. For
example, evaluation of the estimated LCO effects
from this project can be used to try to assess other,
perhaps more, appropriate levels of geographic vari-
ability. The use of fewer fixed effects and further
modeling using covariates at various geographic lev-
els (e.g. the LCO level) could be attempted. In
addition, more use of statistical modeling principles
could be employed. For example, both phase one
and phase two design strata could be considered in
the model, with a simple multinomial model used to
predict the unknown phase two strata identifiers in
the population. In addition, modeling correct enu-
meration as well as e-sample and p-sample captures
in a way that more faithfully mirrors the actual pro-
cess should provide more efficient estimates. Lastly,
the within small area scale factors computed using a
bootstrap could be based on first conditioning on all
covariates in the model, reducing their attenuating
effect.

In summary, the use of the random effect model
demonstrates that there are important sources of lo-
cal variation that the synthetic model does not cap-
ture (see Figure 2). However, the resulting LCO
estimates of coverage were not of good enough pre-
cision to strongly argue a change from synthetic (see
Figure 4). Future work, will concentrate on using
less conservative sample design corrections (to im-
prove precision) and the use of more parsimonious
fixed-effects models.
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9. Appendix A

The e-sample post-strata were collapsed into 11
groups. This is accomplished by collapsing Tenure,
Age, Sex, Date of Return and Household Size cat-
egories. In addition, the Race/Hispanic Origin do-
mains1 used consisted of: in or out of Domain 1:
“American Indian or Alaska Native on Reservation”,
and in or out of Domain 7: “Non-Hispanic or Some
other Race”. Note that the category “Nuclear” de-
notes persons in housing units consisting only of the
householder along with spouse or own children (17 or
younger). “Mailback” (MB) denotes the procedure
in which census forms are returned.

Codes for collapsed e-sample post-strata
Nuclear Not Nuclear

proxy domain MB non-MB MB MB
yes 1-7 11
no 1 10 9
no 2-6 8 7 6 5
no 7 4 3 2 1

Codes for collapsed p-sample post-strata
Age ≥ 18 Age < 18

domain not owner owner not owner owner
1-6 19 17 18 16
7 15 13 14 12
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