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Abstract 
 
Survey data collection from volunteer Web panels is 
growing in popularity. While this practice has obvious 
advantages in terms of cost, flexibility, and speed, esti-
mates from such data for characteristics of the general 
population may be seriously biased due to low web 
penetration in the general population, nonprobability 
samples, and high nonresponse rates. The propensity 
score adjustment was introduced as a possible solution 
to the selection bias in observational studies. Its 
modification, propensity score weighting using a 
reference survey, has been suggested as a remedy of 
problems in volunteer panel web surveys. We can de-
rive a propensity score weighted estimator that is less 
biased, if not unbiased, of the parameter of interest 
under certain model assumptions. However, there is no 
evident solution for its variance estimation. In the pre-
sent study, simple variance estimators are compared: 
(1) the estimator applicable under poststratification, (2) 
a model-based estimator, and (3) the jackknife estima-
tor. The study focuses on the performance of the 
estimators in a simulation designed from a real web 
survey. 
 
Keywords: Non-probability sampling, Variance 
estimation, Simulation. 
 
 

1. Introduction 
 
Propensity score adjustment has been introduced as a 
possible solution of selection bias in observational 
studies (Rosenbaum and Rubin 1983, 1984, 
D’Agostino and Rubin 2000). Its modification, propen-
sity score weighting using a reference survey, has been 
suggested as a remedy of problems in volunteer panel 
Web surveys (Terhanian et al. 2001). The propensity 
score weighted estimator is less biased, if not unbiased, 
of the parameter of interest, under certain model 
assumptions. A remaining problem, however, is to 
estimate its variance. In this paper, some variance 
estimation approaches are compared through a 
simulation, designed to imitate a real application. It is 

based on data from the 2003 Michigan Behavioral Risk 
Factor Surveillance System (BRFSS), and Web 
samples are drawn with the same allocation over key 
demographic variables as respondents in a Harris Inter-
active Web survey.  As measures of comparison we 
calculate the relative biases of the different variance 
estimators, as well as the coverage rate associated with 
each of them. 
The propensity score adjusted point estimator is intro-
duced in sec. 2 and the different variance estimators in 
sec. 3. In sec. 4, the simulation design is presented and 
the simulation results analyzed. Finally, in sec. 5, some 
conclusions are drawn. 
 

2. A Propensity Score Estimator 
 
Let yk define a random study variable associated with 
individual k included in the general population U of 
size N (the actual yk is taken as a realization of this 
random variable). The variables y1,...,yN are regarded 
as independently and identically distributed with a 
common mean µ. According to general properties of a 
random sample, the expectation of the mean 

Nyy
U kU /∑=  is then equal to µ. The inference prob-

lem is to estimate µ from a survey relying on two 
samples: a nonrandom Web sample and a probability 
sample. The Web sample, sW, constitutes the greater 
part of the total sample, while the probability sample, 
sP, is small and observed for the sole purpose of aiding 
estimation. The sample sP is selected by simple random 
sampling (SI) from U, whereas sW is selected from a 
volunteer Web panel, UW ( )UUW ⊂ . Whether individ-

ual Uk ∈  is included in the Web panel or not is 
indicated by the random variable zk:  zk =1 if WUk ∈ , 
else zk =0. The sizes of sW, sP and UW are denoted nW, 
nP and NW, respectively. The size of the total sample 

PW sss ∪=  is PW nnn += .  
 
We restrict attention to the following estimation ap-
proach. Let xk denote the value of a vector of 
covariates x associated with individual Uk ∈ . The 
(unknown) propensity score of individual k is defined 
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as ( ) ( )kkk ze xx 1Pr == . A regression model for ( )ke x  

as a function of xk is formulated and used to estimate 
the propensity scores from s. Then, s is divided into H 
classes, s1,…,sh,…,sH of sizes n1,…,nh,…,nH, by simi-
lar estimated propensity scores (based on Cochran, 
1968, the number of classes is often set to five.) The 
aim of the stratification is to create classes within 
which yk and zk are independent. For h=1,...,H, the 
intersections hWWh sss ∩=  of size nWh and hPPh sss ∩=  
of size nPh are defined, as well as the corresponding 
vectors ( )WHWhWW nnnn ,...,,....,1=  and 

( )PHPhPP nnnn ,...,,....,1= . Let PPhh nnd =  and 

Whs ks nyy
Wh

Wh
/∑= . A propensity score weighted 

estimator of µ, similar to the weighting cell estimator 
in Oh and Scheuren (1983, eqn. (21)) designed for 
nonresponse adjustment, is given by 
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where each inverse phi is the product of a ‘base 
weight’ bk and an ‘adjustment weight’ ah:  
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(Lee, 2004, sec. 6.2). Note that the base weight would 
be a proper design weight if sW had been an SI sample 
from U.  
 
Although our paper is strictly concerned with the 
estimator in eqn. (1), alternative uses of propensity 
scores certainly exist. In particular, as suggested by 
Cassel et al. (1983) for nonresponse adjustment, in-
verses of estimated propensity scores can be used to 
weight observations directly. The propensity score 
estimator used by Beissel-Durrant and Skinner (2004) 
for measurement error adjustment is constructed in this 
manner. Pros and cons of direct weighting by inverse 
estimated propensity scores (for nonresponse adjust-
ment) are discussed in Little (1986, p. 146) and Little 
and Rubin (1987, p. 58). Their objections to the ap-
proach include that it may produce an estimator with 
extremely high variance and with heavy reliance on the 
model assumptions. 
 
3. Variance Estimation Approaches 
 
In this section, some different approaches to estimation 
of the variance of PSµ̂  are presented. Later, in sec-
tion 4, their behavior will be studied in a simulation. 

The variance estimator treated in section 3.1 is used in 
finite population sampling, whereas the one treated in 
section 3.2 is derived through statistical modeling.  
Both are fairly easy to compute. In section 3.3, we con-
sider variance estimation by a re-sampling method, the 
jackknife (JK) method, which computationally is much 
more demanding.  
 
3.1 Poststratification  
 
A straight-forward way of estimating the variance of 

PSµ̂  is the following. As in finite population sampling, 
look upon the yk’s as fixed values. Also view the 
stratification by propensity scores as a way of 
identifying fix strata (of fix but unknown sizes 
N1,…,Nh) in the population. In the estimation, use the 
adjusted first and second inclusion probabilities 
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Use of Result 7.6.1 in Särndal et al. (1992) together 
with *

hkπ  and *

hklπ  produces a poststratified point 
estimator of a finite population mean: 
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and a corresponding variance estimator  
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where ( ) ( )1/
22 −−=∑ Whs skWh nyys

Wh
Wh

. Derivations of 

eqn. (3)-(4) are given in Appendix. The stratum 
proportions Nh/N in the formulas are unknown but may 

be estimated by dh. Then, PS
ˆˆ µ=Uy . As a small 

simplification, we omit the finite population correction 
in (4) and restrict attention to the variance estimator  
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Eqn. (5) would simplify further if s was divided into 
strata of equal sizes in terms of nPh.  
 
3.2 A Model-Based Approach 
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In Isaksson et al. (2004), the yk’s are looked upon as 
random variables. A variance estimator is derived by 
use of the following statistical models for yk and nP: 
 
• Conditional on ( )kxe , the study variable values yk 

for hsk ∈ , h=1,...,H, are iid random variables with 

expectation hµ  variance 2

hσ .  

• Each individual Psk ∈  is independently assigned 
membership in one of H classes. For each individ-
ual, the probability of being assigned to class h is 
Dh. Thus, nP has a multinomial distribution with nP 
trials, H possible outcomes, and cell probabilities 
D1,...,Dh,…,DH.  

 
It is further assumed that 

Whsy  and dh (h=1,...,H) are 

independent. Note that the statistical properties of nW  

are not modeled – instead, all derivations are condi-
tioned on nW. Derivation of the model variance of PSµ̂ , 
and subsequent replacement of unknown model 
parameters included in the variance expression with 
their sample analogues, results in the following vari-
ance estimator: 
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Since the first term in eqn. (6) can not be negative, for 

a given sample, the MODV̂  estimate is always at least as 

large as the POSTV̂  estimate. 
 
3.3 Jackknife 
 
An estimation approach of different nature than those 
treated in sections 3.1-3.2 is the subsampling replica-
tion technique. We restrict our attention here to one 
such technique; the JK. Our application of the method 
starts with a random division of the ‘parent sample’ (in 
our case: the Web sample) into groups. Let g denote 
the desired number of groups. As described in Wolter 
(1985, sec. 2.4.1 (i)), the first random group (RG) is 
obtained by drawing an SI sample of size [ ]gnm W /=  
from sW; the second RG by drawing an SI sample of 
size m from the remaining nW-m units in the parent 
sample; and so on. (If gnW /  is not an integer, the 

excess units are ignored.) From Wolter (1985, eqn. 
(4.3.5)), the corresponding JK estimator of variance is 
given by  
 

( )( )2
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where ( )αµPS

ˆ  is an estimator of the same functional 

form as PSµ̂ , only with group α  of observations omit-
ted.  
 

4. Simulation 
 
How do the variance estimators presented in sec. 3 
behave in practice? In order to gain some insights 
about this, we perform a simulation.  
 
4.1. Design 
 
The population and the sampling procedure presented 
in this section equal those used in Case Study II in Lee 
(2004, ch. 7).  
 
Population The simulation is based on data from 
BRFSS: a survey on risk behaviors linked to diseases 
and injuries among adults (aged 18 years and older) 
who live in households. Among the study variables, we 
find tobacco use, health care coverage, HIV/AIDS 
knowledge and prevention, physical activity, and fruit 
and vegetable consumption. The survey is a collabora-
tive project of the Centers for Disease Control and 
Prevention and the U.S. states and territories. In each 
participating state, a probability sample of adults in 
households is selected and observed through computer-
assisted telephone interviewing. The collected data are 
used, among other things, for measuring progress to-
ward state and national health objectives. For 
additional information on the BRFSS, see its home-
page www.cdc.gov/brfss/.  
In our application, we restrict attention to BRFSS data 
from 2003 and the state of Michigan. In this state, 
respondents are selected by a list-assisted RDD method 
from strata defined by phone bank density and 
probability of phone number being listed (Cook and 
Rafferty, 2004).  The original data set contains 3,551 
individuals. We use however only the 3,410 cases with 
complete data on the variables Web access ownership, 
age, gender, race and education. From this data set, by 
sampling with replacement, our BRFSS pseudo-
population U of size N=20,000 is created.   
The subset of the pseudo-population containing 
individuals who have Web access at home constitute 
our Web pseudo-population UW. The size of UW is NW 
=12,674.  
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Sampling In each simulation round, we draw a refer-
ence sample by SI from U, as well as a sample 
mimicking a real Harris Interactive volunteer Web 
panel sample 1  from UW. More precisely, the Web 
sample is selected by stratified SI from UW, with 
stratification by age, gender, education and race, and 
with the same allocation over strata as the Harris 
sample (for details on the allocation, see Lee, 2004, 
table 7.6). Let the reference sample and the Web 
sample selected in iteration i, i=1,…,I,  be denoted 

( )iPs  (of size ( )iPn ) and ( )iWs  (of size ( )iWn ), respec-

tively. In practice, we use ( ) 500=iPn , ( ) 1500=iWn  and 

I=1000. 
 
For the JK method, in each iteration, the Web sample 
is randomly divided into g=30 groups. As the number 
of groups increases, so does the computer time, while 
the precision of the estimator is expected to improve.  
 
4.2. Estimation 
 
As described in sec. 2, as part of the propensity score 
estimation approach, a regression model for ( )ke x  is 
formulated and used to estimate the propensity scores 
from s. We formulate a standard logistic regression 
model for ( )ke x  as a function of xk (Neter et al. 1996, 

eqn. 14.37) in which values of zk ( )Uk ∈  are 
independent Bernoulli random variables having 
conditional expected values  
 

( ) ( )
( )k

k
ke

x
x

x
β

β
′+

′
=

exp1

exp
   (8) 

 
where ( )[ ]110 ,...,, −=′

pββββ  and ( )[ ]kpkk xx ,11 ,...,,1 −=′x . 

The expected values ( )ke x  are then estimated by 
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exp1
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where b is a vector of maximum likelihood estimates 
of ( )110 ,...,, −pβββ .  

 
It is not obvious which covariates that shall be in-
cluded in the x-vector. At our disposal, we have 30 
covariates (see Lee, 2004, Table 7.7): some 
continuous, others categorical. Among the 30 are the 
variables we use for stratification when the Web 
sample is selected (age, gender, education and race). 

                                                 
1 Obtained via personal communication with Matthias 
Schonlau. 

As in Case Study II in Lee (2004, ch. 7), we try five 
different compositions of the x-vector: 
 
• M1: Only the stratification variables 
• M2: All covariates  
• M3: Covariates with p-value not exceeding .2  
• M4: All covariates except the stratification vari-

ables 
• M5: Covariates with p-value not exceeding .2 

which are not stratification variables   
 
The estimated propensity scores are used to divide s 
into classes. More precisely, the sample is sorted in 
ascending order by estimated propensity score and then 
divided into five classes of equal size in terms of nh. 
The propensity score estimator of µ is then calculated 
for three different study variables: 
 
• y1: High blood pressure (1=yes, 0=no). Question 

wording: “Have you ever been told by a doctor, 
nurse or other health professional that you have 
high blood pressure?”) 

• y2: Has smoked 100 cigarettes (1=yes, 0=no). 
Question wording: “Have you smoked at least 100 
cigarettes in your entire life?”) 

• y3: Does vigorous physical activities (1=yes, 
0=no). Question wording: “Now thinking about 
the vigorous physical activities you [fill in] in a 
usual week, do you do vigorous activities for at 
least 10 minutes at a time, such as running aero-
bics, heavy yard work, or anything else that causes 
large increase in breathing or hear rate?” 

 
4.3. Simulation Output 
 
For an arbitrary y-variable, and for a given iteration i 
(i=1,…,I), let the mean of the reference sample  be 

denoted 
( ) ( )

( )iPs ks nyy
iP

iP
/∑=  and the mean of the Web 

sample be denoted 
( ) ( )

( )iWs ks nyy
iW

iW
/∑= . The propen-

sity score adjusted estimator of the mean, based on x-
vector Mv (v=1,…,5), is denoted ( )ivMPS,µ̂ . In the 

simulation, for an arbitrary y-variable, the relative bias 
RB of 

Ws
y  is approximated by 

 

( )
U

Us

s y

yy
yRB W

W

−
=    (10) 

 

where 
Ws

y  is the average (over I iterations) of the ob-

served Web sample means 
( )

( )Iyy
I

i ss iWW
/

1∑ =
= . In the 

same manner, the relative bias of the propensity score 
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adjusted estimator vMPS,µ̂  (v=1,…,5) is approximated 

by 
 

( )
U

Uv

v y

y
RB

−
= MPS,

MPS,

ˆ
ˆ

µ
µ    (11) 

 

where vMPS,µ̂  is the average (over I iterations) of the 

observed propensity score adjusted estimates based on 

x-vector Mv ( )( )I
I

i ivv /ˆˆ
1 MPS,MPS, ∑ =

= µµ . 

 
Consider the variance estimation approaches presented 

in sec. 3. Let avV̂  denote the variance estimator under 
approach a (a=POST, MOD, JK) based on x-vector Mv 
(v=1,…,5). In the simulation, the observed value on 

avV̂  for an iteration i (i=1,…,I) is denoted ( )iavV̂ . The 

relative bias of avV̂  as estimator of the true variance of 

vMPS,µ̂  is approximated by 

 

( ) ( )
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VV
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µ
µ−

=    (12) 

 

where ( ) I
I

i ivv /ˆˆ
1 M,PSM,PS ∑ =

= µµ ; ( ) IVV
I

i iavav /ˆˆ
1∑ =

=  and 

( ) ( )( ) IV
I

i vivv /ˆˆˆ
1

2

MPS,MPS,MPS, ∑ =
−= µµµ .   

 
The coverage rate associated with approach a and x-
vector Mv is calculated as 
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=
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i
iI
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where  
 

( ) ( ) ( ) ( )
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⎪
⎨
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                                                                 otherwise0

ˆ96.1 ˆ96.1 if1 MPS,MPS, iaviviaviv
i

VV µµµλ

 
In each iteration, 1.96 from the normal distribution 
table is used for calculating the confidence limits. 
Thus, our intended coverage rate is 95 per cent.  
 
4.4. Results 
 
Even though this paper is focused on variance estima-
tion, we start by taking a brief look at the bias of the 
propensity score point estimator. The relative biases of 
the Web sample mean and of the variations of PSµ̂  are 
presented in Table 1. We see that the propensity score 

adjustment successfully removes a substantial part of 
the bias of the unweighted Web sample mean. For 
different study variables, different choices of x-vectors 
appear to be preferable from a bias reduction point of 
view. Generally speaking, however, the vectors M1, 
M2 and perhaps M3 seem to best at removing bias. 
 

 Study variable Point 
estimator v y1 y2 y3 

Wsy
 - -13.7 -10.6 17.6 

PSµ̂
 1 -0.1 -5.7 8.9 

PSµ̂
 2 -4.7 -5.3 5.9 

PSµ̂
 3 -10.0 -5.0 6.0 

PSµ̂
 4 -9.5 -8.6 5.0 

PSµ̂
 5 -7.8 -8.4 8.8 

Table 1: Relative bias in per cent for various combina-
tions of point estimator and x-vector for study 
variables y1-y3. The lowest absolute relative bias for 
each y-variable is highlighted. 
 
In Table 2, the relative biases of different variance esti-
mators are presented. We see that throughout, the 
relative bias of the JK estimator is very large. Typi-
cally, use of the x-vector M4 or M5 gives the smallest 
bias. Using the ‘best’ choice of x-vector, the estimator 

MODV̂  produces the lowest absolute relative bias for 

variable y1 and y3; POSTV̂  the lowest absolute relative 
bias for variable y2.  
 

 a Study 
variable v POST MOD JK 
y1 1 -16.8 -14.6 78.5 
 2 -8.5 -7.6 49.5 
 3 -5.4 -4.8 44.3 
 4 -2.7 -1.5 20.2 
 5 1.6 3.3 18.0 
y2 1 -3.9 -2.4 70.6 
 2 -5.2 -4.3 58.2 
 3 -4.1 -3.1 46.9 
 4 0.9 2.0 28.0 
 5 0.6 1.8 18.7 
y3 1 -4.3 -2.7 58.6 
 2 -10.6 -9.1 48.4 
 3 -5.7 -4.0 43.7 
 4 -8.8 -3.8 20.0 
 5 -4.4 -0.8 19.2 

Table 2: Relative bias in per cent for different 
combinations of variance estimators and x-vectors, for 
study variables y1-y3. The lowest absolute relative bias 
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for each study variable and variance estimator is high-
lighted. 
 
In Table 3, the actual coverage rates of 95 per cent 
confidence intervals for µ , based on the propensity 
score estimator and the different variance estimators, 
are presented. We see that in almost all cases, the ac-
tual coverage rate is far below 95 per cent. This is 
especially true when x-vector M4 or M5 is used. 
Throughout, the coverage rates for the JK method are 
the largest, and the closes to the desired coverage rate. 
From Table 2, the JK method overestimates the true 
variance. In effect, the JK confidence intervals are of-
ten wide enough to embrace the true value even though 
the point estimator is biased.  
 

 a Study 
variable v POST MOD JK 
y1 1 90.9 91.3 96.1 
 2 83.5 84.0 95.2 
 3 60.0 60.1 81.4 
 4 44.4 45.5 59.6 
 5 59.4 60.0 67.5 
y2 1 65.6 67.3 87.7 
 2 68.7 69.3 89.6 
 3 69.7 70.1 86.9 
 4 13.7 14.2 25.0 
 5 13.1 13.7 20.8 
y3 1 50.2 52.0 80.0 
 2 70.2 70.8 89.7 
 3 67.5 67.6 86.5 
 4 64.1 64.7 75.4 
 5 25.6 26.1 33.5 

Table 3: Coverage rate in per cent for various 
combinations of estimation approach and x-vector, for 
study variables y1-y3.  
 

5. Conclusions and Ideas for Future Work 
 
Our simulation results suggest, not very surprisingly, 
that the propensity score estimator represents a less 
biased alternative to the Web sample mean as estima-
tor of the population mean. The choice of x-vector 
seems to really matter: in our study, the x-vectors M1 
and M2 reduced the bias of the propensity score point 
estimator, whereas M4 and M5 reduced the biases of 
the suggested variance estimators. The use of the last-
mentioned x-vectors, however, also gave far too low 
coverage rates. The JK variance estimator stood out by 
severely overestimating the true variance, but also by 
producing coverage rates that were closest to the de-
sired 95 per cent level. 
 

Some possible expansions of our study are the inclu-
sion of continuous study variables and the use of 
bootstrap for variance estimation.  
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Appendix: Derivations of Poststratification 

Formulas  
 
We start with eqn. (3), which is derived from Särndal 
et al. (1992, eqn. (7.6.1)): 
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We now turn to eqn. (4), which is derived from Särn-
dal et al. (1992, eqn. (7.2.11)) by setting, for h=1,…,H,  
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We then have: 
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where the last approximate equality holds since 
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