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1. Introduction

The problem of missing data arising from nonre-
sponse is common in most surveys and becomes a
serious issue as the nonresponse rate increases (De
Heer 1999). When survey data are presented in a
two-way categorical table, they include fully classi-
fied counts, partially classified counts, and unclassi-
fied counts. The partially classified counts are often
presented as row and column supplemental margins
and called them item nonresponses, whereas the un-
classified counts are presented in total, called unit
nonresponses.

In the Buckeye State Poll (BSP) (Chen and
Stasny, 2003) for U.S. Senator, Ohio 1998, one cat-
egory involves the candidate preference {candidates
A,B,C, or undecided) and the other category is the
likelihood of voting (likely to vote, not likely to vote,
and undecided), from which one can estimate the
true support for each candidate. This poll was con-
ducted prior to the November 1998 race and the May
1999 race. The goal is how to impute the individuals
responding to “undecided” and to utilize the infor-
mation from the successive results of polls to predict
the actual election result.

Throughout this paper, we define two-way cate-
gorical table when the two categorical response vari-
able are allowed to be missing, whereas, if only one
response variable has missing, then we define this
case as one-way categorical table. In this paper, we
only consider a two-way categorical table where the
two categorical response variables are allowed to be
missing, because the extension to more than two cat-
egorical variables is straightforward.

Nonresponse can be further distinguished by three
types of nonresponses (Little and Rubin 1987): miss-
ing completely at random (MCAR) which means
that the probability of missing on a variable of inter-
est is independent of all variables including itself in
the survey; missing at random (MAR) in which the
nonresponse depends only on observed data; non-
ignorable in which nonresponse depends on the un-
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observed values. Any model with MCAR or MAR
is called ignorable nonresponse model.

When data are assumed as MCAR, cases with
missing data can be removed in likelihood inferences
(Little and Rubin 1987). However, when the non-
respondents follow a different response mechanism
from the respondents (such as a MAR and nonignor-
able model), discarding the incomplete cases or mis-
specifying nonresponse mechanism leads to larger
variances and biases in estimation (Chen 1972, Park
and Brown 1994).

When the response mechanism obeys nonignor-
able nonresponse in categorical data analysis, the
maximum likelihood estimation often yields bound-
ary solutions where the probability of nonresponse
is estimated to be zero in some cells of the table.
In such a case the ML estimate is not uniquely de-
termined and may be unstable (Park and Brown
1994). Furthermore, as indicated in Baker and Laird
(1988), the boundary solution yields a positive de-
viance G? even for saturated or over-parameterized
loglinear models.

The conditions that the maximum likelihood
(ML) suffers from the boundary solution have been
proposed in one-way categorical table (Baker and
Laird 1988, Michels and Molenbergs 1997). Geo-
metric explanation was presented for the boundary
solution of the maximum likelihood (Smith, Skinner
and Clarke 1999, Clark 2002). Baker, Rosenberger
and Dersimonian (1992) presented close forms of ML
estimates for incomplete two-way categorical tables
using loglinear model. Tn particular, they provided
a sufficient and necessary condition under which the
ML estimates fall in the boundary solution in two-
way categorical tables.

Park and Brown(1994) and Park (1998) proposed
a Bayesian approach to avoid the boundary solu-
tion problem in a one-way categorical table. They
used a loglinear model to link the cell expectation
to relevant covariates and imposed a prior on the
parameters related to nonresponse. The prior de-
pends only on information of respondents. How-
ever, this respondent-driven prior contradicts to the
fundamental principle that the nonrespondents have
different response pattern from those of respondents
in the nonignorable nonresponse model. We extend
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Park and Brown and Park’s empirical Bayesian ap-
proach (1994, 1998) not only to a two-way categor-
ical table but also to the prior depending on infor-
mation from both respondent and nonrespondent.
This prior can reflect different response patterns
between respondents and nonrespondents and pro-
duces smaller mean squared errors and biases than
those of respondent-dependent prior.

Summarizing all of the above discussions, we are
focusing on incomplete two-way categorical tables
with nonignorable nonresponse and on Bayesian ap-
proach in estimating model parameters of loglinear
models. Throughout this paper, we assume no ex-
planatory variable (which is completely observed) in
our analysis without loss of generality because we
could include it in the loglinear model as a covari-
ate.

The remainder of this paper is divided into four
sections. In Section 2, we present the Bayesian mod-
els and introduce five types of Bayesian approaches
to overcome the boundary solution of the ML meth-
ods. We also present generalized expectation maxi-
mization (EM) algorithm to estimate the cell prob-
ability specified by the loglinear models. Tn section
3, we use eight empirical data sets from the Buck-
eye State Poll (BSP) to demonstrate the impact of
the boundary solution of the MT. and to compare
the five types of Bayesian approaches to the actual
results of elections. Section 4 includes some conclud-
ing remarks and future works.

2. Bayesian models

We describe five Bayesian approaches to accommo-
date nonignorable nonresponse in a two-way cate-
gorical table. Let X; and X» be response variables
indexed by I and J categories, respectively. We also
let B = 1 when X is observed and R; = 2 when X,
is missing. Similarly, Ry = 1 when X5 is observed
and Ry = 2 when X3 is missing. Then the full array
of X1, X5, Ry, and R, constructs a I x J x 2 x 2 cat-
egorical table in which we have completely classified
counts, partially classified counts, and unclassified
counts. To distinguish these three types of obser-
vations, let y;;4; be the count belonging to the ith
category of X7, the jth category of X5, the kth value
of R1, and the Ith value of Ry. Thus, y;;11 is used for
completely classified counts, y;112 and y4 o1 for re-
spective column and row supplemental margins, and
Y100 for unclassified counts.

Throughout this chapter, we assume a multino-
mial assumption for the three types of observations

2882

to have the following log likelihood proportional to
Do Yo yign - log(mign) + D yiviz - 10g(Tisi)
i i

+ Zy+j21 log(myj01) + Yayoo - log(myqo2) (1)
J

where Tijkl = P’I“[Xl = i,XQ = j, R1 = k,RQ = l]
and N = Zi’j’k’l Yijr is fixed.

Since this likelihood function involves more pa-
rameters than degrees of freedom available for esti-
mation, we link 7;;z; to relevant covariates by a log-
linear function. It is assumed that no explanatory
variable is available throughout this paper. How-
ever, note that the loglinear model easily incorpo-
rates any explanatory variable in the same way that
it incorporates the categorical variables.

Loglinear model is a tool frequently used for ana-
lyzing incomplete categorical tables with nonignor-
able nonresponse. Let p be the number of param-
eters to be estimated and z;;5; be the p x 1 co-
variate vector for the observation belonging to the
(1,j,k,1)th category. Then the loglinear model can
be written as

logm =73 (2)

where m is the cell expectation. To avoid a
boundary solution of ML in model (1), we im-
pose the Dirichlet priors to the cell probabilities
(7T¢j11, Tij12, Tij21, 7Tij22) as given by

dij11 Sij12 bij21 Sijo2
H]:[Trijll *Tii12 " Tije1 " T2 - (3)
i g

Together with (2), the multinomial distribution of
(1) for observations and the prior distribution of (3)
yield the following log posterior distribution:

lpos = 3 Y yiji1 - (M1 - )
¥

%

+Y yir12-log ( > exp(zijz - 5))
i j

+Y Yo -log <Z exp(zijz1 - 5))
7 i

+ Yiy2z - log (Z > exp(zija: - B))

+ D Siet - (ziju ';)

i,5,k,0

( > exp(ziju ',8)> (4)

.3,k

— (N +0444+) - log
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2.1 EM Algorithm

We maximize the posterior distribution given in (4)
over parameter 3 by the generalized expectation
maximization (GEM) algorithm (Dempster, Laird
and Rubin 1977) with the following E and M steps.
E-step : Using augmented Yij12 given Yi+12, Yijo1
given y4 o1, and y;;02 given yq 400 for i =1,--- .1
and j = 1,---,J, the posterior (4) can be written
as this augmented posterior distribution

o 32 22 (Wi + 6ijin) log(mijin)
+ 32 225 (Wi + Gijiz2) log(mijiz)
+ 225 22 (W21 + Gijo1) log(wijer)
+ >0 22 (Yijaz + Gijaz) log(mijaz).  (5)

To determine the expected augmented log posterior
of (b), we average over missing counts y;j12, ¥ijo1,
Yijo2 conditioning on the current parameter esti-

old
mates, Tk, and observed counts y;i12, y4421, and

Y4220

la.pos

Z Z yzgll + 51]11) log(ﬂull)

old a. pos

+3 > (Eoul yij12|7Tfjkla Yit12] + ij12) log(mijiz)

i

+ Z Z(Eold[yijm w5t Ygor] + 0ijor) log(mijor)

]

+ 3> (Botalyioalmifi, yi+22] + 6ijon) log(mijze). (6)

i
Since ysj12, Yijo1, and yijo2 are multinomial ran-
dom variates conditioned on marginal sum ¥;412,

Y+;21, and Y4409, Tespectively, the conditional ex-
pectations in (6) are given by

i
old _ Swle
Eoa(yijiol i, Yir12) = Yirra—ar—
i+12
old
=y Mi512
= Yit12—7 s
Mir12
Id
mot
old _ 1521
Bota(Ysjor |75, Yi21) = Yrjor —ag—
mija
and
old
E . old _ Mijo2
old(y1j22|7rijklay++22) = Y4227 old
MY tog
M-step : In this step, we maximize the ex-
pected log posterior (6) using the pseudo observa-
. . . meity
tions §ij11 = Yiju1 + Sijirs Yijiz = yi+12m;id12 +
old
dij12, Gy = Yyjo1 old + 0521, and Gy =

old
Yg422 old + di522. We impose the constraints on
22

2883

these pseudo observations so that their marginal
sums are the same as the corresponding marginal
sums of observations:

G4+11 = Y4411, 0412 =
Yit12, 04521 = Yrjo1, and §yi92 = yiyo2. Under
these constraints, the pseudo observations are now

ﬂiﬂl% fork=1andl=1
y;jkl _ ymziﬂ%’:ﬁ fork=1andl=2
yszIM fork=2andl=1
ﬂijm% for k=2andl=2.

Then, the expected log posterior function has the
same form as the likelihood obtained from a four-
way contingency table with fully observed cell counts
Yiik's- Thus, using the iterative re-weighted least
squares (Agresti 2002), we obtain the maximum pos-
terior estimator (MPE) of 8 as follows;

6(t+1) — (ZT"}'tflz)flZT‘A/;Efl,}/(t)7

where () has element 'yi(;zl

= log mz(;-;gl + (Yijh —

m”kl)/m”kl and V; = [diag(m®)]~!. We finally
iterate these E and M-steps until a convergence cri-
terion is achieved.

2.2 Five Types of Bayesian Methods

To complete the EM algorithm, we need to de-
termine the hyper-parameters d;x;’s. We set the
sum of priors Zm"k’l dijks equal to the number of
parameters involved in the loglinear model, p, as
Clogg et al. (1991) did. Under this constraint (i.e.,
Zi%k’l dijk1 = p), we propose five types of priors as
follows. We first allocate 6;5x; for the MPE of myju
to shrink toward the MLE obtained under ignorable
nonresponse. That is, we determine d;;;; depending
only on the respondent counts y;511, Yit12, Y+j21,
and y4422. We call these priors respondent-driven
priors and classify them into two types as below.
The first type of respondent-driven priors is, for

al:=1,...,Jand j=1,...,J,
Sijret = Vi —— Yigit (7)
y++11

where Vi, = p- ﬁ% fork=1,2and 1 =1,2.

On the other hand, the second type of respondent-
driven priors gives no prior on m;;1. That is, The
second type of priors are the same as those of the first
type except d;;11 = 0 for all ¢ and j. In case of one-
way contingency table (i.e., either X or X is fully
observed without missing) and yyy22 = 0, the first
type is reduced to Park (1998), whereas the second
type is reduced to Park and Brown (1994). These
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two types of respondent-driven priors may bring a
controversy because the nonrespondents are usually
assumed to have different response patterns from the
respondents in the nonignorable model. For exam-
ple, favored candidate attitude of nonrespondents
could be different from that of respondents in a pre-
election survey.

Tn order to reflect different response patterns be-
tween the respondent and nonrespondent, we pro-
pose the following third type of priors d;;.; depend-
ing on both respondent’s and nonrespondent’s in-
formation. So 65 is assigned to be proportional
to expected cell frequencies, m” %> where calculated
at the previous iteration. We distinguish this third
type of priors d;;1; from previous priors &z

mOlfl
Vll' ollyd fOI‘kZI,lZI
Myt
m{idy 1 1
R V12' mol]d +ﬁ 5 fOl"kZl,lZQ
++12
Oijht = el
i721 1 1 — —
V21' ?(—l]f)i—m_{_ﬁ 2 fOI'k—Q,l—l
mgig, 1 1
Voo - 22 L = .=z fork=21=2.
m_(_li22 IJ 2 ?

where Vi =p- jj’“ fork=1,2and{=1,2.
[

Therefore, these new pl"lOl"S depend on their re-
spective parameters mfjl,”jl to be estimated in previ-
ous iteration. The main reason we use a weighted
pI"lOI‘S of mfjlzl/milikl and I/IJ on S,’jlg, Sijgl, and
(51]22 is to prevent a boundary solution on m;ji2,
My 21, and myj29, respectively. In addition, pseudo
observations in M-step are also changed: ;511 =

mold
Yij11 + 51;11, Yij12 = Yit12 old + 51]127 Yijo1 =
old old
m m
Ytjo1 oot + Sijot, and fijoo = Yttt + Sijoa-

We also deﬁne the fourth type of prlors by letting
(5”11 = (0 in (8) as we obtained the second type from
the first type.

The last type of priors extend the constant prior
of Clogg et al. (1991) used for one-way categori-
cal table to those for two-way categorical table as
follows.

. 0 ifk=1,1=1
T 2 (&) fork£lorl#£2.
These five types of priors will be compared in the

subsequent two sections using empirical data and
simulation studies.

9)

3. Case Studies

Tn a sample survey for forecasting election outcomes,
the accuracy of election forecasting polls often de-
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pends on how to handle undecide voters who are
likely to vote but not yet decided their preference
of candidate. We compare the five Bayesian meth-
ods with the maximum likelihood estimate (ML)
through the Buckeye State Poll (BSP) data con-
ducted in 1998 by the Center for Survey Research at
the Ohio State University. As competitors, we also
consider two other nonresponse models (i.e., another
ignorable model and another nonignorable model).

The BSP pre-election surveys conducted in Octo-
ber 1998 produced two-way categorical tables with
one category being candidate preference and the
other category being likelihood of voting for the
November 1998 races of Ohio Governor, Attorney-
General, and Treasurer. The BSP survey in April
1999 gives the poll data of three candidates prefer-
ence for the election of Mayor in May 1999. Table
(1) summarizes these four polls and shows substan-
tial number of undecided voters.

(8) For comparison, we consider the following one ig-

norable and two nonignorable nonresponse models.

Model 1 :log(mi;r) = Bo + 33(1 + fBj

+85, + B, + BXIX2 + B Ry
Model 2 : log(m;r) = Bo + Bxl + ﬁxg
+B5, + B, +BY m + BXQR2 + Bglxg + BE, fy»
Model 3 : log(mijr) = Bo + B, + B,

+B%, + Br, + BYiry + BXgRl + 5)(1)(2 + B ks
(10)

Model 1 in (10) is missing completely at random, and
cases with missing data can be ignorable in likeli-
hood inferences. Model 2 and Model 3 are nonignor-
able in which the probability of missing on a variable
depends on itself in Model 2, whereas the probability
in Model 3 depends on the other variable which can
be also not observed. Note that the ML estimates in
Model 1 and Model 3 are not on the boundary of pa-
rameter space as shown by Baker, Rosenberger, and
Dersimonian {1992). Moreover, since the five types
of Bayesian estimates given in the previous section
are almost same as the ML estimates under Model 1
and Model 3, we only present the ML estimates for
these two models.

Denote the MT., estimates under Model 1, Model
2, and Model 3 by IGML, NIGlML, and NIG?ML,
respectively. We also let NIG1gg1, NIGlggs, and
NIGlggs be the Bayesian estimates with priors
dijkr depending on parameter myjr given by (8),
with the same priors as NIG1lgg: except ;11 =0,
and with the constant priors given by (9), respec-
tively. Finally, let NIGlgrs and NIG1lggs be the
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Table 1: Observed data for BSP pre-election surveys

Governor race Attorney-General race

Fisher Taft Others Undecided Montgomery Cordray Undecided
Likely to vote 112 140 23 61 197 82 57
Unlikely to vote 96 108 21 73 161 65 75
Undecided 7 11 1 4 15 4 0

Mayor race Treasurer race

Coleman Teater Espy Undecided Deters Donofrio Undecided
Likely to vote 40 32 25 30 127 119 90
Unlikely to vote 37 47 41 56 127 90 84
Undecided 0 2 1 0 10 7 0

empirical Bayesian estimates with the respondent-
driven priors given by (7) where NIG1lggs has the
same priors as NIG1lggs except 0311 = 0. All of
these N[GlBEl, NIGlBEQ, N[G13E3, N[G13E4,
and NIG1gpgs are obtained under Model 2 given in
(10).

The first table in Table 2 shows the predictions
of elections using only “likely to vote” for the four
races. This table also includes the actual election
results and the occurrence of boundary solutions in
MT. estimates. The second table shows the predic-
tions of elections using both “likely to vote” and
“unlikely to vote” to see what happens if those who
responded to “unlikely to vote” actually vote. Com-
paring the two tables, we may conclude that the
winners for Governor, Attorney-General, and Trea-
surer’s elections are predicted to be unchanged re-
gardless of likelihood of voting, whereas the winner
could be changed in the Mayor’s election if most of
those who are “unlikely to vote” actually vote.

Based on Table 2, we can classify 8 estimates into
two groups: NIGlML, NIGIBEl, NIGIBEQ, and
NIG1ggs consist of one group and the remaining
estimates consists of one group. In the first group,
NIG1gE, is between NIG1lpy and NIGlggs in
which NIGgg> is almost the same as NIGlggs.
All estimates in the second group are almost identi-
cal although NIG1gg4 is barely different from the
second group. As expected, since the priors §;;4; for
NIGggs and NIGggs are defined so that the esti-
mate of m;jx; shrinks toward the ML under ignorable
nonresponse, these two empirical Bayesian estimates
are almost the same as the IG s, and hence have
little advantage over the IG . It is also interesting
that NIG2y1, is exactly the same as IG rp, although
their loglinear models are differently specified.

There is no general criterion whether an ignorable
nonresponse model or a nonignorable nonresponse
model is appropriate. However, as stated in Chen
and Stasny (2003), the assumption of nonignorabil-
ity for nonresponse may be a reasonable assump-
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tion in the Buckeye State Poll study because people
might be reluctant to express their preference for an
unpopular candidate, or their current preferences are
not firm or accurate for the standards of the inter-
view. In this regard, the NIGlggs, NIGlpgs, and
NIG2js1, may not be appropriate because they are
almost the same as the IG s obtained from Model
1 which is an ignorable nonresponse model.

Compared to actual election results, NIG1yp
gives the worst prediction in Governor, Mayor, and
Attorney-General’s elections because the NIG1asy,
lies on boundary solutions, whereas the NIG1uy,
provides the best prediction in the Treasurer’ elec-
tion because it does not lie on a boundary solu-
tion. In Attorney-General’s election, the NIG1gg;
not only predicts the exact actual result but also
is quite different from the other estimates. Since
the NIG1gg; has the priors to reflect different re-
sponse pattern between respondent and nonrespon-
dent, we can infer that the nonrespondents who is
likely to vote but not yet decided their preference
of candidate have quite different preference of can-
didate from the observed preference of candidate by
respondents (i.e., 197 (Montgomery) : 82 (Cordray)
for the respondents likely to vote, while 13 (Mont-
gomery) : 54 (cordray) for the nonrespondents likely
to vote).

4. Concluding Remarks

We investigated Bayesian analysis for incomplete
two-way categorical tables with nonignorable non-
response under which the maximum likelihood esti-
mates often fall in the boundary solution, causing
the ML estimates unstable. To avoid the bound-
ary solution problem, we proposed the five types of
Bayesian methods. These Bayesian methods include
the previous Bayesian models as special cases. The
two among the five Bayesian models were proposed
to reflect different response patterns between respon-
dents and nonrespondents.
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Governor Mayor Attorney-General Treasurer
Fisher Talt Others Coleman Teater Espy Mongomery Cordray Defers Donofirio
Likely to vote only used

NIGlar, 33% 42% 25% 31% 25% 43% 76% 24% 57% 43%
NIGlgrr 37% 45% 17% 36% 33% 30% 63% 37% 53% 47%
NIGlpga2 39% 47% 14% 38% 33% 28% 66% 34% 51% 49%
NIGlpps 39% 47% 14% 38% 34% 29% 66% 34% 52% 48%
NIGlpEa 41% 49% 11% 38% 34% 28% 72% 28% 53% 47%
NIGlpgs 41% 51% 8% 40% 34% 26% 1% 29% 52% 48%
IG . 41% 51% 8% 41% 33% 26% 1% 29% 52% 48%
NIG2pm1 41% 51% 8% 41% 33% 26% 1% 29% 52% 48%
Actnal resnlt 45% 50% 5% 39% 37% 24% 63% 37% 57% 43%

Boundary yes yes yes no

Likely to vote + Unlikely to vote

NIGlar, 33% 39% 28% 25% 6% 9% 7% 23% 60% 40%
NIGlgrr 37% 43% 20% 29% 36% 36% 61% 39% 56% 44%
NIGlpga2 39% 45% 16% 31% 36% 33% 65% 35% 55% 45%
NIGlpps 39% 45% 16% 31% 36% 33% 65% 35% 55% 45%
NIGlgrra 41% 46% 12% 31% 37% 32% 73% 27% 56% 44%
NIGlpEs 42% 49% 9% 33% 37% 31% 1% 29% 55% 45%
IGuL 41% 50% 9% 34% 36% 30% 1% 29% 55% 45%
NIG2pm1 41% 50% 9% 34% 36% 30% 1% 29% 55% 45%

Data analysis showed that these new Bayesian
methods were more reasonable in the sense that non-
ignorable nonrespose mechanisms are more reflected
and close to the actual results.

In this paper, we assumed an incomplete two-way
categorical table without covariates. Therefore, our
work can be extended to a time series of incomplete
multi-way categorical tables with some useful covari-
ates. All of these are our future works.
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