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Abstract

We examine preliminary testing estimators for re-
gression coefficients estimated with data from a com-
plex survey. The ordinary least squares estimator is
a common choice of researchers, but under an in-
formative design, the ordinary least squares estima-
tor is biased. The probability weighted estimator
is consistent but may have a large variance. In a
preliminary testing procedure, we first test for the
importance of weights in estimation. If the null hy-
pothesis is accepted, we use the unweighted estima-
tor. Otherwise we incorporate the design weights
into the estimation procedure. Pretest procedures
we studied use the probability weighted estimator
and alternative design consistent weighted estima-
tor.

KEY WORDS: preliminary testing procedure, infor-
mative design

1 Introduction

In a simple random sample from a population, an
unbiased estimator of the population parameter is
the ordinary least squares estimator, and an estima-
tor of its variance is easy to calculate. However, in
many surveys, the elements enter the sample with
unequal probabilities. In these cases, the sampling
weights commonly are the inverses of the selection
probabilities. These weights are used to construct
the probability weighted estimator. In more com-
plex analyses such as regression, the weighted esti-
mator not only requires a more complicated calcula-
tion, but also often gives a larger variance than the
unweighted version of the estimator. Therefore, one
might question whether weights are necessary in the
analysis.

Preliminary testing (pretest) procedures are pro-
cedures in which a test of a model assumption
is used to decide between two estimation proce-
dures. Bancroft (1944), Huntsberger (1955) and
Mosteller (1948) provide details about pretest pro-

cedures. The pretest procedure is characterized by
a test statistic, T , calculated from the data set. The
test T serves the purpose of determining the estima-
tion method. If T is statistically significant at some
significance level chosen a priori, a given procedure
will be used to estimate a parameter. Otherwise an
alternative procedure will be used for calculating the
parameter estimator.

We describe a test for the importance of weights and
discuss an estimation strategy. If the test statis-
tic is not significant, the unweighted estimator is
used, if the test is significant, a weighted estimator is
used. When the testing procedure indicates that the
weighted analysis is preferred, we consider some con-
sistent weighted estimators that have smaller vari-
ances than the probability weighted estimator. One
estimator, based on a superpopulation model with
error variances determined by values of a covariate,
was suggested by Pfeffermann and Sverchkov (1999).

2 Regression Model

We assume the finite population to be generated by
some random process, called the superpopulation.
The N population values y1, y2, . . . , yN of the study
variable y are generated from the superpopulation.
We will use script F to denote the finite population,
U to denote the set of indices of the finite population,
and A to denote the set of indices of the sample. We
assume that there is a function p(·) such that p(A)
gives the probability of selecting sample A from U .

Consider a regression model relating yi to xi with
the model for the entire finite population written as

yU = XUβ + eU , (1)
eU ∼ (0, Iσ2),

where yU = (y1, y2, . . . , yN )′ is the N dimensional
vector of values for the dependent variables, XU =
(x′1,x

′
2, . . . ,x

′
N )′ is the N × k matrix of values of

the covariate variables, and the error vector eU =
(e1, e2, . . . , eN )′ is the N dimensional vector which
is independent of XU .
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Assume a simple random sample (SRS) of size n is
selected from the finite population. Then we can
write the model for the sample as

y = Xβ + e, (2)
e ∼ (0, Iσ2),

where y = (y1, y2, . . . , yn)′ is the n dimensional col-
umn vector of observations, X = (x′1,x

′
2, . . . ,x

′
n)′ is

the n× k matrix of observations on the explanatory
variables, and the error vector e = (e1, e2, . . . , en)′

is the n dimensional vector which is independent of
X.

3 Estimators for the Population Pa-
rameter

3.1 Ordinary Least Squares Estimator

On the basis of model (2), the ordinary least squares
(OLS) estimator of β is

β̂ols =

(∑
i∈A

x′ixi

)−1∑
i∈A

x′iyi = (X ′X)−1
X ′y,

(3)
where X is the n×k matrix of the explanatory vari-
ables and y = (y1, y2, . . . , yn)′ is the n dimensional
column vector of observations. An estimator of vari-
ance of β̂ols is

V̂ (β̂ols) = (X ′X)−1
σ̂2

ols, (4)

where
σ̂2

ols = (n− k)−1
∑
i∈A

ê2i,ols,

k is the dimension of xi and êi,ols = yi−xiβ̂ols. On
the basis of model (2), the OLS estimator is the best
linear unbiased estimator (BLUE) of β.

3.2 Probability Weighted Estimator

Assume that a probability sample is selected with
unequal probabilities πi’s. The probability weighted
estimator, constructed with the inverses of the se-
lection probabilities, is

β̂π =

(∑
i∈A

x′iπ
−1
i xi

)−1∑
i∈A

x′iπ
−1
i yi

= (X ′WX)−1
X ′Wy, (5)

where

W = diag(π−1
1 , π2−1 , . . . , π−1

n )
=: diag(w1, w2, . . . , wn).

An estimated covariance matrix of β̂π is

V̂ (β̂π) = (X ′WX)−1
X ′WD̂ee,πWX (X ′WX)−1

,
(6)

where

D̂ee,π = diag(ê21,π, ê
2
2,π, . . . , ê

2
n,π)

and êi,π = yi − xiβ̂π.

The probability weighted regression coefficient β̂π is
design consistent for the finite population parameter
and is a consistent estimator of the superpopulation
parameter β, because xi and ei are independent un-
der the superpopulation model. In most cases the
variances of the probability weighted estimator are
larger than the variances of the OLS estimator.

3.3 Generalized Least Squares Estimator

If πi and ei are independent in an unequal proba-
bility sample, the OLS estimator remains unbiased.
If πi and ei are correlated, the OLS estimator is bi-
ased. The design is called informative if πi and ei

are correlated. We will construct some consistent
weighted estimators that are more efficient than the
probability weighted estimator under an informative
design by modifying the probability weighted esti-
mator to reduce the variance. Pfeffermann et al
(1998), Krieger and Pfeffermann (1997), and Pfef-
fermann and Sverchkov (1999) considered such ap-
proaches. To identify the connection to estimated
generalized least squares, let a working model be

π
−1/2
i yi = π

−1/2
i xiβ + π

−1/2
i ei. (7)

Under the assumption that is e independent of X,
regressing h(xi)π

−1/2
i yi on h(xi)π

−1/2
i xi will pro-

vide a consistent estimator of β for any function
h(xi). We could develop a model for V ar(π−1/2

i ei)
directly, but it may be convenient to approach es-
timation in steps, first identifying the portion of
wi = π−1

i that is related to xi, then developing a
variance model for the modified equation.

Define the generalized least squares (GLS) estimator

β̂g = (X ′QX)−1
X ′Qy, (8)

where

Q = diag(q1, q2, . . . , qn)

and qi = wih(xi).

Pfeffermann and Sverchkov (1999) propose estima-
tors for regression models fitted to survey data. One
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estimator is obtained by a two-step procedure: (1)
Estimate ŵ(xi) by the regression of wi on known
functions of xi using the sample measurements. The
estimator of β is calculated in step (2) as

β̂PS =

(∑
i∈A

qix
′
ixi

)−1∑
i∈A

qix
′
iyi

= (X ′QX)−1
X ′Qy, (9)

where qi = wiŵ
−1(xi).

4 A Test for an Informative Design

To determine whether weights should be incorpo-
rated into the estimation of the parameters, we con-
sider a test of the null hypothesis:

H0 : E[(X ′X)−1X ′y] = E[(X ′QX)−1X ′Qy].
(10)

To test whether or not the two procedures have the
same expectation, we can use a standard technique
of adding to our basic model the variables for the
competing model. We can test the hypothesis by
testing the coefficient for Z of the expanded regres-
sion model

y = Xβ + Zγ + e, (11)

where
Z = QX.

If OLS provides an unbiased estimator then the co-
efficient for the weighted vector will be a zero, that is
γ = 0. The regression coefficient vector for Z in the
regression of y on (X,Z) is the regression coefficient
for the regression of y−Pxy on QX−PxQX, where
Px = X(X ′X)−1X ′ is a projection matrix into the
column space of X. For details see DuMouchel and
Duncan (1983) and Fuller (1984).

If the test indicates that two estimators are estimat-
ing different quantities, the usual first response in
practice will be to search for subject matter vari-
ables to add to the model. If the inclusion of such
variables results in a nonsignificant test statistic, the
expanded model is accepted. If we can not find such
variables, then it is necessary to incorporate the in-
clusion probabilities into the estimation procedure.

5 Simulation Design

5.1 Introduction

To illustrate the preliminary testing procedure, a
simulation study was conducted. We create each

sample in the simulation by the following selec-
tion procedure. A vector (ei, xi, ai, ui) is generated,
where ei is a normal (0, 0.5) random variable, xi is
a normal (0, 0.5) random variable, ai is a normal
(0, 0.5) random variable and ui is a uniform (0, 1)
random variable. The variables ei, xi, ai, and ui are
mutually independent. Let the selection probability
pi be a function of xi, ei and ai,

pi(xi, ei, ai) = r(xi) + r([1−ψ]0.5ai +ψ0.5ei), (12)

where

r(x) =

 0.025 if x < 0.2
0.475(x− 0.20) + 0.025 if 0.2 ≤ x ≤ 1.2
0.5 if x > 1.2

,

(13)
and ψ is a parameter that is varied in the experi-
ment. The parameter ψ determines the correlation
between πi and ei.

Figure 1: Plot of r vs. x

From Figure 1, we see that the shape of the function
r relative to x is approximately exponential. If ui >
pi, we reject the vector (ei, xi, ai, ui). If ui ≤ pi, the
vector (ei, xi, ai, ui) is accepted and yi is defined by

yi = 0.5 + xi + ei. (14)

For each sample, we draw 1000 selections. This pro-
cedure gives an expected sample size of about 250.
Results are reported for 10000 samples created in
this way.
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5.2 Pfeffermann-Sverchkov Estimator

In computing the PS estimators, estimated proba-
bilites p̂i’s are constructed, where p̂i is the predicted
value from the regression of pi on (1, r(xi)). The
estimated weights ŵi’s are fitted values from the re-
gression of wi on (1, p̂−1

i ). Then the PS estimator
is

β̂PS = (X ′QX)−1
X ′Qy, (15)

where

Q = diag(q1, q2, . . . , qn)

and qi = wiŵ
−1
i . An estimated covariance matrix is

V̂ (β̂PS) = (X ′QX)−1
X ′QD̂ee,PSQX (X ′QX)−1

,
(16)

where

D̂ee,PS = diag(ê21,PS , ê
2
2,PS , . . . , ê

2
n,PS)

and êi,PS = yi − xiβ̂PS . The PS estimator is not
strictly unbiased, but is consistent for the superpop-
ulation parameter.

5.3 Preliminary Testing Procedures

We constructed two pretest estimators. One is based
on the ordinary least squares estimator and the
probability weighted estimator and the other one is
based on the ordinary least squares estimator and
the PS estimator.

The preliminary test based on probability weighted
estimator is obtained from two regressions: the re-
gression of yi on (1, xi, wi, wixi) (full model) and the
regression of yi on (1, xi) (reduced model). The F
-statistic

F 2
n−4 =

(SSEred − SSEfull)/2
MSEfull

(17)

is computed, where SSEfull and SSEred are error
sum of squares for the full model and the reduced
model respectively, and MSEfull is mean square er-
ror for the full model. If F 2

n−4 is not statistically
significant, we use β̂ols, otherwise we use the proba-
bility weighted estimator β̂π. Thus the pretest esti-
mator of β is

β̂pre,π =
{

β̂ols if F < F 2
n−4(α)

β̂π if F ≥ F 2
n−4(α)

, (18)

where F 2
n−4(α) is the 1−α quantile of F distribution.

α = 0.05 and α = 0.25 were used in the simulation.

We can compute a standard error for β̂pre,π using
the variance estimation procedure appropriate for
the estimator chosen. Thus

V̂ (β̂pre,π) =
{
V̂ (β̂ols) if F < F 2

n−4(α)
V̂ (β̂π) if F ≥ F 2

n−4(α)
, (19)

where V̂ (β̂ols) is defined in (5) and V̂ (β̂π) is defined
in (8). We call the statistic

tβ̂ = [V̂ (β̂pre,π)]−1/2(β̂pre,π − β)

the t-statistic for β̂pre,π.

The preliminary test based on PS estimator is simi-
larly obtained from two regressions: the regression of
yi on (1, xi, qi, qixi) (full model) and the regression
of yi on (1, xi) (reduced model). The F -statistic is

F 2
n−4 =

(SSEred − SSEfull)/2
MSEfull

. (20)

The pretest estimator of β is

β̂pre,PS =
{

β̂ols if F < F 2
n−4(α)

β̂PS if F ≥ F 2
n−4(α)

. (21)

The estimated covariance matrix for β̂pre,PS is

V̂ (β̂pre,PS) =
{
V̂ (β̂ols) if F < F 2

n−4(α)
V̂ (β̂PS) if F ≥ F 2

n−4(α)
, (22)

where V̂ (β̂ols) is defined in (5) and V̂ (β̂PS) is de-
fined in (19). The t-statistic for β̂pre,PS is

tβ̂ = [V̂ (β̂pre,PS)]−1/2(β̂pre,PS − β).

5.4 Simulation Results

Table 1: Monte Carlo Mean Square Error (×1000) for
estimators of β0 (10,000 samples)

ψ β̂ols,0 β̂π,0 β̂PS,0 β̂pre,π,0 β̂pre,PS,0

α = 0.25 α = 0.25
0 2.35 4.36 3.20 3.53 2.84
.01 3.52 4.42 3.24 4.37 3.52
.02 4.57 4.39 3.22 4.81 3.75
.05 8.09 4.33 3.20 5.17 3.59
.07 10.42 4.24 3.15 4.94 3.35
.10 13.73 4.32 3.22 4.78 3.29
.20 25.28 4.23 3.09 4.25 3.09
.30 36.79 4.16 3.11 4.16 3.11
.50 59.87 4.02 3.04 4.02 3.04
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Table 2: Monto Carlo Mean Square Error (×1000) for
estimators of β1 (10,000 samples)

ψ β̂ols,1 β̂π,1 β̂PS,1 β̂pre,π,1 β̂pre,PS,1

α = 0.25 α = 0.25
0 3.97 8.38 5.95 6.51 5.16
.01 4.48 8.52 5.98 7.40 5.66
.02 5.01 8.47 5.98 7.78 5.90
.05 6.68 8.29 5.96 8.31 6.07
.07 7.68 8.50 5.98 8.62 6.06
.10 9.41 8.31 5.81 8.43 5.83
.20 15.12 8.17 5.82 8.18 5.82
.30 20.69 8.09 5.78 8.09 5.78
.50 31.63 7.68 5.51 7.68 5.51

Table 1 contains the mean square errors of β̂0. Table
2 contains the mean square errors of β̂1. The pretest
estimators are for α = 0.25. The mean square errors
of β̂ols,0 and β̂ols,1 are the smallest among estimators
of β0 and β1, respectively, when ψ = 0, that is, when
there is no correlation between πi and ei. When the
correlation between πi and ei increases, the mean
square errors of β̂ols,0 and β̂ols,1 increase because
of the squared bias. The estimators β̂PS,0 and β̂PS,1

are more efficient than β̂π,0 and β̂π,1 respectively, be-
cause the selection probability is a function of x. The
pretest estimators based on the probability weighted
estimators β̂pre,π,0 and β̂pre,π,1 are uniformly inferior
to the pretest estimators based on the PS estimators
β̂pre,PS,0 and β̂pre,PS,0 in terms of mean square er-
ror. When ψ get larger, the mean square errors of
β̂pre,π,0 and β̂pre,π,1 are closer to the mean square
errors of β̂π,0 and β̂π,1, respectively. The pretest
estimators based on the PS estimators and PS es-
timators have the same tendency. The reason for
this trend is that the pretest procedure rejects the
null hypothesis more frequently when the correlation
between πi and ei increases.

Table 3: Monto Carlo Probability that |tβ̂0
| > t.025

(10,000 samples)

ψ β̂ols,0 β̂π,0 β̂PS,0 β̂pre,π,0 β̂pre,PS,0

α = 0.25 α = 0.25
0 0.050 0.055 0.053 0.067 0.060
.01 0.110 0.058 0.056 0.103 0.089
.02 0.168 0.058 0.055 0.121 0.099
.05 0.347 0.056 0.056 0.127 0.085
.07 0.457 0.055 0.053 0.107 0.066
.10 0.591 0.055 0.058 0.087 0.062
.20 0.869 0.058 0.053 0.059 0.053
.30 0.964 0.057 0.056 0.057 0.056
.50 0.998 0.059 0.057 0.059 0.057

Table 4: Monto Carlo Probability that |tβ̂1
| > t.025

(10,000 samples)

ψ β̂ols,1 β̂π,1 β̂PS,1 β̂pre,π,1 β̂pre,PS,1

α = 0.25 α = 0.25
0 0.053 0.074 0.063 0.078 0.068
.01 0.067 0.075 0.062 0.087 0.072
.02 0.083 0.075 0.061 0.093 0.074
.05 0.133 0.072 0.064 0.090 0.073
.07 0.164 0.078 0.065 0.094 0.070
.10 0.218 0.075 0.065 0.084 0.066
.20 0.383 0.073 0.063 0.074 0.063
.30 0.524 0.077 0.064 0.077 0.064
.50 0.733 0.081 0.066 0.081 0.066

As the simulation results of Table 3 illustrates, for
α = 0.25, the statistics tβ̂ols,0

, tβ̂π,0
, tβ̂P S,0

, tβ̂pre,π,0

and tβ̂pre,P S,0
exceed the tabular t.025 for Student’s

t by more than the nominal fraction. As ψ in-
creases, the probabilities of P (|tβ̂pre,π,0

| > t.025)
are closer to the probabilities of P (|tβ̂π,0

| > t.025).
P (|tβ̂pre,P S,0

| > t.025) and P (|tβ̂P S,0
| > t.025) show

the same trend. Table 4 gives the probabilities of the
statistics tβ̂ols,1

, tβ̂π,1
, tβ̂P S,1

, tβ̂pre,π,1
and tβ̂pre,P S,1

exceeding the tabular t.025. We can see the same
tendency in Table 4.

Figure 2: Plot of MSE ratios relative to β̂PS,0

Figure 2 is the plot of mean square error ratios of
β̂pre,PS,0 and β̂ols,0 relative to β̂PS,0 as a function
of correlation between πi and ei for α = 0.05 and
α = 0.25. The shapes are typical of preliminary
testing procedures. In Figure 2 the solid line always
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Figure 3: Plot of MSE ratios relative to β̂PS,1

equal to one is the mean square error efficiency of
β̂pre,PS,0 relative to β̂PS,0 when α = 1 and we always
reject β̂ols,0 in the preliminary testing procedures.
Since 0.05 < 0.25 < 1, the curve for the mean square
error efficiency of β̂pre,PS,0 relative to β̂PS,0 with
α = 0.25 are generally between the curve of mean
square error efficiency of β̂pre,PS,0 relative to β̂PS,0

with α = 0.05 and the horizontal solid line.

The dotted line is the mean square error ratio of
β̂ols,0 relative to β̂PS,0 as a function of correlation
between πi and ei. The β̂ols,0 is the best if πi and
ei are independent, but has very poor performance
when the correlation between πi and ei is large. The
pretest estimator β̂pre,PS,0 is better than β̂PS,0, but
worse than β̂ols,0 when the correlation is low. But
when the correlation gets larger, β̂pre,PS,0 is worse
than β̂PS,0, but better than β̂ols,0. The pretest esti-
mator β̂pre,PS,0 is never the best, nor the worst, so
it is a compromise in terms of mean square error.

Figure 3 is the similar plot of the mean square er-
ror ratios of β̂pre,PS,1 and β̂ols,1 relative to β̂PS,1

for α = 0.05 and 0.25. The curves for the mean
square error efficiency of β̂pre,PS,1 relative to β̂PS,1

are similar to the curves of the mean square error ef-
ficiencyof β̂pre,PS,0 relative to β̂PS,0, but the former
are smoother than the latter. One reason for this
difference is that the bias of β̂pre,PS,0 relative to the
standard error is larger than that of β̂pre,PS,1.
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