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ABSTRACT   
 
Sampling plans that exclude the selection of adjacent 
units within a given sample, while maintaining a 
constant second-order inclusion probability for non-
adjacent units, have been proposed as a means of 
collecting information from populations where 
neighboring units provide similar responses.  Although 
significant advancements have been achieved 
concerning the generalization and existence of such 
sampling plans for finite, one-dimensional populations, 
many other aspects of these plans warrant further 
investigation.  Results of an investigation of three 
biased variance estimators of the Horvitz-Thompson 
estimator of the population mean under such plans are 
presented 
 
Key Words:  variance estimation; balanced sampling 
plans excluding adjacent units; polygonal designs; 
circularly and linearly ordered populations; finite 
population sampling 
 
 
1. Introduction 
 
Hedayat, Rao, and Stufken (1988a, 1988b) first 
introduced balanced sampling plans that exclude 
contiguous units, i.e., plans that prevent the selection of 
contiguous units within a given sample while 
maintaining a constant second-order inclusion 
probability for non-contiguous units.  Major 
advancements have been made in the identification and 
generalizations of such plans, see Stufken (1993), 
Stufken and Wright (2001), and Wright and Stufken 
(2005); however, primarily due to a lack of a sufficient 
number of identifiable plans, little has been done to 
investigate corresponding analytical issues.  Due to 
their nature, an unbiased estimator of the variance of 
the Horvitz-Thompson estimator of the population 
mean, µ, cannot be obtained from a single application 
of these plans.  In this paper, the relative efficiency of 
balanced sampling excluding adjacent units with 
respect to simple random sampling under various 
population structures, as well as three biased 

approximation techniques for the variance of the 
Horvitz-Thompson estimator of µ will be investigated. 
 
 A sampling plan is defined as 
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the probability that both units i and j are in the selected 
sample.   
 
 For an observed sample, s, the Horvitz-Thompson 
estimator of µ  is defined as 
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.  Provided that all first-order inclusion 

probabilities of units in the population are positive, 
(1.1) is an unbiased estimator of µ.   
 
 The variance of the Horvitz-Thompson estimator 
of µ is equal to 
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where jiijij πππ −=∆ .  Provided that the second-order 

inclusion probabilities of all pairs of units in the 
population are positive, (1.2) may be estimated 
unbiasedly by 
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2.  Results for Balanced Sampling Plans Excluding 
Adjacent Units 
 
Commonly, such as in environmental and ecological 
populations, neighboring units within a finite 
population, spatially or sequentially ordered, may 
provide similar information.  When sampling from 
such populations, one may desire a sample that avoids 
the selection of adjacent units.  This paper will focus 
on one-dimensional orderings, of which two situations 
can occur.  The population may follow a circular 
ordering, in which the first unit of the population is 
contiguous with the last unit, or a linear ordering, in 
which the first unit is not contiguous with the last unit.   
 
 Hedayat, Rao, and Stufken (1988a, 1988b) 
proposed a sampling plan for a given circular 
population of size N, for which a sample of size n is 
obtained without replacement such that the second-
order inclusion probabilities are 0 for contiguous units 
and constant for non-contiguous units.  Stufken (1993) 
introduced an extension to balanced sampling avoiding 
adjacent units.  Under such a plan, called a circular 
BSA(N, n,α), units that are adjacent, i.e., within a 
distance of ±α (mod N), do not appear within the same 
sample, while the second-order inclusion probabilities 
of non-adjacent units are constant.  For given N, n, and 
α, the first- and second-order inclusion probabilities 
under a circular BSA(N, n, α) are 
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While the Horvitz-Thompson estimator of µ, which 
reduces to the observed sample mean, sy , is an 
unbiased estimator, an unbiased estimator of the 
variance of HTµ̂  cannot be obtained.  Note that under a 

circular BSA(N, n, α) 
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Making the appropriate substitutions and simplifying 
(1.2), one obtains 
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Clearly the second summation in (2.1) is the cause of 
concern since there is no way of estimating cross-
products of adjacent terms unbiasedly under a circular 
BSA(N, n, α). Further note that the other two 
summations in (2.1) can be estimated unbiasedly. 
 
Theorem 2.1:  A necessary condition of existence of a 
circular BSA(N, n, α) is 
 
  N ≥  (2α + 1)n 
  
for n ≥  3 and α ≥  1, and   
 
  N ≥  (2α + 1)n + 1,  
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for the following combinations of (n, α):  {(n, 1); n 
5≥ }, {(n, 2); 6 ≤  n ≤  12}, {(n, 3); 5 ≤  n ≤  9}, {(n, 

4); n = 6, 7, 8}, and {(n, 5); n = 6, 7}. 
 
Furthermore, the necessary conditions stated in 
Theorem 2.1 have been shown to be sufficient for 
certain combinations of n and α.  For proofs of the 
above results, see Stufken (1993) and Wright and 
Stufken (2005), respectively. 
 
 A number of design generation techniques have 
been developed and are summarized in the following 
theorem. 
 
Theorem 2.2:  The existence of a circular BSA(N, n, 
α) implies the existence of: 
 
1) a circular BSA(N + 2α + 1, n, α), 
 
2) a linear BSA(N – α, n – 1, α) and a linear BSA(N 
– (α + 1), n – 1, α), and 
 
3) 2ξ + 1 circular BSA(N /, n /, α)’s, where N / = N – 
ξ, …, N + ξ for ξ = n – n / where n / < n. 
 
The existence of a linear BSA(N, n, α) implies the 
existence of: 
 
4) a circular BSA(N + α, n, α) and a circular BSA(N 
+ α + 1, n, α). 
 
The proof of 1) is a direct extension of a proof from 
Hedayat, Rao, and Stufken (1988a and 1988b), a proof 
of 2) can be found in Stufken (1993), and the proofs of 
3) and 4) are detailed in Wright and Stufken (2005). 
 
 A cyclic construction method for the development 
of circular BSA(N, n, α) sampling plans was presented 
by Stufken (1993).  The vast majority of directly 
identified circular BSA(N, n, α)’s possess a cyclical 
structure, and sets of generators for all such plans may 
be obtained at: 
 
http://www.facstaff.bucknell.edu/jwright/Research/One
-Dim_Designs/circular/. 
 
 
3. Relative Efficiencies of BSA Sampling 
 
Since BSA sampling yields an unbiased estimator of µ, 
relative efficiencies for estimating µ under simulated 
populations with various structures were obtained as a 

means of comparing BSA sampling with respect to 
simple random sampling.  Circularly and linearly 
ordered populations of 60, 120, and 180 units were 
simulated using positive correlation structures with 
three strengths of correlation – strong, moderate, and 
weak.  All simulated populations have a mean of 0 and 
a variance of 1.   
 
 BSA sampling strategies with n of 5 and 10 and α 
of 1 and 2 were investigated under all populations.  For 
all combinations of sampling strategies and 
populations, the true variance of the Horvitz-Thompson 
estimator of µ was obtained.  The relative efficiency of 
a sampling strategy (SS) for a given population with 
respect to simple random sampling is defined as 
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If (3.1) yields a value greater than 1, then one may 
conclude that the given sampling strategy is more 
efficient than simple random sampling in terms of 
estimation of µ.  The resulting relative efficiencies are 
graphically depicted in Figure 3.1. 
 

 
 
Figure 3.1 – Relative Efficiencies of BSA Sampling 

With Respect to SRS 
 
 As expected, BSA sampling is generally more 
efficient than simple random sampling for populations 
with positive correlation structure.  While BSA 
sampling plans with α =1 are more efficient than the 
corresponding plans with α = 2 for populations with 
the weak positive correlation structure, the opposite is 
true for populations with moderate and strong positive 
correlation structures.  Furthermore, across all 
population structures, the difference in the relative 
efficiencies between circularly and linearly ordered 
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populations becomes negligible as population size 
increases.  
 
 
4.  Estimation Using Approximation Techniques 
 
As mentioned previously, an unbiased estimate of the 
variance of the Horvitz-Thompson estimator for µ 
cannot be obtained from a single application of BSA 
sampling plans, and, specifically, the second 
summation in (2.1) is the cause of concern.  Various 
approximations have been suggested and will be 
detailed in this section. 
 
 One common suggestion for approximating the 
variance of the Horvitz-Thompson estimator of µ is to 
replace the second summation in (2.5) by 
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technique, the variance estimator of the Horvitz-
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which is clearly nonnegative provided that N ≥ (2α + 
1)n.  However, if responses for adjacent units are 
similar, one may achieve a better approximation 
through other techniques that exploit the relationship.   
 
 Hedayat, Rao, and Stufken (1988a, 1988b) 
proposed two approximations that attempt to exploit 
the ordering of units within the population.  The first 
suggestion is to replace jy  in the second summation of 

(2.5) with iy .  Hence, 
1221 iiii yyyy +  is replaced by 

22

21 ii yy + , where sii ∈21, .  Since =−+
2121

222
iiii yyyy  

( ) 02

21
>− ii yy , this approximation leads to a smaller 

quantity than the actual variance.  As the number of 
pairs of adjacent units increases, which corresponds to 
an increase in α for fixed n, the difference between this 
approximation and the true variance will steadily 
increase.  Under this approximation technique, the 
variance estimator of the Horvitz-Thompson estimator 
of µ is 
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which is clearly nonnegative provided that N ≥ (2α + 
1)n, and yields a smaller estimate than (4.1). 
 
 The second approximation proposed by Hedayat, 
Rao, and Stufken, which has been modified here for 
general α, is to replace jy  in the second summation of 

(2.5) with a weighted average of iy and 1++αiy , for j > i.  

Specifically, jy  is replaced by 
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Under this approximation technique, the variance 
estimator of the Horvitz-Thompson estimator of µ has 
the form 
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As an observation, (4.4) may yield a negative variance 
estimate.  
 
 While the proposed estimators (4.1), (4.2), and 
(4.4) all attempt to estimate the variance of the 
Horvitz-Thompson estimator of µ, each variance 
estimator has some positive and negative qualities.  For 
instance, if one wants a conservative estimate of the 
variance of the Horvitz-Thompson estimator of µ, then 
(4.1) may be used since the resulting variance estimator 
tends to typically be positively biased.  In addition, 
note that one must obtain a sample that contains the ith 
and the (i + α + 1)st units of the population for the 
estimator (4.4) to possibly exploit the circular ordering 
of responses of units within the population to achieve a 
potentially “refined” estimate.  As a means of 
comparing the performance of the three variance 
estimators, a simulation study was performed – the 
results of which will be reported in Section 5. 
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5.  Simulation Study 
 
Since unbiased estimates of the true variances under 
the various sampling strategies cannot be obtained, 
relative efficiencies of the sampling strategies are not 
sufficient measures of performance.  For example, an 
approximation technique may consistently 
underestimate the true variance by a considerable 
amount even though the corresponding relative 
efficiency of the sampling strategy may be greater than 
1.  As a result, even though the corresponding relative 
efficiency may be greater than 1, simple random 
sampling may actually provide a more accurate 
estimate of the variance of the estimator of µ.   
 
 Utilizing the populations detailed in Section 3, 
circular BSA sampling plans for sample sizes of 5 and 
10 using α’s of 1 and 2 were developed.  A total of 
100,000 samples were simulated for each sampling 
plan, and estimates of the population mean, as well as 
the variance of the estimator, were obtained under the 
various population structures.  For each of the 100,000 
variance estimates obtained under a given population 
structure and sampling strategy, a relative measure of 
estimation was computed as 
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(5.1) is typically bounded below by –1; however, note 
that a lower value is obtained if the estimated variance 
is negative.  As a means of summarizing the 
distribution of the relative measures for a given 
sampling strategy and population structure, “modified” 
5-number summaries – 10th percentile, 25th percentile, 
median, 75th percentile, 90th percentile – were obtained 
and used to gauge the accuracy and precision of the 
corresponding estimator.   
 
 An estimator was classified as yielding generally 
“accurate” estimates when the median relative measure 
had a magnitude less than 0.15 and 25th and 75th 
percentiles of the distribution differed in sign with 
magnitudes of at least 0.10.  If the 25th percentile of the 
distribution of relative measures was negative with a 
magnitude greater than 0.50, then it was determined 
that the corresponding variance estimator generally 
underestimated the true variance.  Similarly, if the 75th 
percentile of the distribution of relative measures was 
positive with a magnitude greater than 0.50, then it was 
determined that the corresponding variance estimator 
generally overestimated the true variance.  The 

corresponding inter-quartile range (IQR) of the 
distribution of relative measures was used as a measure 
of precision for the corresponding variance estimator. 
 
 As expected, each approximation technique yields 
more precise and accurate variance estimates 
corresponding to an increasing sampling fraction under 
large populations, and there is little difference between 
the corresponding distributions of relative measures for 
a given approximation technique across circularly and 
linearly ordered populations.  While the IQR’s of the 
distribution of relative measures become more 
consistent across the approximation techniques as the 
population size increases, under all scenarios, 
Approximation 2 provides the smallest IQR, followed 
by Approximation 3 and Approximation 1, 
respectively.  However, when the differences are 
especially large, Approximation 2 tends to severely 
underestimate the true variance.  Specifically, while 
Approximation 2 performs well under large 
populations with strong correlation structure with 
respect to the other approximation techniques, in 
general, it performs poorly under all other population 
structures. 
 
 Even though Approximation 1 grossly 
overestimates the true variance under small populations 
with strong correlation structure utilizing a large 
sampling fraction, the technique appears to provide 
acceptable estimates under the other population 
structures.  Approximation 3 performs fairly well under 
populations with some form of correlation structure – 
the stronger the better.  Furthermore, for scenarios 
when both Approximation 1 and Approximation 3 
provide adequate estimates, Approximation 3 tends to 
not overestimate the true variance as consistently as 
Approximation 1. 
 
 As mentioned earlier, Approximation 3 may in fact 
yield a negative estimate.  Table 5.1 details the 
percentage of negative estimates obtained by using 
Approximation 3 under various sampling plans.  Note 
that no negative estimates were obtained under 
sampling plans with α = 1 or when n = 5. 
 
 While there appears to be an increasing trend in 
the percentage of negative estimates obtained for a 
given population as (2α + 1)n approaches N, which 
should be expected given the inherent structure 
between the potential units of a sample created by 
excluding adjacent units, the observed percentages are 
mostly negligible for large N.  Nonetheless, if  
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Table 5.1 – Percentage of Negative Estimates 
Obtained Using Approximation 3 Under  

BSA(N, 10, 2) Plans 
 

 N  
Population 60  120 180 

Circular, Strong 11.37% 0.24% 0.05% 

Circular, Moderate 2.46% 0.04% < 0.01% 

Circular, Weak 1.02% 0.06% 0.01% 

Linear , Strong 7.82% 0.17% 0.03% 

Linear, Moderate 3.01% 0.01% 0.02% 

Linear, Weak 1.52% 0.06% < 0.01% 

 
(2α + 1)n ≈ N, the potential of obtaining a negative 
variance estimate under Approximation 3 may serve as 
a deterrent for using the approximation. 
 
 Additionally, coverage probabilities of desired 
95% confidence intervals for the population mean were 
empirically estimated.  For all three variance 
estimation techniques, desired 95% confidence 
intervals of the form 
 

  ( ) ( )HTinHT Vt µµ ˆˆˆ
975.0;1−±  (5.2) 

 
were obtained for each of the 100,000 repetitions under 
all combinations of population structures and sampling 
plans.  A sampling strategy and/or proposed interval 
estimator were determined to be inadequate if the 
corresponding empirical coverage reported greatly 
differed from 95%.  The resulting empirical coverage 
probabilities are graphically depicted in Figure 5.1.  
Note that all simulations that yielded a negative 
estimate of variance using Approximation 3 were 
omitted from consideration.  
 
 In general, (5.2) appears to be a fairly conservative 
interval estimator for µ.  While some scenarios yielded 
empirical coverage probabilities much lower than 
desired, they were limited to when a BSA(60, 10, 2) 
sampling plan was used.  For all populations of 120 
and 180 units, the empirical coverages ranged from 
94.5% to 98.5%, regardless of sampling plan and 
utilized approximation technique.  In addition, there 
appears to be little differences in the empirical 
coverages across sampling fractions and population 
orderings for the larger populations.    
 

 
 

Figure 5.1 – Desired 95% Confidence Interval 
Coverage Probabilities 

 
 
6.  Closing Remarks 
 
In general, BSA sampling plans are more efficient than 
simple random sampling under populations exhibiting 
a positive correlation structure.  Specifically, 
significant gains in efficiency were obtained under 
BSA sampling plans with an α  = 2 applied to linearly 
or circularly ordered populations with moderate to 
strong positive correlation structure.  While each of the 
three variance approximation techniques experience 
problems under small populations – potential for 
overestimation using Approximation 1, 
underestimation using Approximation 2, and negative 
estimates using Approximation 3 – the effects of the 
corresponding tendency diminishes as the population 
size increases.  While Approximation 3 appears to be 
viable estimate under large populations with strong 
correlation structure, Approximation 1 would be 
preferred under large populations with weak to 
moderate correlation structure.   
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