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ABSTRACT 
 
In this paper, we have proposed a new model assisted chi-
square distance function to improve the estimator of the 
general parameter of interest considered by Rao (1994) and 
Singh (2001). It has been noted that the single model 
assisted calibration constraint studied by Farrell and Singh 
(2002, 2005), Arnab and Singh (2003), and Wu (2003) is not 
helpful to calibrate the Sen (1953) and Yates and Grundy 
(1953) estimator of the variance of the traditional linear 
regression estimator under the optimal design of Godambe 
and Joshi (1965). Three estimators of the proposed linear 
regression type estimator of the general parameter of interest 
are introduced and compared. New two-dimensional linear 
regression models are introduced which are found to be very 
useful, unlike a simulation based on a couple of thousands of 
random samples, in comparing the estimators of variance. 
The use of knowledge of the model parameters in assisting 
the estimators of variance has been found to be beneficial. 
The most attractive feature is that it has been shown 
theoretically that the proposed method of calibration remains 
always more efficient than the GREG estimator. No doubt 
all the statistical packages like GES, SUDDAN, STATA, 
CALMAR etc. could be improved without any hesitation 
and the general public could get trustworthy estimates from 
different organizations using these statistical packages after 
making the necessary amendments with the methodology 
developed here. It looks that one day this paper will rule the 
world of calibration methodology. 
 
Keywords: Model assisted calibration; Linear regression 
estimator; GREG; Estimation of total and variance 
 
1. Introduction 
 
The proper use of auxiliary information in survey sampling 
has an eminent role in improving the precision of the 
estimates of the parameters of interest of the study variable.   
Cochran (1940) considered the problem of estimation of the 
population mean Y  of the study variable y  by using known 
information on the population mean X  of the auxiliary 
variable x , and introduced a ratio estimator. It remains more 
efficient than the sample mean estimator if the correlation 
between the two variables remains positive and high. Murthy 
(1964) studied the product estimator and it remains more 
efficient than the sample mean estimator if the correlation 

between the two variables is negative and high. Under 
simple random and without replacement (SRSWOR) 
sampling Hansen, Hurwitz and Madow (1953) proposed a 
linear regression estimator of the population mean Y  as:  
 )(ˆolslr xXyy −+= β  

 

(1.1) 

where 2ˆ xxyols ss=β . The variance of lry , to the first order 

of approximation, is given by: 
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lry  has been found to be more efficient than ratio, product, 
and sample mean estimator for non-zero correlation between 
the study and auxiliary variable. Deville and Sarndal (1992) 
introduced a Generalized Regression (GREG) estimator as: 
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(1.4) 

Now ( )dsyV  will be less than ( )lryV  if and only if 
( olsds ββ <  and olsds ββ > ) but both inequalities will never 
hold. Thus we can say that the linear regression estimator 
remains better than the GREG estimator. The GREG became 
very famous during the last 15 years among public servants 
in the government institutions like the US Bureau of Census, 
Statistics Canada, and the Australian Bureau of Statistics; as 
well as private organizations like WESTAT, RAND etc. 
because it came through a calibration approach. The concept 
of linear weighting of sample survey data can be found in 
Bethlehem and Keller (1987). Consider a population 

{ }Ni  .., , .., ,2  ,1=Ω , from which a sample ( )Ω⊂    ss  is drawn 
with any probability proportional to size and without 
replacement (PPSWOR) sampling design ).(⋅p The inclusion 
probabilities ( )siPi ∈=π  and ( )sjsiPij ∈∈∈  ,π  are assumed to 
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be positive and known. Deville and Särndal (1992) used 
calibration on the known population total, ,X  to modify the 
basic sampling design weights, iid π1= , that appear in the 
Horvitz and Thompson (1952) estimator: 
 ∑

∈
=

si
ii ydYHT

ˆ    
 

(1.5) 

An estimator: 
 

∑
∈
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(1.6) 
 

was proposed by Deville and Särndal (1992), with weights 
iw  as close as possible in an average sense to the id  for a 

given measurement and subject to the calibration constraint: 
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Minimization of the chi square distance function: 
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between the new weights iw  and design weights id  leads to 
the GREG of population total, ,Y  given by:  
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∈
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iii
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iiii xqdyxqd 2
dsβ̂  and iq  are suitably 

chosen constants. As pointed out by Singh (2003), dsβ̂  in 
(1.9) is not an ordinary least square estimator, and hence 
GREG can never be as efficient as the linear regression 
estimator lry  unless the regression line passes through the 
origin.  If ii xq 1= , the GREG reduces to the ratio estimator. 
Singh, Horn, and Yu (1998) pointed out that there is no 
choice of iq  such that the GREG reduces to product 
estimator. Following Särndal, Swensson, and Wretman 
(1989), Deville and Särndal (1992), Särndal (1996), Rao 
(1997), and several others, the GREG can be written as: 
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(1.10) 

The Sen (1953) and Yates and Grundy (1953) form of the 
first estimator of variance of the GREG considered by 
Deville and Sarndal (1992) is given by:  
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where ijijij dD Θ= ,  )( ijjiij πππ −=Θ , 1−= ijijd π , ji ≠ , and 

iii xye dsβ̂−= . The second estimator studied by Deville and 
Sarndal (1992) can easily be derived from (1.11) by 
replacing 2)( jjii eded −  with 2)( jjii ewew − . Singh, Horn, and 
Yu (1998) were the first to apply a higher order calibration 
approach to estimate the variance of the GREG estimator. 
Farrell and Singh (2005) considered the superpopulation 
model: 
 iiii exvxyM )(: += β  

 

(1.12) 
where  Nyyy ,...,, 21  are independently distributed, ( ) 0=im eE , 

and ( ) 2σ=im eV . The parameters β  and 2σ  are unknown, 
but the form of the function ( )ixv  is assumed to be known. 

The variance of the Horvitz and Thompson (1952) estimator 

HTŶ in the Sen (1953) and Yates and Grundy (1953) form is:  
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where  )(,, jjiijiy ydyd −=∆ . An unbiased estimator for 
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where ijijd π1=  are the true design weights as considered 
by Fuller (1970) and Sitter and Wu (2002).  Farrell and 
Singh (2005) considered a new estimator of variance as: 
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with a new set of weights o
ijw  such that the two-dimensional 

chi square distance function: 
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is minimum subject to the calibration constraints given by: 
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Under model (1.12) the equation (1.17) leads to a new set of 
higher order calibration constraints: 
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( ) )(22
, jjiiji xvdxvdv += . Equation (1.18) is similar to that 

suggested by Singh, Horn, and Yu (1998), also studied by 
Sitter and Wu (2002), and the equation (1.19) is due to 
Farrell and Singh (2002) and is dependent on ( )ixv . Farrell 
and Singh (2005) considered the need to study the effect of 
both constraints on the resultant estimators, because it is 
easy to see that the Wu and Sitter (2001) and the Sitter and 
Wu (2002) estimators are special cases of (1.18) and (1.19). 
Wu (2003) also mentioned the need to study the effect of 
both of these constraints. Minimization of (1.16) subject to 
the calibration constraints in (1.18) and (1.19) leads to a 
new, model assisted and design based, calibrated estimator 
of the variance of the GREG and is given by: 
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and Singh (2005), note carefully that 1β̂  and 2β̂  in (1.20) 
are also not in the least square form of estimators and need 
to be corrected. Note that if )( ii xv∝π , (1.19) reduces to:  
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No doubt the Farrell and Singh (2005) calibration approach 
is also appropriate under the Godambe and Joshi (1965) 
condition for the lower bound of the variance.  The reason 
may be that the GREG is not the best estimator like the 
linear regression estimator due to Hansen, Hurwitz and 
Madow (1953). Note that for SRSWOR sampling where ijΘ  
is constant for all ji, , equation (1.21) reduces to: 
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which is the same calibration constraint studied by Sitter and 
Wu (2002).  
  
In the present investigation, three new estimators of the 
variance of the new proposed linear regression estimator of 
the general parameter of interest are studied under different 
situations.  A set of new notations is introduced so that the 
final results can be put into compact form.  
 
2. General parameter of interest  
 
We consider a general parameter of interest:  
 ∑
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=

j
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for a specified function h .  The choice of ( ) yyh =  gives the 
population total YH y =  and the population mean YH = , 
while the choice )()( ytyh y −∆=  with 1)( =∆ ya  when 

0≥ya  and 0)( =∆ ya  otherwise give the distribution 
function:  
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for each .yt  Rao (1994) suggested a general class of 
estimators of yH  given by: 
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where the basic weights )(sdi  can depend both on s  and 
)( sii ∈  and satisfy the design unbiasedness condition. The 

choice yyh =)(  in (2.3) gives the Godambe (1955) class of 
estimators of total. If ii dsd =)(  (or equivalently 1)( =sdi  
and iii ydyh =)( ) and then (2.3) reduces to the Horvitz and 
Thompson (1952) estimator of population total.  If ii wsd =)(  
and )()( tyIyh ii ≤= , then (2.3) reduces to the estimator 

)(ˆ tF  suggested by Silva and Skinner (1995). Rao (1994) 

suggested an estimator to estimate the variance of the 
estimator yĤ  as: 
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where iii wyhz )(=  and weights )(sDij  can depend both on 
s  and sji ∈),( , and satisfy the unbiasedness condition. It is 
remarkable that (2.4) depends on the conditional theory that 

yĤ  equals yH  where ii wyh ∝)( . The Sen (1953) and Yates 
and Grundy (1953) estimator of the variance of the Horvitz 
and Thompson (1952) estimator is a special case of (2.4) 
with iiw π=  and ijjiijij dddsD Θ=)(  for any fixed sample 
size design. Rao (1994) considered the following estimator 
of the general parameter of interest as: 
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where )(swi  are the calibrated weights such that the chi 
square distance function: 
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is minimum subject to the linear constraint:  
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where ∑
Ω∈

=
j

jx xhH )(  and iq  are suitably chosen real 

weights. Obviously, Rao (1994) leads to a GREG of the 
general parameter of interest yH as: 
 )ˆ(ˆˆˆ raoRao xxy HHHH −+= β  

 

(2.8) 
where:    
 

∑
∈

∑
∈=

si
iii

si
iiii

xhqsd

yhxhqsd

2rao
)}({)(

)()()(
β̂ . 

 
 
 
 
 

(2.9) 

Note that raoβ̂  in (2.9) is not the same as has been used in 
the traditional linear regression estimator due to Hansen, 
Hurwitz and Madow (1953).  
 
3. Proposed new chi-square distance function 
 
In this section, we consider a new estimator of the general 
parameter yH  as: 
 ∑

∈

◊=
si

ii yhsH )()(ˆ ms ω  
 

 (3.1) 

Note that under the model: 
 ( ) ( ) ◊++= iii exhyh βα:M   (3.2) 

where α  is an intercept, β  is a slope,  0)( =◊
iM eE , 

))(()( 22
iiM xhveE σ=◊ , and ( )( )ixhv  is known, (see Royall 

1970a, 1970b, 1970c, 1971, Hajek 1981, Bellhouse 1984, 
Pokropp 2002). In (3.1) we consider ◊

iω  as the calibrated 
diamond weights such that the model assisted chi-square 
distance function defined as: 
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is minimum subject to the two constraints, given by: 
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The function )(xh  has similar properties as )(yh . One most 
important and new point to note here is that the choice of 
diamond weights ◊

iq , si∈  in (3.3) is not unique but their 

cross products ◊◊
ji qq , sji ∈≠  are unique, depending upon 

the choice of sampling design and heteroscedastic nature of 
the model used, and are obtained by solving ( ) 21−nn non-
linear equations given by: 
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for sji ∈≠ . Now the minimization of the chi-square 
distance function (3.3) subject to both constraints in (3.4) 
leads to a new unique estimator of yH as: 
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which is clearly the Sen (1953) and Yates and Grundy 
(1953) form of the estimator of regression coefficient.   
 

What a cute result! 
 

Note that although there are several choices and methods of 
choosing diamonds weights in (3.8) (or (3.7)), we would 
suggest a best choice that beats the world of calibration 
methodology, and makes the proposed estimator work well 
under any PPSWOR sampling design. A list of 50 PPSWOR 
sampling designs can be had from Brewer and Hanif (1983). 

If 1)( =sdi , iii xdxh =)( , iii ydyh =)(  then the estimator msĤ  
becomes the unique traditional linear regression estimator of 
population total under any PPSWOR sampling and is given 
by: 
 )ˆ(ˆˆˆ HTolsHTms XXYY −+= β  (3.9) 

We suggest to make a unique choice in pairs of the diamond 
weights ◊

iq  and ◊
jq  such that: 
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which is the estimator of the regression coefficient olsβ  
under any PPSWOR sampling. Now we have the following 
theorem: 
 
Theorem 3.1. The estimator msŶ  is always more efficient 

than the GREG GŶ  under any PPSWOR sampling. 
 
Proof. Under any PPSWOR sampling, to the first order of 
approximation, we have: 
 

)ˆ,ˆCov(2)ˆ()ˆ()ˆ( HTHTolsHT
2
olsHTms XYXVYVYV ββ −+≈

 

  (3.12) 

and 
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2
dsHTG XYXVYVYV dsββ −+≈  

 

  (3.13) 

From (3.12) and (3.13), the proposed estimator msŶ  will be 
more efficient than the GREG due to Deville and Sarndal 
(1992) GŶ  if: 
 )ˆ()ˆ( Gms YVYV <   

or if:  
( ) ( ) 0)]ˆ,X̂Cov(2)ˆ([ HTHTHTdsolsdsols <−+− YXVββββ   (3.14) 
 
Note that:  

)X̂V()ˆ,ˆCov( HTHTHTols XY=β ,  
 
thus on dividing both sides of (3.14) by )ˆ( HTXV , we have: 
 ( ) 02

dsols >− ββ  
 

 

which is always true, and thus proves the theorem. 
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If 1)( =sdi , )()( iii xhdxh o= , )()( iii yhdyh o= , where )( ixho  

and )( iyho  are any functions similar to )( ixh  and )( iyh , or 

they could be the same for simplicity, the estimator msĤ  
becomes: 
 )ˆ(ˆˆˆ xxolsyms HHHH −+= β  

 

(3.15) 
we suggest to make a unique choice in pairs of the diamond 
weights ◊

iq  and ◊
jq  such that: 
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(3.16) 

then olsβ̂  in (3.8) (or (3.7)) becomes: 
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x

xy
Hv

HH
=  

 (3.17)  
which is an estimator of the regression coefficient olsβ  for 
any PPSWOR design. Now we have the following theorem: 
 

Theorem 3.2. The estimator msĤ  is always more efficient 

than the estimator RaoĤ . 
 
Proof.  Under any PPSWOR sampling, to the first order of 
approximation, we have: 

)ˆ,ˆCov(2)ˆ()ˆ()ˆ( ols
2
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From (3.18) and (3.19), the proposed estimator msĤ  will be 

more efficient than RaoĤ  if: 

( ) 02
raools >− ββ  

which is always true, and thus proves the theorem. 
 
Theorem 3.3. The choice of diamond weights ◊

iq  in (3.5) is 
not unique, but the final resultant estimator is unique. 
 
Proof. For simplicity, let 2=n , and 1)]([ =ixhv , then: 
 

1221 Dqq =◊◊  
 

(3.20) 

where 12D  is known. Thus for any real ◊
1q  there exists a 

real ◊
2q  such that (3.20) is satisfied. 

Let 3=n  then there exists ◊
iq , 3,2,1=i  such that the 

following three equations are satisfied: 
 

1221 Dqq =◊◊  (3.21) 

 
1331 Dqq =◊◊  (3.22) 

 
2332 Dqq =◊◊  (3.23) 

Thus for 3=n  the choice of ◊
iq , 3,2,1=i  may be unique. 

But note that for 4=n , there will be six equations and four 
unknowns. Hence the theorem. 
 

From the above theorems, the Berger, Tirari and Tille (2003) 
claim, based on some simulation results, that their estimator 
remains slightly better than the Montanari (1987) estimator 
becomes doubtful. The Anderson and Thornburn (2005) 
simulation results also need to be reinvestigated. All the 
chapters related to GREG in Sarndal and Lundstrom (2005) 
can be improved. This paper confirms the recommendation 
of Singh (2003, 2004) that all the statistical packages, like 
GES (a prestige product of Statistics Canada), SUDDAN, 
STATA, and CALMAR etc., used by private and 
government organizations need to be modified so that, in the 
future, the general public should get trustworthy estimates 
from the organizations who are using these packages.   
 
4. Verification by weighted least square method  
 
Consider the minimization of the weighed error sum of 
squares  (WSSE) given by: 

[ ]
[ ]

[ ]
∑
∈

◊
∑
∈

◊◊ −−
==

si i

iiii
si i

iii

xh

xhyhqsd

xh

eqsd

)(

)(ˆˆ)()(min
)(

ˆ)(WSSE
2

olsols
2

υ

βα

υ

 we will have the same olsβ̂  as in Section 3. 
 
5. Estimation of variance 
 
In this section, we will first introduce the variance of the 
estimator of the general parameter and then we will discuss 
the usual estimator and three new estimators of the variance. 
 
5.1. Variance of the proposed estimator 
 

The proposed estimator msĤ  can be written as: 
 ])([ˆ)(ˆ ∑

∈
∑
∈

−+=
si

iixols
si

iims xhdHyhdH β   
 

          xols
si

iols
si

ii Hded βα ˆˆˆ ++= ∑
∈

∑
∈

◊  
 
 

(5.1.1) 

where )(ˆˆ)(ˆ iolsolsii xhyhe βα −−=◊  
 

(5.1.2) 

Assuming that xols
si

iols Hd βα ˆˆ +∑
∈

 is approximately constant, 

then the variance of msĤ can be approximated as: 
 

∑
Ω∈≠
∑ ◊◊ −Θ=

ji
jjiiijms ededHV 2)(

2
1)ˆ( &  

 
 
 

(5.1.3) 

where )()( olsols iii xhyhe βα −−=◊ . 
 
5.2. Usual estimator of the variance 
 
By using the method of moments (MOM), a usual estimator 
of variance of msĤ  in the Sen (1953) and Yates and Grundy 
(1953) form is given by: 
 

∑
Ω∈≠
∑ Φ=

ji
ijijms sDHv 2

0 )(
2
1)ˆ(ˆ  

 
 
 

(5.2.1) 

where 22 )ˆˆ( ◊◊ −=Φ jjiijiij ededww . A slightly better estimator 
of variance can always be obtained from (5.2.1) by using: 
 22 )ˆˆ( ◊◊◊◊ −=Φ jjiijiij eeww ωω  

 

(5.2.2) 
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5.3. Estimator of variance when the variance of the 
       estimator of any parameter of the auxiliary 
       variable is known  
 
We consider the first estimator of the variance as: 

     )]ˆ(ˆ)ˆ([ˆ)ˆ(ˆ)ˆ(ˆ 10)1( xxmsmsm HHVHvH υβυ −+=  
 

(5.3.1) 

where  1̂β  is given by: 
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(5.3.2) 

with )()( jjiiij xhdxhd −=Γ .  
Alternatively minimize:  
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(5.3.3) 
 

subject to: 
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(5.3.4) 

and  
 )ˆ()]()([

2
1 2)1(

x
sji
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(5.3.5) 

Then the calibrated estimator: 
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sji

ijijmsm H 2)1(
)1( 2

1)ˆ(ˆ ωυ  
 
 
 

(5.3.6) 

reduces to (5.3.1). 
 
5.4. Estimator of variance when model parameters are 
        known  
 
We consider the second estimator of the variance as: 

     ( )mmmsmsm vVHHv ˆˆ)ˆ(ˆ)ˆ(ˆ 20)2( −+= βυ  
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Alternatively minimize: 
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subject to: 
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Then the calibrated estimator: 
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leads to the estimator (5.4.1). 
 

5.4.1. Use of optimal design weights 
 

Note that the estimator )ˆ(ˆ )2( msm Hυ is a corrected version of 
the estimator recently studied by Farrell and Singh  (2002, 
2005), Arnab and Singh (2003), and Wu (2003). Further 
note that if ( ){ }[ ] 41−∝ ii xhvπ  and for any fixed sample size 
design for which: ∑

Ω∈≠
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iij n ππ )1( , ∑
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Thus the Lagrange function becomes: 
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On setting 0)2( =ijddL ω , we have: 
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(5.4.8) 

that is, there is no change in the design weights if we 
consider the use of optimal design weights due to Godambe 
and Joshi (1965). Recall that under such circumstances the 
estimator of the variance of GREG reduces to zero as 
reported by Farrell and Singh (2002). 
 
5.5. Estimator of variance when both variance and 
       model parameters are known  
 
We consider the third estimator of the variance as: 
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(5.5.1) 

where )0(
1β̂ and )0(

2β̂  are the partial regression coefficients 
while we consider to:  
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The calibrated estimator: 
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reduces to (5.5.1). 
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6. Simulation setup  
 
For simplicity, here we consider the problem of estimation 
of population total under SRSWOR sampling with: 

ii yyh =)( , ii xxh =)( , and g
ii xxv =)( . The estimator msĤ  

reduces to: 
 )](ˆ[ˆ xXyNY olslr −+= β  

 

(6.1) 
Let  0v̂ , 1̂v , 2v̂   and  3v̂   be the four estimators of variance 
derived from Section 5 under SRSWOR sampling (for detail 
refer to Stearns (2005)).   
 

The percent relative efficiency  (RE) of the first estimator 1v̂  
with respect to 0v̂  can be written as: 
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(6.2) 

where 22ΓΦ
ρ  denotes the simple correlation  between 

22 )( ◊◊ −=Φ jiij ee and 22 )( jiij xx −=Γ  for .,...,3,2,1 Nji =≠  
The RE of 2v̂  with respect to 0v̂  can be written as: 
 %100

)ˆ(
)ˆ()2,0RE(

2
0 ×=

vV
vV %100)1( 12

2 ×−= −
Φ δ

ρ  
 
 

(6.3) 

where δρ 2Φ
 denotes the simple correlation  between 

22 )( ◊◊ −=Φ jiij ee  and g
j

g
iij xx +=δ  for .,...,3,2,1 Nji =≠  

The RE of 3v̂  with respect to 0v̂  can be written as: 

   %100
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)ˆ()3,0RE(

3
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(6.4) 

where 2
,| 22 δΓΦ

R  denotes the population coefficient of 

determination while regressing 22 )( ◊◊ −=Φ jiij ee  on both 
g
j

g
iij xx +=δ  and 22 )( jiij xx −=Γ  for .,...,3,2,1 Nji =≠   

Note that RE expressions in (6.2), (6.3) and (6.4) are free 
from the sample size, but depend upon on parameters. We 
first considered the well-known Horvitz and Thompson 
(1952) data set. The population consists of 20=N  units 
with =iY the number of households on the i-th block, 
and iX = the eye estimated number of households on the i-th 
block. The results obtained from three estimators are 
presented in Figure 6.1. In this population, the estimator 3v̂  
seems to be best from the minimum variance point of view. 
The estimator 1v̂  remains as efficient as the usual estimator 

0v̂ , thus there is not much gain and the value of RE remains 
around 102%. The RE of the second estimator 2v̂  varies 
from 122% to 128% with the median 127%, and the relative 
efficiency of the third estimator 3v̂  varies from 123% to 
129% with a median efficiency of 128%. The value of 
g was changed from 0.0 to 4.8 with a step of 0.2 to study 
different heteroscedastic situations. The change in the value 
of g  has little effect on the RE of the estimator 1v̂ , but it 
has more effect for the estimators 2v̂  and 3v̂ .  Note that the 
two estimators 2v̂  and 3v̂  are not defined for 0.0=g . 

Population-I: Horvitz and Thompson (1952) 
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Fig. 6.1. Relative efficiency. 

 
Figure 6.1 shows that the RE of the estimator 1v̂  remains 
substantially lower than the RE of the other two estimators 

2v̂  and 3v̂ . Also note that as the value of g  increases from 
0.0 to 4.8, the RE first increases and then decreases.   
 

Now we consider another large population consisting of 
50=N  states in the United States. Here iy  represents the 

number of abortions in the 50 states of the USA during 1992 
to 1996 and ix  represents residential population during 
2000, and the results so obtained are shown in Figure 6.2.  
 

Population-II: Residents versus Abortions 
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Fig. 6.2. Relative efficiency. 

 

The results based on the large population of 50 units, are 
much better than those based on the small population.  The 
RE of the estimator 1v̂  varies from 110% to 244% with a 
median RE of 210%. In the same way the RE of the second 
estimator 2v̂  varies from 122% to 259% with a median RE 
204%, and that of the third estimator 3v̂  varies from 149% 
to 273% with a median 236%. The REs of the three 
estimators show a very nice pattern when the value of g  
changes from 0.0 to 4.8. The RE of the first two estimators 

1̂v  and 2v̂  cross each other, however the RE of the third 
estimator 3v̂  remains a bit higher. 
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7. Conclusion 
 
The well known statistical packages like GES, SUDDAN, 
STATA, CALMAR etc. could be improved without any 
hesitation, and the general public could get trustworthy 
estimates from different organizations who are using these 
statistical packages after making the necessary amendments 
with the methodology developed here.  
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