ASA Section on Survey Research Methods

A New Model Assisted Chi-square Distance Function for
Calibration of Design Weights

Matthew Stearns and Sarjinder Singh
Department of Statistics
St. Cloud State University
St. Cloud, MN 56301-4498, USA
E-mail: sarjinder@yahoo.com

ABSTRACT

In this paper, we have proposed a new model assisted chi-
square distance function to improve the estimator of the
general parameter of interest considered by Rao (1994) and
Singh (2001). It has been noted that the single model
assisted calibration constraint studied by Farrell and Singh
(2002, 2005), Arnab and Singh (2003), and Wu (2003) is not
helpful to calibrate the Sen (1953) and Yates and Grundy
(1953) estimator of the variance of the traditional linear
regression estimator under the optimal design of Godambe
and Joshi (1965). Three estimators of the proposed linear
regression type estimator of the general parameter of interest
are introduced and compared. New two-dimensional linear
regression models are introduced which are found to be very
useful, unlike a simulation based on a couple of thousands of
random samples, in comparing the estimators of variance.
The use of knowledge of the model parameters in assisting
the estimators of variance has been found to be beneficial.
The most attractive feature is that it has been shown
theoretically that the proposed method of calibration remains
always more efficient than the GREG estimator. No doubt
all the statistical packages like GES, SUDDAN, STATA,
CALMAR etc. could be improved without any hesitation
and the general public could get trustworthy estimates from
different organizations using these statistical packages after
making the necessary amendments with the methodology
developed here. It looks that one day this paper will rule the
world of calibration methodology.

Keywords: Model assisted calibration; Linear regression
estimator; GREG; Estimation of total and variance

1. Introduction

The proper use of auxiliary information in survey sampling
has an eminent role in improving the precision of the
estimates of the parameters of interest of the study variable.
Cochran (1940) considered the problem of estimation of the

population mean ¥ of the study variable y by using known

information on the population mean X of the auxiliary
variable x , and introduced a ratio estimator. It remains more
efficient than the sample mean estimator if the correlation
between the two variables remains positive and high. Murthy
(1964) studied the product estimator and it remains more
efficient than the sample mean estimator if the correlation

between the two variables is negative and high. Under
simple random and without replacement (SRSWOR)
sampling Hansen, Hurwitz and Madow (1953) proposed a

linear regression estimator of the population mean Y as:
(1.1)

where /3, =Sy / s2 . The variance of 7, to the first order

Nr =Y Jr[’7013()?*)_‘)

of approximation, is given by:

V(;lr) = (%)[Sf + ﬂflss;% - zﬁolsSxy] (1.2)

where S5 =Sy, /Sf s (1=1)syy = gl(xi -x)y; - ), is unbiased
=

N _ -
for (N-1)Sy, = X(X; - X)(¥;-Y) and f =n/N . The estimator
i=l1
7. has been found to be more efficient than ratio, product,
and sample mean estimator for non-zero correlation between
the study and auxiliary variable. Deville and Sarndal (1992)
introduced a Generalized Regression (GREG) estimator as:

(1.3)
where, under SRSWOR sampling, fys = ﬁxiyi / § xl.2 is an
i=1 i=l

Vs =¥+ Bas(X —X)

N N
estimator of B4 = X X;¥; / > Xl.2 . Obviously, the variance of
i=1 i=1
Vs » to the first order of approximation, is given by:
— 1-
P(as) = CLos3 + 552 -2
Now V(y4) will be less than ¥(3,) if and only if

(B4 < B, and B, > B, ) but both inequalities will never

(1.4)

hold. Thus we can say that the linear regression estimator
remains better than the GREG estimator. The GREG became
very famous during the last 15 years among public servants
in the government institutions like the US Bureau of Census,
Statistics Canada, and the Australian Bureau of Statistics; as
well as private organizations like WESTAT, RAND etc.
because it came through a calibration approach. The concept
of linear weighting of sample survey data can be found in
Bethlehem and Keller (1987). Consider a population
Q= {1, 2,..,i,..,N}, from which a sample s (s c Q) is drawn
with any probability proportional to size and without
replacement (PPSWOR) sampling design p(-). The inclusion

probabilities 7; = P(ies) and 7;€P(ic s, je s) are assumed to
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be positive and known. Deville and Sarndal (1992) used
calibration on the known population total, X, to modify the
basic sampling design weights, d; =1/z; , that appear in the
Horvitz and Thompson (1952) estimator:

Yur = ¥ dy; (1.5)
€8
An estimator:
);G =2 w; )i (16)

ies
was proposed by Deville and Séarndal (1992), with weights
w; as close as possible in an average sense to the d; for a
given measurement and subject to the calibration constraint:

I wx; =X (1.7)
ies
Minimization of the chi square distance function:
D=x(w _di)z/(diqi) (1.8)
les

between the new weights w; and design weights d; leads to
the GREG of population total, ¥, given by:

Yo = Tdiyi + fas(X = Tdpx;) (1.9)
s les
where Sy = T digx,y; / Y dgx? and g, are suitably
ies ies

chosen constants. As pointed out by Singh (2003), B, in
(1.9) is not an ordinary least square estimator, and hence
GREG can never be as efficient as the linear regression
estimator y, unless the regression line passes through the
origin. If ¢; =1/x; , the GREG reduces to the ratio estimator.

Singh, Horn, and Yu (1998) pointed out that there is no
choice of ¢; such that the GREG reduces to product

estimator. Following Sarndal, Swensson, and Wretman
(1989), Deville and Sa&rndal (1992), Sarndal (1996), Rao
(1997), and several others, the GREG can be written as:

YG = Tdie + fasX (1.10)
ies

The Sen (1953) and Yates and Grundy (1953) form of the

first estimator of variance of the GREG considered by

Deville and Sarndal (1992) is given by:

A 1
Vas(1) == = EDy(dje; —d je;)? (1.11)
i#jes
where Dy =d;®;, Oy =(mim;—my), dj —z,]l, i#j,and

= y; — Bysxi . The second estimator studied by Deville and
Sarndal (1992) can easily be derived from (1.11) by
dl-ej)2 with (we; —w
Yu (1998) were the first to apply a higher order calibration
approach to estimate the variance of the GREG estimator.

Farrell and Singh (2005) considered the superpopulation
model:

replacing (d;e; — e; 2 . Singh, Horn, and

M:y; = Bx; +Jv(x;) e (1.12)
where yj,y7....yn are independently distributed, £,,(¢;)=0,

and V,,(e;)=
but the form of the function v(x;) is assumed to be known.

o?. The parameters B and o2 are unknown,

The variance of the Horvitz and Thompson (1952) estimator
Yy in the Sen (1953) and Yates and Grundy (1953) form is:

52 ZG)U y;ll

t;t]e

=(d;y;—d;y;). An unbiased estimator for

Vsyg(?m) = (1.13)

where A, ; ;

Vsyg(i}HT) is:
syg(YHT) =5 Z 2d; ®1]Ayl]
2z jes
= 1/7[,7 are the true design weights as considered
by Fuller (1970) and Sitter and Wu (2002). Farrell and
Singh (2005) considered a new estimator of variance as:

s\ 1

(1.14)

where d ij

with a new set of welghts w;; such that the two-dimensional

;
chi square distance function:

1
D==% % (w;

= dy)’ [(dya;)’ (1.16)
i#jes
is minimum subject to the calibration constraints given by:
1 .
—E, 3 ¥ wj0uA = E, V. (Yyr) (1.17)

i# jes
Under model (1.12) the equation (1.17) leads to a new set of
higher order calibration constraints:

lZZw@AZ

ijBxij = syg(XHT)» (118)
i#jes
and
1 o 1
X X w0y j=—2 X O (1.19)
1#J€s i#jeQ)
5 1
where Veye(XuT) = 22 ) ®UA2Y!/’ Ly :(d[xi_djxj) and

vi,j = dv(x;)+ d3v(x;) . Equation (1.18) is similar to that
suggested by Singh, Horn, and Yu (1998), also studied by

Sitter and Wu (2002), and the equation (1.19) is due to
Farrell and Singh (2002) and is dependent on v(x; ). Farrell

and Singh (2005) considered the need to study the effect of
both constraints on the resultant estimators, because it is
easy to see that the Wu and Sitter (2001) and the Sitter and
Wu (2002) estimators are special cases of (1.18) and (1.19).
Wu (2003) also mentioned the need to study the effect of
both of these constraints. Minimization of (1.16) subject to
the calibration constraints in (1.18) and (1.19) leads to a
new, model assisted and design based, calibrated estimator
of the variance of the GREG and is given by:

Vrs = I}ds(l) + /§1(Vsyg(f(m) - T}syg(f(m))

+ﬂ2(—2 > O Z Y dii®;v; i)
217:]6!2 s 2i¢jes vy (1.20)

where

A= (P'B-0"O)(4B-C¥ and p = (Q"4-P"O)/(4B- Cz) :
P' =3 ¥ djqi®Fns; (dié; -

i#jes

,) » B=X ¥ djjq;©

i#jes

Vl]’
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* 2 - A \2 2,4
Q =X X dyqyOjv; j(die;—dje;)”, A=Y X djqyOjly j,
i#jes i#jes
C=Y % quUG,Z/vi,jA%m,j . In the very recent work of Farrell
i#jes ’
and Singh (2005), note carefully that 8; and S, in (1.20)
are also not in the least square form of estimators and need

to be corrected. Note that if 7; o« 4/v(x;) , (1.19) reduces to:

D) W;j'@,'j =X X O

i#jes i#jeQ
No doubt the Farrell and Singh (2005) calibration approach
is also appropriate under the Godambe and Joshi (1965)
condition for the lower bound of the variance. The reason
may be that the GREG is not the best estimator like the
linear regression estimator due to Hansen, Hurwitz and
Madow (1953). Note that for SRSWOR sampling where ©;

is constant for all i, j , equation (1.21) reduces to:
¥ ¥ wy=NN-1)
i#jes
which is the same calibration constraint studied by Sitter and
Wu (2002).

(1.21)

(1.22)

In the present investigation, three new estimators of the
variance of the new proposed linear regression estimator of
the general parameter of interest are studied under different
situations. A set of new notations is introduced so that the
final results can be put into compact form.

2. General parameter of interest

We consider a general parameter of interest:
Hy= ¥ h(y;) and H,=N""H,
jeQ
for a specified function /4. The choice of h(y)=y gives the

@.1)

population total H, =Y and the population mean H =Y,
while the choice h(y)=A(t,-y) with A(ay)=1
ay20 and A(a,)=0 otherwise give the distribution

when

function:

Hy=F(t,)=N"" 5 Aty-y)) 2.2
JeQ

for each ¢,. Rao (1994) suggested a general class of

-
estimators of H,, given by:
Hy = Sdi(s)h(y)
les
where the basic weights d;(s) can depend both on s and

2.3)

i(i € s) and satisfy the design unbiasedness condition. The
choice #(y)=y in (2.3) gives the Godambe (1955) class of
estimators of total. If d;(s)=d; (or equivalently d;(s)=1
and h(y;) =d;y;) and then (2.3) reduces to the Horvitz and
Thompson (1952) estimator of population total. If d;(s) = w;
and h(y;))=1(y; <t), then (2.3) reduces to the estimator

F(7) suggested by Silva and Skinner (1995). Rao (1994)

suggested an estimator to estimate the variance of the
estimator y as:
1 2
V(Hy) =X X Dyj(s)wiw;(z; = zj)
i<jes

where z; = h(y;)/w; and weights D;;(s) can depend both on

2.4)

s and (i,j) e s, and satisfy the unbiasedness condition. It is
remarkable that (2.4) depends on the conditional theory that
I:Iy equals H, where h(y;) o w; . The Sen (1953) and Yates
and Grundy (1953) estimator of the variance of the Horvitz

and Thompson (1952) estimator is a special case of (2.4)
with w; =7; and Dj(s) = d;d;d ;©; for any fixed sample
size design. Rao (1994) considered the following estimator
of the general parameter of interest as:
HRao = Zwi($)h(y7)
les

where w;(s) are the calibrated weights such that the chi

(2.5)

square distance function:

poL s 0 -di)? (2.6)
2jes d;(s)q;
is minimum subject to the linear constraint:
Zwi()h(x;) = Hy @2.7)
les
where H,= ¥ h(x;) and g¢; are suitably chosen real

jeQ
weights. Obviously, Rao (1994) leads to a GREG of the
general parameter of interest H , as:

ﬁRao :ﬁy'*'/érao(Hx_]:Ix) (2.8)
where:

Sy

Prao =+ 2.9

S di(s)g; th()

ies
Note that ﬁrao in (2.9) is not the same as has been used in

the traditional linear regression estimator due to Hansen,
Hurwitz and Madow (1953).

3. Proposed new chi-square distance function

In this section, we consider a new estimator of the general
parameter H,, as:

Hims = 20 (5)h(3) 3.1)
les
Note that under the model:
M:h(y;)=a+p h(xl-)+e;> (3.2)
where « is an intercept, S is a slope, Ey (ez;> )=0,

Ey (ef> 2) = azwlv(h(xi)) , and v(h(xi )) is known, (see Royall
1970a, 1970b, 1970c, 1971, Hajek 1981, Bellhouse 1984,
Pokropp 2002). In (3.1) we consider col<> as the calibrated

diamond weights such that the model assisted chi-square
distance function defined as:
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\/V(h(xl ) (@] (5) = di(s))*

33
2[ES d; (S)q, (3-3)

is minimum subject to the two constraints, given by:
So(s) = £di(s) and Lo (5)h(x;) = H, . (3.4)

ies ies ies
The function /(x) has similar properties as /(y) . One most
important and new point to note here is that the choice of

diamond weights q? , i€s in (3.3) is not unique but their
cross products q?q? , i#jes are unique, depending upon
the choice of sampling design and heteroscedastic nature of

the model used, and are obtained by solving n(n —1)/2 non-
linear equations given by:

= Dyp{d;(s)d ;(s)} " (3.5)

4’ ¢} VG MG

for Now the minimization of the chi-square

distance function (3.3) subject to both constraints in (3.4)
leads to a new unique estimator of # ) as:

i#jes.

I:Ims = _Zwio(s)h()ﬁ') :I:]y +Iéols(Hx _[:Ix) 3.6)
where:
di(8)g hODh() . di(s)g] e dy(s)g, h(y;) \E a&(s)q?h(x,-))
e s Julh(x)] ies JUlh(Oe)] e Julh(x)] Cies yJulh(x)]
o 5 46 s d;()g] Th(x)P xe dy(s)g; LK
:esdu[h(x ies  \JU[h(x;)] es Uh(x;)]
(3.7)
or equivalently:
di(s)q) dj(S)qj
—h h h h
X ,-Ees A MG )] [( A0 - 0 )]
ols = 0
d;(s)g; dj(s)qj' 2
R T e = hloe (o s
,«369 hG)MAGx )] [{ Gf =) (xf)]
A d ()
> 7« V) ~H06 )~ i)+ Gy, )
21#16,/»[%9)]% | » )
1 _ dOqd ) 5
= % L)} —Hog e ~Hog o )+ e ) P
2izjes i) »[h(x-)][ ! o ]
1 di()q)d ()4’ [
Sy A T hep [~ )]
_ 2ixjes Mh(x; )lh(x; (3.8)

. di(s)q; d,(S)q,

Sy T h

2ixjes JVTh(x)Mh(x)) [( )= h; )]2
which is clearly the Sen (1953) and Yates and Grundy
(1953) form of the estimator of regression coefficient.

What a cute result!

Note that although there are several choices and methods of
choosing diamonds weights in (3.8) (or (3.7)), we would
suggest a best choice that beats the world of calibration
methodology, and makes the proposed estimator work well
under any PPSWOR sampling design. A list of 50 PPSWOR
sampling designs can be had from Brewer and Hanif (1983).

If d;i(s)=1, h(x;)=d;x;, h(y;) = d;y; then the estimator H g
becomes the unique traditional linear regression estimator of
population total under any PPSWOR sampling and is given

by:
Yins = YT + fols(X = Xur) (-9
We suggest to make a unique choice in pairs of the diamond

weights ¢{ and q? such that:

4045 = Dy MhC)MAG )], i# j s

then ,6’015 in (3.8) (or (3.7)) becomes:

(3.10)

X Dg;[dz'2xiyi —dixid jx ]
A i#jes
ﬂOlS = ! 22
Z Dlj[dl Xj 7d,~xl-djxj]
i#jes

1

2
- X Dlj[d xiyp —dixd jxj —d jx pdiy; +dix;y ;]

i#jes
l > Dij[dizxiz7dl~x,~djxj7djxjd,~xi+d12~x?]
2i¢jes
1
— Y Dj(dix;—dix;)\d;y;—d;y;) . oA ~
i#jes v S 7 _ cov(¥yT, XHr)
Ly Dyj(dpx; —d jx )* V(XHT)

i#jes
(3.11)
which is the estimator of the regression coefficient fq

under any PPSWOR sampling. Now we have the following
theorem:

Theorem 3.1. The estimator Yy, is always more efficient

than the GREG Y under any PPSWOR sampling.

Proof. Under any PPSWOR sampling, to the first order of
approximation, we have:

V(o) = V(Fir) + B2V (Kup) = 2B Covur, Xyp)  Ce12)
and
V(Ta) = V(Fur)+ BV (Kyr) - 2BuCovCir. Kur) C13)

From (3.12) and (3.13), the proposed estimator fms will be
more efficient than the GREG due to Deville and Sarndal
(1992) Yg if:

V (Yims) <V (¥G)
or if:
(Bots = Bas XPols + Pas JV (Xr) = 2Cov(Xpr. Yur)] < 0 (3.14)

Note that:
Pots = Cov(¥r, Xur)/VXnur),
thus on dividing both sides of (3.14) by V'(Xyr), we have:
(ﬂols _ﬂds)2 >0

which is always true, and thus proves the theorem.
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If di(s)=1, h(x;))=d;h°(x;), h(y;)=dih"(y;), where h°(x;)
and %°(y;) are any functions similar to h(x;) and h(y;), or
they could be the same for simplicity, the estimator Hyg
becomes:

Hys = Hy + Bois (Hx ~H.) (3.15)
we suggest to make a unique choice in pairs of the diamond

weights ¢¢ and q? such that:

474" = Dy GG )] (3.16)
then S, in (3.8) (or (3.7)) becomes:
2
P igengj[di h(x;)h(y;) — dih(x;)d jh(x ;)] i c6v(1:1y,ﬁx)
TS DylaZ )P —dihi)d hix )] B(H)
i#jes
(3.17)

which is an estimator of the regression coefficient g, for
any PPSWOR design. Now we have the following theorem:

Theorem 3.2. The estimator A, is always more efficient

than the estimator Hy,,, .

Proof. Under any PPSWOR sampling, to the first order of
approximation, we have:

V(Hig) = V(H ) + BRI (H ) =2 BotsCov(Hy, Hy) - (B.18)
and
V(HRao) = V(H ) + BV ()~ 2BraeCov(H , Hy) - (3.19)

From (3.18) and (3.19), the proposed estimator H,,; will be

more efficient than Hp,, if:

(ﬂols = Brao )2 >0

which is always true, and thus proves the theorem.

Theorem 3.3. The choice of diamond weights q? in (3.5) is
not unique, but the final resultant estimator is unique.

Proof. For simplicity, let n =2, and v[i(x;)] =1, then:

0 0
9193 =Dip

where D;, is known. Thus for any real q1<> there exists a

(3.20)

real qg such that (3.20) is satisfied.

Let n=3 then there exists q? , i=123 such that the
following three equations are satisfied:
4195 =Dy (3-21)
9193 =Dis (3-22)
4595 =D (3-23)

Thus for n =3 the choice of q? , i=1,2,3 may be unique.

But note that for n =4, there will be six equations and four
unknowns. Hence the theorem.

From the above theorems, the Berger, Tirari and Tille (2003)
claim, based on some simulation results, that their estimator
remains slightly better than the Montanari (1987) estimator
becomes doubtful. The Anderson and Thornburn (2005)
simulation results also need to be reinvestigated. All the
chapters related to GREG in Sarndal and Lundstrom (2005)
can be improved. This paper confirms the recommendation
of Singh (2003, 2004) that all the statistical packages, like
GES (a prestige product of Statistics Canada), SUDDAN,
STATA, and CALMAR etc.,, used by private and
government organizations need to be modified so that, in the
future, the general public should get trustworthy estimates
from the organizations who are using these packages.

4. Verification by weighted least square method

Consider the minimization of the weighed error sum of
squares (WSSE) given by:

WSSE = ¥ dl(s)%oéloz =min ¥ d[(s)ql<> [h(yl) _dOlS _/}OIS h(xl)F

& o] Jolico)

we will have the same f3,;, as in Section 3.

5. Estimation of variance

In this section, we will first introduce the variance of the
estimator of the general parameter and then we will discuss
the usual estimator and three new estimators of the variance.

5.1. Variance of the proposed estimator

The proposed estimator H ,,, can be written as:

Hg = Sdih(i) + Bots[ Hy = Tdih(x;)]

ies ies
= Sdi& + Goly Sdi + BorsH (5.1.1)
ies ies
where é? = h(y;) = ols _Iéolsh(xi) (5.1.2)

Assuming that G, >d; + B,;H, is approximately constant,
ies

then the variance of H ,, can be approximated as:

~ . 1
V(Hps) == X Z®g’/(diez§>_dje;>')2

5.1.3
2% jeQ ( )

where e? = h(y;) = aols — Bols h(x;) -

5.2. Usual estimator of the variance

By using the method of moments (MOM), a usual estimator
of variance of H,, in the Sen (1953) and Yates and Grundy
(1953) form is given by:

n 1 2
VO(HmS)ZE. ZQZDU(S‘)@U
i#je

(5.2.1)

where (D,% =ww j(d,'é? -d jéj?)z. A slightly better estimator
of variance can always be obtained from (5.2.1) by using:

O3 = i (08— XY (522)

3604



ASA Section on Survey Research Methods

5.3. Estimator of variance when the variance of the
estimator of any parameter of the auxiliary
variable is known

We consider the first estimator of the variance as:

Oty (Homs) = S0 (i) + ALV () -0 01— 531
where f is given by:
Minimize: ¥ ZDU(V)QUD[(DU -a - ,éll"l%]z (53.2)
i#jes
Alternatively minimize:
1
D== 3 3@ -Dy()? /(D)0 (5.3.3)
i#jes
subject to:
L o)) = ¥ TDys) (5.3.4)
i#jes i#jes
and
= 5 solPldin) —d jhix )P =V (H,) (5.3.5)
i#jes
Then the calibrated estimator:
1
Om(ty(Hms) =5 % Lo} p (5.3.6)
i#jes

reduces to (5.3.1).

5.4. Estimator of variance when model parameters are
known

We consider the second estimator of the variance as:

‘;m(2)(1:1ms)ZOO(IIIms)+:é2(Vm_‘A’m) (.4.1)
where
1 R 1
V== % 30;8j, vp== X XD;(s)5,
" 21¢]€Q g " 21¢/es v v
8 = df Mh(x)] +d]2~\/v[h(x D1 ,and f; is given by:
Minimize: ¥ X Dj (S)Q(Z)[ -—a2 —,[32 U]z (5.4.2)
i#jes
Alternatively minimize:
1 2 2
D=2 3 3@P -Djs)* J(Dy)0P)  (5.43)
i#jes
subject to:
Y 2ol = 5 D) (5.4.4)
i#jes ’ i#jes
and
s 2wiPs; = 3 10,0 (5.4.5)
i#jes i#jes
Then the calibrated estimator:
(5.4.6)

‘A’m(2)(ﬁms) == Z ZW(Z)CD%

#jEs

leads to the estimator (5.4.1).

5.4.1. Use of optimal design weights

Note that the estimator ﬁm(z)(ﬁ ms) 1s a corrected version of

the estimator recently studied by Farrell and Singh (2002,

2005), Arnab and Singh (2003), and Wu (2003). Further

note that if z; o [v{A(x, -)}]_1/ 4 and for any fixed sample size

design for which: ¥ z;=(mn-D7;, ¥ z;=(n-1) and
J#ieQ J#ieQ

Xri=n,then ¥ ¥ ©; =0 and (5.4.5) becomes:
ieQ i#jeQ

T o =0

i#jes

(5.4.7)

Thus the Lagrange function becomes:

Ly (o (2)

i#jes

D) /(D)0 - A{o— s zoij(s)}

i#jes
On setting dL/ dw(z) =0, we have:

o = Dy(s) (5.4.8)
that is, there is no change in the design weights if we
consider the use of optimal design weights due to Godambe
and Joshi (1965). Recall that under such circumstances the
estimator of the variance of GREG reduces to zero as
reported by Farrell and Singh (2002).

5.5. Estimator of variance when both variance and
model parameters are known

We consider the third estimator of the variance as:
03)(Hyns) = 0 (Hps) + OV ()~ 0(H)

+49C = JEO%— X EDy(5))
i#jeQ i;tjes

(5.5.1)

where ,5’1(0) and ﬂéo) are the partial regression coefficients

while we consider to:

Minimize: ¥ zDU-(e)Q(”[cp2 &\ - p,r7 - ,8(0)5}

i#jes
(5.5.2)
Alternatively minimize:
1
D=2 5 3@ - D) (D)0 (5.5.3)
i#jes
subject to:
T T’ = T TD) (5.5.4)
i#jes ’ i#jes
1 .
= 2 zelrl=viiy (5.5.5)
2175]63'
and
3
5 ZCO S S Y00
i#jes o i#jeQ) vy (5.5.6)
The calibrated estimator:
A ~ 1
O@)(Hps) =5 % Yoo} (5.5.7)

i#jes

reduces to (5.5.1).
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6. Simulation setup

For simplicity, here we consider the problem of estimation
of population total under SRSWOR sampling with:

h(yi)=yi, h(x)=x;, and v(x;)=xf . The estimator H,,q
reduces to:

Y = N[7 + fops(X =) (6.1)
Let v, v, v and v; be the four estimators of variance
derived from Section 5 under SRSWOR sampling (for detail
refer to Stearns (2005)).
The percent relative efficiency (RE) of the first estimator v;

with respect to v can be written as:

V(%) 2 -l
RE(0,1) = ———=x100% = (- x100% .
( ) V(vl) 0 ( p®2r2) 0 (6 2)
where p o212 denotes the simple correlation between

D7 = (¢f —e)?and I} = (x;—xj)* for i # j=123,..N.

The RE of v, with respect to v, can be written as:

RE(0, 2) = 200) 4 1009 =(-p?, )'x100%  (6.3)
V(vy) [N
where p ols denotes the simple correlation between

(I),»zj =(ef>—ej?)2 and & =qxf + xj? for i#j=123,..,N.

The RE of v3 with respect to v, can be written as:

V(%) 2 -1
RE(0, 3) = —x100% =(1-R x100% 4
©.3) V(i3) b =( or2,s ) o (64)
where Ré) 22 6 denotes the population coefficient of

>

determination while regressing CDf/ = —ej?)2 on both

5 :\/xl?-r\/g and F,»Jz- = (xl-—xj)2 for i=j=123,.,N.
Note that RE expressions in (6.2), (6.3) and (6.4) are free
from the sample size, but depend upon on parameters. We
first considered the well-known Horvitz and Thompson
(1952) data set. The population consists of N =20 units
with ¥; =the number of households on the i-#4 block,
and X; = the eye estimated number of households on the i-th
block. The results obtained from three estimators are
presented in Figure 6.1. In this population, the estimator v3
seems to be best from the minimum variance point of view.
The estimator v; remains as efficient as the usual estimator
Vg , thus there is not much gain and the value of RE remains
around 102%. The RE of the second estimator v, varies
from 122% to 128% with the median 127%, and the relative
efficiency of the third estimator v5 varies from 123% to

129% with a median efficiency of 128%. The value of
g was changed from 0.0 to 4.8 with a step of 0.2 to study

different heteroscedastic situations. The change in the value
of g has little effect on the RE of the estimator v;, but it

has more effect for the estimators v, and v3. Note that the

two estimators v, and v3 are not defined for g =0.0 .
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Population-I: Horvitz and Thompson (1952)
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Fig. 6.1. Relative efficiency.

Figure 6.1 shows that the RE of the estimator v; remains

substantially lower than the RE of the other two estimators
vp and v3 . Also note that as the value of g increases from

0.0 to 4.8, the RE first increases and then decreases.

Now we consider another large population consisting of
N =50 states in the United States. Here y; represents the

number of abortions in the 50 states of the USA during 1992
to 1996 and x; represents residential population during

2000, and the results so obtained are shown in Figure 6.2.

Population-ll: Residents versus Abortions

300.00
280.00
260.00
240.00
220.00
200.00
180.00
160.00
140.00
120.00
100.00 \ 1

0.0 2.0 4.0 6.0
Value of g

4 REO01
B RE02
REO3

Relative Efficiency

Fig. 6.2. Relative efficiency.

The results based on the large population of 50 units, are
much better than those based on the small population. The
RE of the estimator v; varies from 110% to 244% with a
median RE of 210%. In the same way the RE of the second
estimator v, varies from 122% to 259% with a median RE
204%, and that of the third estimator v; varies from 149%

to 273% with a median 236%. The REs of the three
estimators show a very nice pattern when the value of g
changes from 0.0 to 4.8. The RE of the first two estimators
v and v, cross each other, however the RE of the third

estimator v3 remains a bit higher.
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7. Conclusion

The well known statistical packages like GES, SUDDAN,
STATA, CALMAR etc. could be improved without any
hesitation, and the general public could get trustworthy
estimates from different organizations who are using these
statistical packages after making the necessary amendments
with the methodology developed here.
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