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Abstract

Small area estimators commonly borrow strength
from other related areas. These indirect estimators
use models (explicit or implicit) that relate the small
areas through supplementary data. Various unit-level
and area-level small area models are proposed in the
literature, but all these models assume the small area
mean is linearly related with supplementary informa-
tion. In this article, we propose an area-level, non-
parametric regression estimator based on Nadaraya-
Watson kernel on small area mean. In this direction,
we adopt a two-stage estimation approach proposed
by Prasad and Rao (1990). The asymptotic prop-
erties of the proposed estimator are studied and a
second order approximation to the mean squared pre-
diction error (MSPE) of the two-stage estimator and
the estimator of MSPE approximation are obtained
under normality. We perform a simulation study to
show the superiority of the proposed estimator and
finally we apply this smoothing method to estimate
soil loss due to erosion in certain mid-western coun-
ties in U.S.

1 Introduction

The term “Small Area” denotes any subpopulation
for which direct estimates of adequate precision can-
not be produced (Rao, 2003). Some indirect do-
main estimation procedures are used to gain preci-
sion. This problem is not new in survey statistics.
Small area statistics existed even in eleventh century
England and in seventeenth century Canada (Brack-
stone, 1987). The use of small area estimation is rel-

atively common in survey sampling; e.g., formulating
policies and programs in allocating the government
funds and in regional planning . Government plan-
ing is just one place small area estimation is used.
Recent years have seen an increased demand of small
area estimates from the private sector. Small busi-
nesses relay heavily on local socio-economic condi-
tions, local environmental conditions and other local
conditions. A small area estimate from a large na-
tional survey helps them to save a large amount of
money. There are several organizations who produce
small area statistics. The U.S. National Center for
Health Statistics (NCHS)which pioneered the use of
synthetic estimation based on implicit models to de-
velop state estimates of disability and other health
characteristics for different groups from the National
Health Interview Survey (NHIS). The U.S. National
Agriculture Service (NASS) publishes model-based
county estimates of crop acreage using remote sensing
data as auxiliary information. The U.S. Census Bu-
reau produces estimates of small area incomes based
on a basic area level linking model. The National
Research Council produces model-based county esti-
mates of poor school-age children in the USA (Na-
tional Research Council, 2000).

All of these small area models use parametric esti-
mation procedures to relate between covariates and
unobserved small area means. In this paper, we pro-
pose a non-parametric smoothing approach to pre-
dict the unobserved small area mean. We will also
present MSE of the above predictor and an estimate
of MSE. We have conducted a simulation study and
have shown that if the linearity breaks then the non-
parametric model gives much better results than the
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linear prediction. Even when the linear relationship
is true the non-parametric prediction is ‘as good as’
the linear prediction.

Section 2 describes the background and the pro-
posed kernel based non-parametric approach. A sim-
ulation study is described to check the performance of
the proposed estimator in section 3. A practical ap-
plication of the proposed method is discussed in sec-
tion 4 using the National Resource Inventory (NRI)
data set. Section 5 discuss some limitations of the
proposed method and its remedies. The proof of the
theorems are not given here but can be obtained from
the authors.

2 Kernel-Based approach

Small area means are usually modeled using a mixed
linear model of the form

y = Xβ + Zu + ε (1)

where X is a design matrix, u is a random vector
commonly known as small area effects , and ε is a
vector of sampling error (Rao, 2003). In particular,
for basic area level model with one covariate, model
(1) can be written as

yi = θi + εi (2)
θi = β0 + β1xi + ui (3)

where εi and ui are distributed independently as
N(0, Di) and N(0, σ2

u) (Fay and Herriot, 1979).
Prasad and Rao proposed an estimate of the MSE
for the best linear unbiased predictor under model 3
(Prasad and Rao, 1990).

In almost all applications of small area estimation
this linear mixed effect model is assumed and the es-
timates are very sensitive to this assumption. If the
assumption of linearity between the small area mean
and supplementary information fails then borrowing
strength from other areas using a linear model is not
very appropriate. In fact, depending on the depen-
dence of the area level mean to the covariate, the
relative bias can be as large as 150% (See simulation
results). To reduce the relative bias and to get a bet-
ter estimate of the MSE we propose a model of the

form

yi = θi + εi (4)
θi = m(xi) + ui (5)

where i = 1, 2, ...,m denotes the number of small ar-
eas. The function m(.) is a smooth mean function
which defines the true relation between x and y. θi

is the unobserved small area mean, yi is the observed
direct survey estimator of small area mean, ui is in-
dependent and identically distributed random error
with E(ui) = 0 and V (εi) = σ2

u, and the εi is indepen-
dent sampling error with E(εi) = 0 and V (εi) = Di.
We also assume that all the Di’s are known constants.

To estimate m(xi) we propose the use of Nadaraya-
Watson kernel estimate

m̂h(x) =
∑

i Kh(x− xi)yi∑
i Kh(x− xi)

(6)

where Kh(.) is a kernel function with band width h
and is of the form Kh(u) = 1

hK(u/h) with K(.) sat-
isfying:
i) K(.) is symmetric.
ii) K(.) is bounded and continuous on the range of x
(say, χ )
iii)

∫
χ

K(a)da = 1
The above estimator is linear in yi and can be rewrit-
ten as, m̂h(x) = 1

m

∑m
i=1 Whi(x)yi, where Whi(x) =

Kh(x−xi)

1/n
∑

i
Kh(x−xi)

.

With the above setup it is easy to show that the best
predictor of small area mean θi can be written as,

E(θi|yi) = θ̃i = γiyi + (1− γi)m̂h(xi) (7)

where γi = σ2
u

σ2
u+Di

and we assume σ2
u is known. Now

in the second stage we estimate,

θ̂i = γ̂iyi + (1− γ̂i)m̂h(xi) (8)

where γ̂i = σ̂2
u

σ̂2
u+Di

and σ̂2
u is a consistent estimator of

σ2
u.

From the theory of kernel regression it is now easy to
show that m̂(x) is a consistent estimator for m(x)
at every point of continuity m(.) under the non-
parametric model (5). More formally, we can prove
theorem 1.
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Theorem 1. Under the non-parametric model (4
and 5) with a one-dimensional predictor variable x
and,
(A1)

∫
|K(a)|da < ∞,

(A2) lim|a|→∞aK(a) = 0,
(A3) Ey2

i < ∞ for all i,
(A4) m →∞, mh →∞,
then, at every point of continuity of m(x),
m−1

∑m
i=1

Kh(x−xi)yi∑
i
Kh(x−xi)

→ m(x) in probability.

Under certain bound conditions on xi and k(.) we
can find the mean square error for estimating m(.)
by m̂(.). Theorem 2 states the complete result to
find the estimate of m̂(.).

Theorem 2. Under the non-parametric model
(4 and 5) with a one-dimensional predictor x and
define ck =

∫
K2(a)da, dk =

∫
a2k(a)da and assume

(A5) m(.) is continuous.
(A6) maxi|xi − xi−1| = ©(m−1)
(A7) Di = D for all i and is finite
(A8) m →∞, mh →∞,
then
E[m̂h(xi) − mh(xi)]2 ≈ (mh)−1σ2ck +
h4d2

k[m
′′
(xi)]2/4

where σ2 = σ2
u + D.

In theorem 2, we ignore the terms which are higher
than the order of m−1. From the expression we see
that the MSE of m̂(x) has two parts. One part comes
from the bias and the other part is related to the
variance. A suitable selection of bandwidth h can
compromise between bias and variance. Selection of
bandwidth has a very large effect on kernel smooth-
ing. In this paper we will choose a fixed bandwidth of
h ∝ n−1/5. For a more detailed discussion on band-
width selection see Hardle, 1990. So far, for any given
x, we have got the form for m̂(x) and we also know
its mean square error. Now to find out θ̂i we need
to estimate σ2

u. A method of moment type estimator
using weighted sum of squares for residuals is given
in proposition 1.

Proposition 1. Under the assumptions of theo-
rem 2 and if x is a point of continuity of σ2

u(x) then,
σ̂2

u(x) = min{0, 1
m−1

∑m
i=1 Whi(x){yi−m̂(xi)}2−D}.

That is, between area variance for any given small
area xi can be estimated as a weighted sum of the

residuals. The proposed estimator can be negative
but it can be shown that as m → inf, P (σ̂2

u < 0) → 0.
Hence small area means can now be estimated using
model (8).

2.1 MSE of the proposed estimator

In this subsection, we will calculate the mean square
error of θ̂i and will propose an estimator of the true
MSE. To get the MSE of θ̂i we break the square differ-
ence of θ̂i and θi into three parts. First we must find
the MSE of θ∗ = γiyi + (1− γi)m(xi) from θi. Then
we find the average square distance between θ∗i and
θ̃i, which is mainly due to the estimation of m(.) by
m̂(.). The third term is the average square distance
between θ̃i and θ̂i and it is due to the estimation of
σ2

u by σ̂2
u. The result is stated in theorem 3.

Theorem 3. Under the assumptions (A1) to (A8)
and if (A9) εi and ui are independently normally dis-
tributed then
MSE(θ̂i) ≈ Dσ2

u

σ2
u+D +(1−γ)2MSE[m̃h(xi)]+D2(σ2

u +
D)−4E[(yi −m(xi))(σ̂2

u − σ2
u)]2

where MSE(mh(xi)) is given by theorem 2.
An estimation of the above MSE can be obtained

by plugging in σ̂2
u for σ2

u, mse(.) for MSE(.), and by
taking a first step approximation of the product term.
But if we do this, the first term of the expression is
estimated with a bias of order 1

n and hence a bias
adjusted estimator is proposed in proposition 2.

Proposition 2. Under the assumption of (A1) to
(A9), mean square of error of θ̂i can be estimated as,
mse(θ̂i) = Dσ̂2

u

σ̂2
u+D + (1− γ̂)2mse[m̃h(xi)] + 2D2(σ̂2

u +
D)−3mse(σ̂2

u).
Therefore unobserved small area means can be esti-

mated using a non-parametric setup and an estimate
of MSE and its estimate can be obtained. Moreover,
if we put xT

i β̂ for m̂(xi) we will get exactly the same
form of linear mixed effect estimates as proposed in
Rao, 2003.

3 Simulation

To check the performance of the kernel based esti-
mate of small area prediction over the linear para-
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Figure 1: Plot for generated populations for simula-
tion.

metric model prediction, we perform some simula-
tion studies. We considered a wide range of smooth-
ing functions as true functions and different ratios of
small area variance over error variance.
We consider four mean functions:
i)Linear: m1(x) = 50 + 2x
ii) Cubic: m2(x) = .01 + .2x− .005x3

iii) Exponential: m3(x) = exp(.5x)
iv) Mixed Exponential: m4(x) = {1 − x + exp((x −
5)2)}10−6

where xi is generated from uniform (0,10) distribu-
tion for i = 1, 2, ..., 100 areas. The small area effects
σ2

u is taken as .25 and Di are taken to be .1 for one-
third areas, .25 for one-third areas and .5 for the rest
of the one-third areas.

For all the above populations, we fit both the linear
model (3) and the non-parametric model (5). Small
area means and an estimate of MSE for each small
area is computed using both models. To compare the
two models we generate populations R times and we
calculate the following fit statistics:
i) Relative bias for ith area :

RB(θ̂i) =
1
R

R∑
r=1

θ̂
(r)
i − θ

(r)
i (9)

ii) True MSE for the estimated mean of ith area:

MSE(θ̂i) =
1
R

R∑
r=1

{θ̂i − θi}2 (10)

iii) Relative bias of estimated MSE for ith area:

RB{mse(θ̂i)} =
1
R

∑R
r=1{mse(θ̂i)(r) −MSE(θ̂i)}

MSE(θ̂i)
(11)

. Where mse(θ̂i), and MSE(θ̂i) are the estimated
and true mean square error for the ith area.
iv) Coefficient of variation of the estimated MSE for
the ith area:

CV {mse(θ̂i)} =

√
1
R

∑R
r=1{mse(θ̂i)(r) −MSE(θ̂i)}2

MSE(θ̂i)
(12)

.
A better model should have smaller values for all
these three statistics defined above.

3.1 Results

We gave generated values for 100 small areas with
a summary of the statistics given in table (1) to ta-
ble (4). In these tables, predictions from Fay-Herriot
model is denoted as FH and predictions from non-
parametric mixed effect model is denoted as NPME.
Mean, standard error, first quantile (1st Q.), and
third quantile (3rd Q.) are given in the columns.
From table (1), for the linear population, predictions
from NPME model is ’as good as’ the predictions
from the FH model. For any other population con-
sidered in the simulation, NPME predictions give low
relative bias as compared to FH predictions. Al-
though we have less bias using NPME model, we
cannot reduce the MSE by a big margin (table (2) to
table (4)). One can always expect to reduce the MSE
(or to obtain a balance between RB and MSE) from
the NPME predictions by changing the bandwidth.
The estimation of the MSE using a non-parametric
model always has less RB(mse) and less CV(mse)
as compared to the estimated MSE using FH pre-
dictions. Therefore, for all the populations we have
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Mean SE 1st Q. 3rd Q.

FH .0003 .002 -.001 .001
RB

NPME .0007 .002 -.001 .002

FH 0.13 0.08 0.08 0.16
MSE

NPME 0.18 0.12 0.10 0.23

FH 0.37 0.31 0.19 0.42
RB(mse)

NPME 0.26 0.17 0.14 0.37

FH 7.19 6.16 3.77 8.21
CV(mse)

NPME 8.14 9.56 3.85 8.76

Table 1: Linear Population: NPME prediction is per-
forming as good as FH predictions.

Mean SE 1st Q. 3rd Q.

FH .37 12.05 -0.64 0.38
RB

NPME .21 9.94 -0.48 0.14

FH 0.18 0.12 0.10 0.23
MSE

NPME 0.14 0.09 0.07 0.18

FH 6.16 5.27 3.23 7.02
RB(mse)

NPME -3.91 4.59 -4.21 -1.85

FH 10.64 9.11 5.58 12.14
CV(mse)

NPME 6.83 8.02 3.23 7.35

Table 2: Cubic Population: NPME prediction per-
forms better than FH predictions.

considered here, NPME predictions are ’as good as’
the linear predictions, and for the populations with
a nonlinear trend NPME predictions has less bias as
compared to the predictions from the linear model.

4 Application to NRI

The United States National Resource Inventory
(NRI) is a large nation-wide survey of the U.S. land
area. The current NRI is a longitudinal survey of
soil, water, and related environmental resources. The
NRI is designed to assess conditions and trends of
non-federal US lands on a yearly basis. The data
were collected using a two-stage, two-phase supple-
mented panel longitudinal area sample design at the
national level (Nusser and Goebel, 1997 and Fuller,
2003). In some Midwestern states, soil erosion due

Mean SE 1st Q. 3rd Q.

FH 0.47 5.95 -0.55 0.48
RB

NPME 0.24 6.23 -0.51 0.27

FH 0.16 0.10 0.09 0.20
MSE

NPME 0.14 0.09 0.08 0.18

FH 0.98 0.84 0.52 1.12
RB(mse)

NPME -1.07 1.26 -1.15 -0.51

FH 5.03 4.31 2.64 5.74
CV(mse)

NPME 4.07 4.77 1.92 4.38

Table 3: Exponential Population: NPME performs
better on relative bias but similar with FH on MSE,
and estimates of MSE.

Mean SE 1st Q. 3rd Q.

FH 0.42 9.20 -0.62 0.44
RB

NPME 0.22 7.44 -0.50 0.25

FH 0.13 0.09 0.08 0.17
MSE

NPME 0.15 0.10 0.08 0.20

FH 3.52 3.84 2.89 4.47
RB(mse)

NPME -2.48 3.31 -2.11 -0.99

FH 7.05 6.98 6.01 8.82
CV(mse)

NPME 5.55 6.37 2.85 6.93

Table 4: Mixed-Exponential Population: NPME pre-
dictions are better over FH predictions except for
MSE, where both the predictions are nearly same.
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Total Observations : 75573
Number of states : 3
Number of counties : 276
County with size 0 : 57
County with size < 10 : 114
County with size < 20 : 152

Table 5: Summary of observed counties

to wind causes massive problems. It may be ben-
eficial for the local and state governments to esti-
mate this soil loss in their area. Because of the na-
tional level design of the NRI, sample size within one
county could be as low as 5, but the nature of the
problem is similar to all the adjacent counties. We
should somehow borrow strength from other coun-
ties with similar trends (soil properties, landscape,
weather, etc.) to increase precision of our estimation.
In this application we will use soil erodibility index
(IFact) as our auxiliary information and soil loss due
to wind for the year (WEQ03) as our covariate. The
response variable WEQ03 is not directly observed in
the field but rather it is a function of some other
observed variable. There are several advantages of
choosing IFact as a covariate. First, we believe that
high values of IFact indicates higher erosion (Wind
Erosion Research Unit). Second, IFact can be ob-
tained from Natural Resources Conservation Service
(NRCS) soil survey database available through the
NRCS Soil Data Mart (SDM) at each county level
for US. Table (5) shows a summary of observations
in each county. There are 152 counties with less than
20 observations. Figure (2) shows the relation be-
tween WEQ03 and IFact. Each point in figure (2)
represents the observed mean for each county. The
county level mean plot for soil loss due to wind sug-
gests a non-linear relationship among WEQ03 and
IFact. This motivates us to use a non-parametric,
small area model as opposed to a linear model. The
model yi = m(xi)+ui + εi is fitted with m(xi) as the
Nadaraya-Watson kernel estimate to the NRI dataset
and the estimates are discussed in the next subsec-
tion.

Figure 2: Scatter plot of WEQ against erodibility in-
dex. Each point represents observed mean value for
each county. Scatter plot shows a nonlinear pattern
or a trend of unequal variance.

4.1 Estimates

The 2003 NRI data set has not yet been released for
public use, so all values are strictly for demonstra-
tional purposes and are in no way related with the
original observed values. Table (6) shows a sum-
mary of estimated means for all the counties with
different sample sizes. The number of counties for a
specified size are given within bracket for each size
category. From this table we can compare the di-
rect survey weighted estimates (DE), estimates using
Fay-Herriot model (FH), and estimates using non-
parametric mode l (NP). The predicted means from
the NP model is always close to the observed mean as
compared to the predicted mean from the FH model.
The estimated MSE under NP model is always lower
than any of the other two methods when the sample
size within a county is less than 20. When the sam-
ple size within a county is more than 50, DE gives
better precession than NP or FH predictions. For
small sample sizes within a county, FH model im-
proves precision over DE but is not better than NP
model. This is not very surprising as the data plot
suggests a violation from linearity. A plot of esti-
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County Size = 1 (8)
Mean mse

DE 0.93 -
(0.52, 1.19)

FH 3.03 0.24
(1.36, 3.77) (0.23, 0.26)

NP 1.50 0.22
(1.31, 1.89) (0.19, 0.22)
County Size = 2-10 (52)

Mean mse
DE 3.04 3.53

(0.44, 4.48) (0.03, 2.60)
FH 2.94 0.98

(0.83, 5.12) (0.07, 1.12)
NP 2.99 0.77

(0.49, 4.62) (0.14, 0.99)
County Size = 11-20 (8)

Mean mse
DE 2.02 0.65

(0.68, 2.53) (0.02, 0.53)
FH 2.48 0.18

(1.35, 2.81) (0.10, 0.17)
NP 1.97 0.11

(0.73, 2.41) (0.09, 0.14)
County Size > 50 (52)
Mean mse

DE 4.02 0.42
(2.08, 3.36) (0.03, 0.45)

FH 3.16 0.74
(2.55, 3.66) (0.15, 0.90)

NP 3.74 0.85
(2.07, 4.61) (0.24, 1.01)

Table 6: Distribution of small area means and its
estimated MSE based on county size. DE denotes
the direct survey estimates, FH is the predicted mean
from Fay-Herriot model and NP is the predicted
means from non-parametric model. Estimated MSE
for each predicted mean is given in the parenthesis.

Figure 3: Estimation of county means using direct
survey means. A darker shade of red implies more
erosion.

Figure 4: Estimation of county means using Fay-
Herriot model. A Dakar shade of red implies more
erosion.

mated county means (for three states under study)
using direct estimates is given in (3), whereas plots
of predicted means for each county using FH model
and NP model are shown in figure (4), and figure (5)
respectively. Dark values of red imply high values
for estimated mean for that county. A closer look at
these three plots suggests that both FH and NP pre-
diction makes the plot look more smooth (the change
of color is not a jump). NP prediction puts more color
on the map as compared to the FH prediction, which
makes it more smooth.

5 Discussion

In this work, we take a step toward the use of
non-parametric regression for small area estimation.
Nadaraya-Watson based kernel estimation is used to
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Figure 5: Estimation of county means using non-
parametric model. A darker shade of red implies more
erosion.

estimate small area means. We also find out the MSE
and an estimate of MSE for the proposed estima-
tor. A simulation study shows the efficiency of the
proposed estimator over its linear counterpart. The
proposed estimator is applied to a NRI data set to
estimate soil loss due to wind at the county level in
three mid-western states in the US. The estimated
value shows more smooth estimates than both the
direct or linear model based estimates.

Much more rigorous work is required to find out
the exact order of approximation for the proposed
estimators. All the theorems are stated under the
assumption that the sampling variances are the same
in each county. Work needs to be done to incorporate
unequal sampling variance.
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