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1. Introduction 
A survey sample may cover segments of the target population 
in proportions that do not match the proportions of those 
segments in the population itself.  The differences may arise, 
for example, from sampling fluctuations, from nonresponse, or 
because the sample design was not able to cover the entire 
population.  In such situations one can often improve the 
relation between the sample and the population by adjusting 
the sampling weights of the cases in the sample so that the 
marginal totals of the adjusted weights on specified 
characteristics agree with the corresponding totals for the 
population.  This operation is known as raking ratio estimation 
(Kalton 1983), raking, or sample-balancing, and the 
population totals are usually referred to as control totals.  
Raking may reduce nonresponse and noncoverage biases, as 
well as sampling variability.  The initial sampling weights in 
the raking process are often equal to the reciprocal of the 
probability of selection and may have undergone some 
adjustments for unit nonresponse and noncoverage.  The 
weights from the raking process are used in estimation and 
analysis. The adjustment to control totals is sometimes 
achieved by creating a cross-classification of the categorical 
control variables (e.g., age categories x gender x race x 
family-income categories) and then matching the total of the 
weights in each cell to the control total.  This approach, 
however, can spread the sample thinly over a large number of 
cells.  It also requires control totals for all cells of the cross-
classification.  Often this is not feasible (e.g., control totals 
may be available for age x gender x race but not when those 
cells are subdivided by family income).  The use of marginal 
control totals for single variables (i.e., each margin involves 
only one control variable) often avoids many of these 
difficulties.  In return, of course, the two-variable (and higher-
order) weighted distributions of the sample are not required to 
mimic those of the population.  Raking (or sample-balancing) 
usually proceeds one variable at a time, applying a 
proportional adjustment to the weights of the cases that belong 
to the same category of the control variable.  Izrael et al. 
(2000) introduced a SAS macro for raking (sometimes 
referred to as the IHB raking macro) that combines simplicity 
and versatility.  More recently, the IHB raking macro has been 
enhanced to increase its utility and diagnostic capability 
(Izrael et al. 2004). 
 
2. Basic Algorithm 
The procedure known as raking adjusts a set of data so that its 
marginal totals match specified control totals on a specified set 
of variables.  The term “raking” suggests an analogy with the 
process of smoothing the soil in a garden plot by alternately 
working it back and forth with a rake in two perpendicular 
directions.   
In a simple 2-variable example the marginal totals in various 
categories for the two variables are known from the entire 
population, but the joint distribution of the two variables is 

known only from a sample.  In the cross-classification of the 
sample, arranged in rows and columns, one might begin with 
the rows, taking each row in turn and multiplying each entry 
in the row by the ratio of the population total to the weighted 
sample total for that category, so that the row totals of the 
adjusted data agree with the population totals for that variable.  
The weighted column totals of the adjusted data, however, 
may not yet agree with the population totals for the column 
variable.  Thus the next step, taking each column in turn, 
multiplies each entry in the column by the ratio of the 
population total to the current total for that category.  Now the 
weighted column totals of the adjusted data agree with the 
population totals for that variable, but the new weighted row 
totals may no longer match the corresponding population 
totals.  The process continues, alternating between the rows 
and the columns, and agreement on both rows and columns is 
usually achieved after a few iterations. The result is a 
tabulation for the population that reflects the relation of the 
two variables in the sample. 

 
The above sketch of the raking procedure focuses on the 
counts in the cells and on the margins of a two-variable cross-
classification of the sample.  In the applications that we 
encounter, involving data from complex surveys, it is more 
common to work with the survey weights of the n individual 
respondents.  Thus, we describe the basic raking algorithm in 

terms of those individual weights, , 1, 2,..., .iw i n=   For an 

unweighted (i.e., equally weighted) sample, one can simply 

take the initial weights to be 1 for each .iw i=  

 
In a cross-classification that has J rows and K columns, we 

denote the sum of the iw in cell ( , )j k by .jkw  To indicate 

further summation, we replace a subscript by a + sign.  Thus, 
the initial row totals and column totals of the sample weights 

are jw + and kw+ respectively.  Analogously, we denote the 

corresponding population control totals by jT +  and .jT+  

 
The iterative raking algorithm produces modified weights, 
whose sums we denote by a suitably subscripted m with a 
parenthesized superscript for the number of the step.  Thus, in 

the two-variable cross-classification we use jkm (1) for the sum 

of the modified weights in cell (j,k) at the end of  step 1.  If we 

begin by matching the control totals for the  rows, jT + , the 

initial steps of the algorithm are  
 

(0)
jk jkm w=    (j = 1,...,J; k=1,...,K) 

(1) (0) (0)( / )jk jk j jm w T m+ +=  (for each k within each j) 

(2) (1) (1)( / )jk jk k km w T m+ +=  (for each j within each k) 
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The adjustment factors, T j+ /m j+
(0) and T+k / m+k 

(1),  are 
actually applied to the individual weights, which we could 
denote by mi

(2), for example.  In the iterative process an 
iteration rakes both rows and columns.  Thus, for iteration s ( s 
= 0, 1, ...) we may write 
 

 (2 1) (2 ) (2 )( / )s s s
jk jk j jm m T m+

+ +=  

             (2 2) (2 1) (2 1)( / )s s s
jk jk k km m T m+ + +

+ +=  

 
In our introductory comments on raking it is important to 
mention that ideally one should rake on variables that exhibit 
strong associations with the key survey outcome variables 
and/or variables that are strongly related to nonresponse or 
noncoverage.  When this is achieved, the mean squared error 
of the key outcome variables will be reduced.  This points to 
the need to give careful thought to what variables should be 
used in raking.   
 
3. Convergence 
Convergence of the raking algorithm has received 
considerable attention in the statistical literature, especially in 
the context of iterative proportional fitting for log-linear 
models, where the number of variables is at least three and the 
process begins with a different set of initial values in the fitted 
table (often 1 in each cell).  For our purposes it is enough that 
the iterative raking algorithm (ordinarily) converges, as one 
would expect from the fact that (in a suitable scale) the fitted 
cell counts produced by the raking are the weighted-least-
squares fit to the observed cell counts in the full cross-
classification of the sample by all the raking variables 
(Deming 1943, Chapter VII).   
Convergence may require a large number of iterations.  Our 
experience indicates that, in general, raking on a large number 
of variables slows the convergence process.  However, other 
factors also affect convergence. One is the number of 
categories of the raking variables.  Convergence will typically 
be slower for raking on 10 variables each with 5 categories 
than for 10 variables each with only 2 categories.  A second 
factor is the number of sample cases in each category of the 
raking variables.  Convergence may be slow if any categories 
contain fewer than 5% of the sample cases.  A third factor is 
the size of the difference between each control total and the 
corresponding weighted sample total prior to raking.  If some 
differences are large, the number of iterations will typically be 
higher.  One can guard against the possibility of 
nonconvergence or slow convergence by setting an upper limit 
on the number of iterations (e.g., 50).  Brick et al. (2003) also 
discuss problems with convergence.  They point out that a 
large number of iterations indicate a raking application that is 
not “well-behaved” and that problems may exist with the 
resulting weights – highly variable weights inflate sampling 
variances and produce unstable domain estimates. 
 
One simple definition of convergence requires that each 
marginal total of the raked weights be within a specified 
tolerance of the corresponding control total.  As noted above, 
in practice, when a number of raking variables are involved, 
one must check for the possibility that the iterations do not 
converge (e.g., because of sparseness or some other feature in 

the full cross-classification of the sample).  As already noted, 
one can guard against this possibility by setting an upper limit 
on the number of iterations.  As elsewhere in data analysis, it 
is sensible to examine the sample (including its joint 
distribution with respect to all the raking variables) before 
doing any raking.  For example, if the sample contains no 
cases in a category of one of the raking variables, it will be 
necessary to revise the set of categories and their control totals 
(say, by combining categories).  We recommend that, at a 
minimum, one should check the unweighted percentage of 
sample cases in each raking variable category and that the 
percentage of cases in each control total category also be 
examined.  Small categories in the sample or in the control 
totals (say under 5%) are potential candidates for collapsing.  
This will reduce the chance of creating very unequal weights 
in raking.  Category collapsing always needs to be done 
carefully, and in some instances it may be important to retain a 
small category in the raking. 
 
4. Sources of Control Totals 
In our discussion of control totals we are referring to actual 
totals as opposed to percents.  Surveys that use demographic 
and socioeconomic variables for raking must locate a source 
for the population control totals.  An example of a source of 
true population control totals is the 2000 Census short-form 
data.  The Census long-form variables, the 2000 Census 
PUMS, the Current Population Survey, Census Bureau 
population projections, the National Health Interview Survey, 
and private-sector sources such as Claritas are better viewed as 
control totals, because they are based either on large samples 
or on projection methodologies.   
 
For control totals obtained from a sample such as the CPS, the 
basic idea is that the estimates are subject to much smaller 
sampling variability and nonresponse bias, and may be subject 
to much lower noncoverage bias, than a survey sample.  For 
state-specific control totals for, say, persons aged 0-17 years, 
the CPS estimates will be subject to considerably larger 
sampling variability; thus they are useful for national control 
totals, but much less useful for stable state control totals.  For 
projection methods (e.g., age by sex by race mid-year 
population  projections from the U.S. Census Bureau), the 
basic approach is to project information forward from 2000 for 
the non-censal years.  Clearly, the farther one gets from 2000, 
the greater the likelihood that the projections will be off.  This 
happened, for example, with the projection of the size of the 
Hispanic population for the years before the 2000 Census 
results came out.  Eventually, the American Community 
Survey should provide a new source of information for non-
censal years. 
 
It is important to make sure that control totals from different 
sources all add to the same population total.  If not, the raking 
will not converge.  For example, let us assume that one has 
conducted a survey in the middle of 2003.  One is using 
Census Bureau age, sex, and race projections of the civilian 
noninstitutionalized population for July 2003.  The March 
2003 CPS is used to obtain control totals by household 
income.  In this situation one would most likely need to ratio-
adjust the CPS income control totals so that they summed to 
the Census projection control totals for July 2003. 
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One must also consider how the variables are measured.  In a 
telephone survey one may ask a single question to obtain 
household income.  The source for the control totals may have 
an income variable that is constructed from a series of 
questions about income from several sources (wages, cash-
assistance programs, interest, dividends, etc.).  One needs to 
consider carefully whether using income as a raking variable 
makes sense.  If the sample is thought to substantially under-
represent low-income persons, then raking on income may be 
preferred.  If, on the other hand, there is concern that the 
survey is measuring income very differently from the source 
of the control totals, then consideration should be given to 
raking on a proxy variable such as educational attainment or 
even a dichotomous poverty-status variable. 
 
Control totals usually do not come with a “missing” category.  
The same variable in the survey may have a nontrivial 
percentage of cases that fall in a DK or Refused category.  In 
this situation it may be possible to impute for item 
nonresponse in the survey before the raking takes place.  
When imputation is not feasible, the following procedure can 
be used to adjust the control totals.  Run an unweighted 
frequency distribution on the raking variable in order to 
determine the percentage of sample cases that have a missing 
value (e.g., 4.3%).  Allocate 4.3% of the control total to a 
newly created missing category (e.g., 4.3% of 1,500,000 = 
64,500).  Reapportion the control totals in the other categories 
so that they add to the reduced control total (1,500,000 – 
64,500 = 1,435,500).  After raking, the weighted distribution 
of the sample will agree with the revised control totals and 
will reflect a 4.3% missing- data rate in weighted frequencies 
and tabulations. 
 
5. Trade-offs Related to the Number of Margins and 
Number of Categories of Those Margins 
Some raking applications use margins for age, sex, and race, 
because it is relatively easy to obtain control totals for these 
variables.  In other situations (especially in surveys with lower 
response or important noncoverage issues) one may need to 
rake on a considerably larger number of variables.  This is 
feasible if control totals can be assembled for these variables.  
We have seen rakings that used well over ten variables.  
Raking on many variables will almost always require a large 
number of iterations.  We have also seen rakings that used a 
smaller number of variables, but with fairly detailed 
categories.  Again, a large number of iterations may be 
required.  In both situations the cross-classification of the 
raking variables often yields an extremely large number of 
cells.  For example, raking on 12 dichotomous variables yields 
4,096 cells.  Raking on five variables each containing six 
categories yields 7,776 cells.  Many of these cells will contain 
no cases in the sample.  Such cells, by definition, remain 
empty after raking.  However, the two-variable, three-variable, 
are higher-order interactions in the sample are maintained in 
the raking to the marginal control totals.  The small cell sizes 
increase the chance that the raked weights will exhibit 
considerable variability, because those weights are 
maintaining sample interactions that are quite unstable. 
 
On top of the challenges of the numbers of variables and 
categories and the resulting number of underlying cells, if the 

weighted sample totals before raking differ by a large amount 
from the marginal control totals, the number of iterations will 
be even greater.  These issues point to the need to closely 
examine: 1) the variables selected for raking, 2) the number 
and size of the categories of those raking variables, and 3) the 
magnitude of differences between the weighted sample totals 
and the control totals.  Ideal variables for raking are those 
related to the key survey outcome variables and related to 
nonresponse and/or noncoverage.  Variables that do not meet 
these conditions are candidates for exclusion from raking 
when a large number of variables are being considered.  The 
categories of each candidate raking variable should be 
examined to see whether they contain a small proportion of 
the sample cases (say, under 5%) or whether the control total 
percentage is small (also, say, under 5%).  Such small 
categories should be considered for collapsing.  Sometimes the 
small categories of a nominal categorical variables can be 
collapsed into a larger residual category.  For ordinal 
variables, collapsing with an adjacent category is often the 
best approach.  If one or more weighted sample totals differ by 
a large amount from the corresponding control totals, one 
should first try to determine the cause of the difference.  Is it 
extreme differential nonresponse, or has the variable in the 
sample been measured in a very different manner than the 
corresponding variable used to form the control total?  One 
should consider whether it is appropriate to use such a variable 
in raking. 
 
 
6. Raking at the State Level in a Large-Scale National 
Survey 
Some large surveys stratify by state and are designed to yield 
state estimates.  The resulting total national sample is usually 
very large.  The survey analysts seek to provide national 
estimates as well as state estimates.  Often one sets up raking 
control totals at the state level and carries out 51 individual 
rakings.  Let us assume those rakings use variables A, B, and 
C; but the number of categories of each variable is limited 
because of the state sample sizes.  For example, we often 
collapse variables A, B, and C differently by state.  If variable 
A were race/ethnicity, we might be able to use Hispanic as a 
separate race/ethnicity category in California, but not in 
Vermont due to the small sample size.  After the 51 rakings 
one might compare weighted distribution of variables A, B, 
and C with national control totals and observe some 
differences that are caused by the state-level collapsing of 
categories.  If having precise weighted distributions at the 
national level is important for analytic or “face validity” 
reasons, one can use the IHB raking macro to do the 
following: 
 
Set up a single raking that includes margins for State x A, 
State x B, and State x C (i.e., combine the 51 individual state 
rakings into a single raking).  Then add detailed national 
margins for variables A, B, and C.  Another, similar example 
would involve adding variable D as a national raking margin 
because its control total is available only at the national level 
(e.g., household income).  This approach to raking needs to be 
implemented carefully.  Checks should be made for raking 
variables that contain small sample sizes.  The coefficient of 
variation of the weights prior to raking and after raking should 
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be examined in each state to check for large increases in the 
variability of the weights.  Finally, the raking diagnostics 
discussed above should be used if convergence problems arise. 
 
7. Maintaining Prior Nonresponse and Noncoverage 
Adjustments in the Final weights 
Frankel et al. (2003) have discussed methods based on data on 
interruptions in telephone service (of a week or longer in the 
past 12 months) to compensate for the exclusion of persons in 
nontelephone households in random-digit-dialing surveys.  
One typically adjusts the base sampling weights of persons 
with versus without an interruption in telephone service.  The 
resulting interruption-based weight adjusts for the 
noncoverage of nontelephone households.  If one then rakes 
the sample on the basis of age, sex, and race, the impact of the 
nontelephone adjustment may be diluted somewhat, even 
though the interruption-based weight is used as the “input” 
weight for the raking.  In that case it generally makes sense to 
create weighted control totals (using the interruption-based 
weight) from the sample for persons residing in households 
with versus without an interruption in telephone service.  
These weighted control totals should be ratio-adjusted so that 
they sum to the age, sex, and race control total.  For example, 
if the age, sex and race margins sum to 180,000,000 persons, 
then the interruption margin needs to be adjusted so that it also 
sums to 180,000,000.  The raking would use the four variables 
instead of just three and would ensure that the nontelephone 
adjustment is fully reflected in the final weights.  This would 
be appropriate where the interruption-in- telephone-service 
category could be small (e.g., in states where telephone 
coverage is very high), but one still wants to maintain that 
small category in the raking. 
 
8. Inclusion of Two-Variable Raking Margins 
As discussed in Section 2, raking can be viewed as analogous 
to fitting a main-effects-only model.  Because of sample size 
limitations and/or availability of only one-variable (factor or 
dimension) control totals, many raking applications follow this 
approach.  In some situations it may be important to fit a two-
variable interaction to the data.  For example, one is planning 
to rake on variables A, B, C, and D.  However, variable C 
crossed with variable D is available from the control total 
source and exhibits a strong interaction (e.g., persons aged 0-
17 years are more likely to be Hispanic than persons aged 65+ 
years).  Upon examination of the sample, one determines that 
the cell counts in the C x D margin are large enough to support 
fitting a two-variable C x D interaction.  In that case one 
would rake on three margins: A, B, and C x D.  It is not 
necessary to also rake on separate margins for variables C and 
D.  If, however, the C x D raking margin involved collapsing 
categories of variables C and/or D in order to ensure that cell 
counts were not too small, one could consider adding one-
variable margins to the raking for variables C and D without 
any collapsing of their categories. 
 
9. Forming Control Totals for Quantity Variables 
In a specialized raking situation one is planning on raking on 
some categorical variables.  Let us assume that the source of 
the control totals also has a quantity variable related, to say, 
the average number of glasses of milk consumed per week.  
The survey has also measured this same quantity variable; but 

the survey response rate is, let us assume, only 50%.  There is 
interest in raking to ensure that the weighted total number of 
glasses of milk consumed per week agrees closely with the 
control total source.  This can be accomplished by dividing the 
sample into groups (in a simple use, two groups: below and 
above the median number of glasses of milk consumed from 
the control total source).  Control totals for those groups are 
used in raking the sample. 
 
 
10. Raking Surveys that Screen for a Specific Target 
Population 
A commonly used survey model for obtaining interviews with 
a specific target population is to screen a sample of 
households for the presence of target population members.  An 
example would be children with special health care needs.  A 
roster of children is collected with, say, their age, sex, and 
race.  It is determined whether each child has special health 
care needs.  If the household contains one child with special 
health care needs, a detailed interview is conducted for that 
child.  If the household has two or more such children, one is 
selected at random for the detailed interview.  Of course, the 
interview response rate will be less than 100%, because some 
parents will not agree to do the detailed interview.  Let us 
assume that the survey analysts need to look at prevalence of 
children with special health care needs, and they will also be 
analyzing the detailed interview data.  In this situation we 
would calculate the usual base sampling weights, make 
adjustments for unit nonresponse and possibly make a 
noncoverage adjustment if warranted.  We first obtain control 
totals for age, sex, and for race in the U.S. population aged 0-
17 years.  We then rake the entire sample of children in the 
screened households to those control totals, because that 
sample is a sample of children aged 0-17 in the U.S.  The 
resulting screener weights can then be used to estimate the 
prevalence of children with special health care needs in the 
U.S.  That screener weight would typically serve as the input 
weight in the calculation of weights for the children with 
completed detailed interviews.  As part of that calculation 
process we seek to weight the detailed interview sample by 
age, sex, and race.  Of course, control totals are unlikely to be 
available for children with special health care needs.  We can, 
however, use the screener weight and the sample of children 
with special health care needs identified in the screener survey 
to form weighted control totals for age, sex, and race and then 
use them in the raking of the detailed-interview weights.  This 
method ensures that the survey analysts do not ask why the 
age distribution of children with special health care needs 
from the screener sample does not agree exactly with the 
distribution in the detailed interview data.  Some caution 
needs to be exercised in using this approach when there is 
evidence of false positives from the screener survey. 
  
11. Weight Trimming and Raking 
Weight truncation and trimming are a separate topic from 
raking; but they are certainly related, in the sense that weight 
trimming often takes place at the last step in the calculations, 
which is often raking.  Weight trimming is done in many 
large-scale surveys (Srinath 2003).  Its objective is to reduce 
the mean squared error of the key outcome estimates.  By 
truncating high weight values one generally lowers sampling 
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variability but may incur some bias.  The MSE will be lower if 
the reduction in variance is large relative to the increase in 
bias arising from weight truncation.  There are no hard-set 
rules for weight trimming; rather most people use a general set 
of guidelines.  Some rules in common use for the truncation 
point are: 1) the median weight plus six times the interquartile 
range (IQR) of the weights, and 2) five times the mean weight.  
How can weight trimming be incorporated in raking?  We 
have used the IHB SAS macro for weight trimming using the 
following steps (using the median weight plus six times the 
IQR): 
 

1. Run the raking to obtain raking weight #1. 
2. Examine the distribution of raking weight #1 and 

calculate cutoff #1 equal to the median plus six times 
the IQR. 

3. Truncate raking weight #1 values above cutoff #1 to 
cutoff #1 (raking weight #1 values at or below cutoff 
#1 are not altered). 

4. Run the raking using truncated raking weight #1 as 
the input weight to obtain raking weight #2. 

5. Examine the distribution of raking weight #2 and 
calculate cutoff #2 equal to one plus the median plus 
six times the IQR.  

6. Truncate raking weight #2 values above cutoff #2 to 
cutoff #2 (raking weight #2 values at or below cutoff 
#2 are not altered). 

7. Run the raking using truncated raking weight #2 as 
the input weight to obtain raking weight #3. 

8. Examine the distribution of raking weight #3 and 
calculate cutoff #3 equal to one plus the median plus 
six times the IQR.  

9. Truncate raking weight #3 values above cutoff #3 to 
cutoff #3 (raking weight #3 values at or below cutoff 
#3 are not altered). 

10. Stop when no weight values exceed the truncation 
cutoff value. 

 
In steps 5 and 8 we use a cutoff value of one plus the median 
weight plus six times the IQR, because the raking may 
increase the input weight values of the cases that have been 
truncated, and thus cause the raking steps to repeat endlessly. 
 
Table 1 shows an example of the use of weight trimming in 
the IHB SAS macro. 
 
 
12. Conclusions 
We have sought to give some background on how raking 
works and to discuss the convergence process.  Our tips and 
tricks come from extensive use of raking on large-scale 
surveys.  We have also sought to give some warnings of 
conditions that need to be checked before and after raking.  
Brick et al. (2003) discuss other examples of issues that one 
should be aware of when using raking. 
 
The IHB SAS macro discussed in this paper is available for 
free.  If you would like a copy of the macro along with the two 
SUGI papers, please contact David Izrael at 
David_Izrael@abtassoc.com. 
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Table 1: Example of Weight Trimming During Raking                                           
                                          
                        OBSERVATIONS IN ORIGINAL DATASET TO BE TRUNCATED 
                                     CUTOFF: MEDIAN+6*QRANGE 
                                  CONDITION: MEDIAN+6*QRANGE +1 
 
                   weight_to_ 
            id      truncate       mean      median     qrange     cutoff    condition 
 
            715      477.576     144.250    132.491    51.0592    438.847     439.847  
            651      509.018     144.250    132.491    51.0592    438.847     439.847  
           1085      690.762     144.250    132.491    51.0592    438.847     439.847  
            770      515.720     144.250    132.491    51.0592    438.847     439.847  
                                                  
 
                                                 
                        OBSERVATIONS TO BE TRUNCATED AFTER ITERATION = 1 
                                     CUTOFF: MEDIAN+6*QRANGE 
                                 CONDITION: MEDIAN+6*QRANGE + 1 
 
                   truncated_ 
            id       weight        mean      median     qrange     cutoff    condition 
 
           1085      451.059     144.250    133.108    51.7302    443.490     444.490  
 
 
                          OBSERVATIONS TO BE TRUNCATED AFTER ITERATION = 2 
                                      CUTOFF: MEDIAN+6*QRANGE 
                                   CONDITION: MEDIAN+6*QRANGE + 1 
 
THERE ARE NO WEIGHTS TO TRUNCATE 
RERAKING-TRUNCATION PROCESS CONVERGED IN 2 ITERATIONS WITH CONDITION MEDIAN+6*QRANGE+1 
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