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1. Introduction

Consider a finite population of N elements identified
by a set of indices U = {1, 2, ..., N}. Associated with
each unit i in the population there is a study vari-
able yi and a vector xi of auxiliary variables. Let A
denote the set of indices for the elements in a sam-
ple selected by a set of probability rules called the
sampling mechanism. Let the population quantity
of interest be θN =

∑N
i=1 yi or θN = N−1

∑N
i=1 yi

and let θ̂n be a linear estimator of θN based on the
full sample,

θ̂n =
∑

i∈A

wiyi (1)

To deal with item nonresponse, we define AR

and AM as the set of indices of the sample respon-
dents and sample nonrespondents, respectively. Let
Ri = 1 if unit i belongs to AR and Ri = 0 if unit i
belongs to AM . For each unit with a missing value,
we impute to complete the data set and denote the
imputed value as y∗i . Let θ̂I denote the imputed esti-
mator, so the imputed estimator of the mean, using
the form of the full sample estimator given by (1), is

θ̂I =
∑

i∈AR

wiyi +
∑

i∈AM

wiy
∗
i . (2)

In many practical cases, the imputed value y∗i is
written as a predicted value plus a residual term

y∗i = ŷi + ê∗i , (3)

where ŷi is the predicted value of yi and ê∗i
is an imputed residual selected at random from
{êi = yi − ŷi; i ∈ AR} in the same cell. When the
predicted value for unit i is ŷi = x′iβ̂ with β̂ =(∑

i∈AR
wixix′i

)−1 ∑
i∈AR

wixiyi, we call the impu-
tation method defined in (3) stochastic regression
imputation. The representation in (3) is a general
form and it covers many commonly used imputation
procedures such as hot deck imputation or ratio im-
putation. (Rao, 1996).

For variance estimation of the imputed estima-
tor, the adjusted jackknife method is often used.

Rao and Shao (1992) introduced the method, apply-
ing it for a weighted hot-deck where the donors are
selected with-replacement with the selection prob-
ability proportional to their weights. Rao (1996)
discussed the adjusted jackknife method in detail
for various imputation methods, but did not cover
stochastic regression imputation.

Rao and Shao (1992) and Fuller and Kim (2002)
studied asymptotic properties of the random hot
deck imputation method in detail under the response
probability model. The response probability model
does not require a correct specification of underly-
ing population distribution and is often preferred
to other model-based approaches (Fay, 1996). In
this paper, we extend Fuller and Kim (2002) result
to stochastic regression imputation. A new vari-
ance estimator, slightly different from the adjusted
jackknife method, is introduced and its asymptotic
properties are discussed. Shao and Steel (1999) also
covered complex imputation methods including the
stochastic regression imputation but, as we shall see
in Section 4, their variance estimator shows limited
performance compared to the new variance estima-
tor proposed in this article.

The paper is organized as follows. Asymptotic
properties of the imputed estimator is derived under
the uniform response model in Section 2. In Section
3, a new variance estimation method is discussed
under the uniform response model. In Section 4,
concluding remarks are made with some simulation
results.

2. PROPERTIES OF IMPUTED
POINT ESTIMATOR

Rao and Shao (1992) proposed the adjusted jack-
knife method and examine its statistical properties
under the response probability model. Under this
model, response is treated as a second phase of sam-
pling from the complete sample and inferences are
under the joint distribution of the sampling distri-
bution, the assumed response mechanism, and the
imputation mechanism. The response model they
use assumes the probability of response is constant
within each cell used for imputing. They show that
if the missing values are imputed with a weighted
hot deck then the imputed estimator is asymptot-
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ically unbiased and the adjusted jackknife method
gives an asymptotically unbiased estimator of the
variance of the imputed estimator. Their develop-
ment applies for both simple random samples and
stratified multistage sampling with ignorable sam-
ple rate.

A key idea that Rao and Shao (1992) used in their
development of the adjusted jackknife can be appre-
ciated by decomposing the imputed estimator. We
can write the imputed estimator as

θ̂I = θ̂n +
{

EI

(
θ̂I

)
− θ̂n

}
+

{
θ̂I − EI

(
θ̂I

)}
, (4)

where the expectation EI (·) denotes the expectation
over the imputation mechanism. The variance of the
imputed estimator is then given by

V ar
(
θ̂I

)
= V ar

(
θ̂n

)
+ V ar

(
EI

(
θ̂I

)
− θ̂n

)

+V ar
(
θ̂I − EI

(
θ̂I

))
(5)

provided all the covariance terms are zero. In ex-
pression (5), the variances are over the sample de-
sign, the response mechanism, and the imputation
mechanism. The first term on the right hand side of
(5) is the sampling variance, the second term is the
variance due to response machanism, and the third
term is the imputation variance due to the selection
of a random donor.

Two of the three covariances arising from (4)
are easily shown to be equal to zero because
the third term θ̂I − EI

(
θ̂I

)
has zero expectation

over the imputation mechanism. Only the term
Cov

(
θ̂n, EI

(
θ̂I

)
− θ̂n

)
requires additional investi-

gation. Rao and Shao (1992) show that this covari-
ance is asymptotically equal to zero if two conditions
are met when a hot deck is used to impute for miss-
ing values. One condition is that the donors for the
hot deck are imputed with probabilities proportional
to their weights. The second condition is that the
sampled units have the same probability of respond-
ing within cells. We extend the results given by Rao
and Shao (1992) to a slightly more general setting
of stochastic regression imputation.

Let dij be an indicator function that takes the
value one if unit i is used as a donor for missing
unit j. The distribution of the dij is called the im-
putation mechanism. The imputed estimator of the
population total given by (2) can be written as

θ̂I =
∑

i∈AR

wiyi +
∑

j∈AM

wj

(
ŷj +

∑

i∈AR

dij êi

)
. (6)

An imputed estimator is asymptotically, condition-
ally unbiased if

EREI

(
θ̂I

)
− θ̂n = op

(
n−1/2

)
. (7)

Under the within-cell uniform response model, the
following lemma gives a necessary and sufficient con-
dition for an imputed estimator to be asymptotically
unbiased in the sense given by (7). This extends the
results of Rao and Shao (1992) by showing the con-
dition is also necessary. It also broadens the impu-
tation procedures covered to include regression im-
putation, as defined by (6).

Lemma 2..1 Let the complete sample estimator be
of the form (1). Assume the imputed estimator is
a member of the linear class defined in (6). Under
the within-cell uniform response model, a necessary
and sufficient condition for an imputed estimator to
satisfy (7) is

EI (dij) =





(∑
i∈ARg

wi

)−1

wi if i ∈ ARg

and j ∈ AMg

0 otherwise,
(8)

where ARg = AR ∩ Ug, AMg = AM ∩ Ug, and the
expectation is taken with respect to the imputation
mechanism.

Proof. Under the uniform within-cell response
model, the response probability is constant within
a cell. We denote this probability as πg =
Pr (i ∈ ARg | i ∈ Ag). From (6),

EREI

(
θ̂I − θ̂n

)

= EREI

(∑

i∈A

∑

k∈A

wi (1−Ri)Rkdkiêk −
∑

i∈A

wi (1−Ri) êi

)

=
G∑

g=1

(1− πg)
∑

k∈Ag

ER (êk)


 ∑

i∈Ag

wiπgEI (dki)− wk




Hence, for the quantity to be equal to zero for any y-
variable we need

∑
i∈Ag

wiπgEI (dki)−wk = 0. This
implies that EI (dij) must be proportional to wi for
i and j in the same cell and EI (dij) must equal zero
if i and j are in different cells. This prove that (8) is
a necessary condition. The sufficiency part is proved
in Theorem 2..1.

The lemma indicates that if the response probabil-
ity model is the justification for the imputation pro-
cedure, then an unweighted selection method can-
not give an unbiased point estimator (except in the
equally weighted case). The result applies to both
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the within-cell weighted hot deck and the more gen-
eral (weighted) stochastic regression imputation.

When the imputed estimator is the sum of a pre-
dicted value and a residual imputed by a weighted
selection (8), then the expected value of any unbi-
ased imputed estimator over the imputation mecha-
nism is

EI

(
θ̂I

)
=

∑

i∈A

wiŷi +
G∑

g=1

∑

i∈ARg

wiπ̂
−1
g êi =: θ̂FE (9)

where ŷi is the predicted value of yi defined after

(3), π̂g =
(∑

i∈Ag
wi

)−1 ∑
i∈ARg

wi is the estimated
response probability of group g, and the notation
A =: B means that B is defined to be equal to
A. The hypothetical estimator θ̂FE is approximately
unbiased for the population mean of yi’s and does
not involves the extra variance due to random im-
putation. The subscript FE is the abbreviation of
“fully efficient” in the sense that it has the small-
est variance among the imputed estimator satisfying
(8).

The estimator (9) can be implemented by using
fractional imputation in which every responding unit
in an imputation cell is used as a donor for every non-
respondent in the cell, and the imputation weight is
proportional to the sampling weight. Fractional im-
putation is first proposed by Kish and Kalton (1984)
and later investigated by Kim and Fuller (2003).
Then, the estimator (9) can be written as the frac-
tionally imputed estimator

ˆθFEFI =
G∑

g=1

∑

j∈Ag

wj


ŷj +

∑

i∈ARg

w∗ij êi


 ,(10)

where wjw
∗
ij is the weight of donor i for recipient j,

w∗ij is the imputation fraction of donor i for recipient
j with

w∗ij =
{

(
∑

s∈ARg
ws)−1wiRi if Rj = 0

1 if Rj = 1 and i = j.
(11)

The estimator (9) with w∗ij of (11), algebraically
equivalent to (9), is called the fully efficient frac-
tionally imputed (FEFI) estimator.

In the following theorem, we establish the proper-
ties of the regression imputation estimator given by
(9) under the within-cell uniform response model.
Appendix contains a more complete statement and
the proof of this theorem.

Theorem 2..1 Assume the same structure of the
estimator and the population as in Lemma 2.1 and

some regularity conditions as explicitly stated in Ap-
pendix B. Assume for every i 6= j = 1, 2, · · · , N ,

P (Ri = 1, Rj = 1) = P (Ri = 1)P (Rj = 1),(12)

where Ri is the response indicator function of unit i.
Let the predictor ŷi of unit i be of the form ŷi = x′iβ̂
where β̂ satisfies

β̂ − β0 = Op

(
n−1/2

)
(13)

for some population value β0. Then,

θ̂FE = θ̂n +
G∑

g=1

∑

i∈Ag

(
π−1

g Ri − 1
)
wieig + op(n−1/2),

(14)

where θ̂FE is an estimator of population mean de-
fined by (9), πg = Pr (Ri = 1 | i ∈ Ag) is the re-
sponse probability in cell g, eig = yi − Ȳg −(
x′i − X̄g

′)
β0, and

(
X̄g, Ȳg

)
is the population mean

of (xi, yi) in cell g.

For the proof, see Appendix.
Theorem 2..1 shows that under the uniform

within-cell response model, the second term on the
right hand side of (14) has zero expectation. As a
result, it follows that

ER

(
θ̂FE

)
.= θ̂n. (15)

The approximate equality given by (15) implies the
covariance term arising from decomposition (4) is

Cov
(
θ̂n, θ̂FE − θ̂n

)
.= 0.

Since all the covariance terms are equal to zero pro-
vided we have a uniform, within-cell response model
and the donors are selected with probability propor-
tional to their weights, the variance given by (5) is
valid. The first component of variance in the expres-
sion is the ordinary sampling variance of the com-
plete sample. The second term, the variance due
to response mechanism, is can be further developed.
Using expression (9) and the conditional unbiased-
ness given by (15), this variance is

V ar
(
θ̂FE − θ̂n

)
.= Ep


V arR





G∑
g=1

∑

i∈Ag

(
π−1

g Ri − 1
)
wieig






 .

(16)
By the independence assumption of (12) and the fact
that the variance of Ri is πg (1− πg), the variance
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reduces further to

V ar
(
θ̂FE − θ̂n

)
.= Ep





G∑
g=1

π−1
g (1− πg)

∑

i∈Ag

w2
i e2

ig



 .

(17)
Expression (17) makes it clear that the response
probabilities and the weighted residuals are the key
factors that determine the variance due to response
mechanism. If the πg are all close to unity, then the
variance will be close to zero. On the other hand, re-
sponse probabilities close to zero will make the vari-
ance due to response mechanism large. The residuals
also affect the variance. If the imputation model is
good in the sense that the predicted values are close
to the actual values, then the sum of the squared
weighted residuals and the variance due to response
mechanism will be small.

3. VARIANCE ESTIMATION

We now consider variance estimation. Under com-
plete response, let a replication variance estimator
be

V̂ (θ̂n) =
L∑

k=1

ck(θ̂(k)
n − θ̂n)2, (18)

where θ̂
(k)
n is the k-th estimate of θN based on the

observations included in the k-th replicate, L is
the number of replicates, and ck is a factor associ-
ated with replicate k determined by the replication
method. When the original estimator θ̂n is a linear
estimator of the form (1), the k-th replicate of θ̂n

can be written

θ̂(k)
n =

∑

i∈A

w
(k)
i yi (19)

where w
(k)
i denotes the replicate weight for the i-th

unit of the k-th replication. For example, consider
a simple random sample of size n with wi ≡ n−1.
Then, a replication variance estimator is the jack-
knife variance estimator defined by L = n, ck =
n−1 (n− 1) and w

(k)
i = (n− 1)−1 if i 6= k and

w
(i)
i = 0.
For the stochastic imputation estimator satisfying

(8), recall that the total variance can be written as

V ar
(
θ̂I

)
= V ar

(
θ̂FE

)
+ V ar

(
θ̂I − θ̂FE

)
. (20)

The two terms can be estimated separately. The first
term, the variance over the sampling mechanism and
the response mechanism, can be estimated by

V̂FE =
L∑

k=1

ck

(
θ̂
(k)
FE − θ̂FE

)2

, (21)

where

θ̂
(k)
FE =

∑

i∈A

w
(k)
i ŷi +

G∑
g=1

∑

i∈ARg

w
(k)
i

[
π̂(k)

g

]−1

êi, (22)

and π̂
(k)
g =

(∑
i∈Ag

w
(k)
i

)−1 ∑
i∈ARg

w
(k)
i .

Under some conditions, it can be shown that the
replicates defined in (22) satisfies

θ̂
(k)
FE − θ̂FE = θ̂(k)

n − θ̂n (23)

+
G∑

g=1

∑

i∈Ag

(
w

(k)
i − wi

) (
Ri

πg
− 1

)
eig

+op

(
n−1

)
,

where eig = yi − Ȳg −
(
x′i − X̄′

g

)
β0 and

(
X̄g, Ȳg

)
is

the population mean of (xi, yi) in cell g.
Using (23) in conjunction with (14), we can re-

express the replicate variance estimator (for θ̂FE) as

L∑

k=1

ck

(
θ̂
(k)
FE − θ̂FE

)2 .=
L∑

k=1

ck

(
θ̂(k)

n − θ̂n

)2

(24)

+
L∑

k=1

ck




G∑
g=1

∑

i∈Ag

(
w

(k)
i − wi

) (
Ri

πg
− 1

)
eig




2

+(Cross Product).

The first term on the right hand side es-
timates the sampling variance, the second
term estimates the conditional variance of∑G

g=1

∑
i∈Ag

wi

(
π−1

g Ri − 1
)
eig, conditional on the

values of Ri in the population. By (14), the second
term estimates the conditional variance of θ̂FE− θ̂n.
The cross product term in (24) has zero expectation
under the uniform within-cell response model. The
conditional mean E

(
θ̂FE − θ̂n | R1, R2, · · · , RN

)

has variance of order N−1. Shao and Steel (1999)
and Fuller and Kim (2002) discussed the esti-
mation of the variance for the conditional mean
E

(
θ̂FE − θ̂n | R1, R2, · · · , RN

)
. If the sampling

rate is ignorable, then the variance term can be
safely ignored.

It is of interest to compare the proposed vari-
ance estimator to the variance estimator proposed
by Shao and Steel (1999). Under ignorable sam-
pling rate, Shao and Steel (1999) suggest linearizing
the imputed estimator treating all the Ri’s as fixed
so that it can be written as

∑
i∈A wiξi for some ξi

and then applying the standard variance estimator
to the linearized form with ξi substituted by ξ̂i com-
puted from the respondents. The linearization step
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is essentially the same as Theorem 2..1;

θ̂FE
.=

∑

i∈A

wiξi

where ξi = x′iβ0 + ēg + π−1
g Ri (ei − ēg) for unit i

in cell g. However, the variance estimation step is
different. Shao and Steel (1999) suggested using a
substitution ξ̂i of ξi in applying the standard vari-
ance formula. A substitution estimator of ξi is

ξ̂i = ȳRg + (xi − x̄Rg)
′
β̂

+ π̂−1
g Ri

(
yi − ȳRg − (xi − x̄Rg)

′
β̂

)
,

where

(ȳRg, x̄Rg) =


 ∑

i∈ARg

wi



−1

∑

i∈ARg

wi (yi,xi)

and π̂g =
(∑

i∈Ag
wi

)−1 ∑
i∈ARg

wi is the estimated
response probability for cell g. The Shao-Steel vari-
ance estimator for θ̂FE can be obtained by applying
the complete sample variance estimator to ξ̂i in the
sample.

Now we consider the estimation of the second
term in (20), the imputation variance. Conceptu-
ally, the imputation variance can be unbiasedly esti-

mated by
(
θ̂I − θ̂FE

)2

because the conditional ex-

pectation of θ̂I − θ̂FE is equal to zero. However,
the degrees of freedom for estimating the imputation
variance will then be only one. One might increase
the degrees of freedom by repeatedly applying the
given imputation mechanism independently M > 1
times. This is essentially the idea of multiple impu-
tation, where the imputation variance is estimated

by M−1BM = M−1 (M − 1)−1 ∑M
t=1

(
θ̂I,t − θ̄I,M

)2

when θ̄I,M = M−1
∑M

t=1 θ̂I,t is the point estimator
in use and θ̂I,t is the imputed estimator based on
the t-th repeated application of the given imputa-
tion mechanism. Thus, for single imputation θ̂I , the
variance could be estimated by V̂FE + BM .

Another way of increasing the degrees of freedom,
instead of repeating the stochastic imputation, is
also possible if we estimate the imputation variance
separately within a cell. That is, the imputation
variance can be estimated by

V̂imp =
G∑

g=1

(
θ̂Ig − θ̂FEg

)2

, (25)

where θ̂Ig and θ̂FEg are the portion of θ̂I and θ̂FE ,
respectively, that belong to cell g. Since θ̂Ig is con-
ditionally unbiased for θ̂FEg, where the conditional

expectation is over the imputation mechanism, the
variance estimator in (25) is unbiased for the im-
putation variance for all stochastic regression esti-
mator satisfying (8). The variance estimator (25)
is valid whether the imputation mechanism is with-
replacement selection or without-replacement selec-
tion. Thus, we do not need to specify full imputation
mechanism to compute V̂imp in (25).

If the number of cell G is not large enough, then
V̂imp in (25) can be unstable and we may need to
calculate the imputation variance explicitly to esti-
mate the variance. Note that the imputed estimator
satisfies

θ̂I − θ̂FE =
G∑

g=1

∑

i∈ARg

∑

j∈AMg

wj {dij − EI (dij)} êi,

where EI (dij) is defined in (8). Thus, for example,
if the imputation mechanism is with-replacement se-
lection, then

V
(
θ̂I − θ̂FE

)
= E




G∑
g=1

∑

i∈ARg

∑

j∈AMg

w2
j {dij − EI (dij)}2 ê2

i




and the imputation variance can be estimated in a
straightforward manner.

4. Simulation Study

The main advantage of the estimators justified under
the response model approach is that we do not have
to make a correct specification of the distribution of
y in the sample. To illustrate this, consider a model

Yi = β0 + β1xi + β2

(
x2

i − 1
)

+ ei (26)

where xi
i.i.d.∼ N (0, 1), ei

i.i.d.∼ N (0, 0.16), and xi and
ei are independent. We set β0 = 0, β1 = 0.5 and
β2 = 0.3. The variable xi is always observed but
the probability that yi responds is 0.7. A random
sample of size n = 100 is generated.

For imputation, suppose that we adopted a lin-
ear regression model as the imputation model and
computed the predictor of unit i by ŷi = β̂0 + β̂1xi,
where β̂i, i = 1, 2, are the ordinary least squares es-
timates from the simple regression of y on x. The
residuals are randomly drawn by a with-replacement
sampling within each cell. The cells are formed us-
ing the x values. For comparison, we used several
values of cell numbers from G = 1 to G = 15.

The mean and variance of the point estimators
and the relative bias of the estimators of variance
are calculated. The point estimators of the popula-
tion mean are all unbiased and are not listed here.
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Table 1 presents the variance and the standardized
variance of the point estimators and the relative bias
of the variance estimators for each cases. The rela-
tive bias of V̂ as an estimator of the variance of ȳI is
calculated as [V arB (ȳI)]

−1
[
EB

(
V̂

)
− V arB (ȳI)

]
,

where the subscript B denotes the distribution gen-
erated by the Monte Carlo simulation. In addition
to the variance estimator proposed in this article,
we also computed the Shao-Steel variance estimator
using the substitution method.

Table 1: Variance of the point estimators and Rela-
tive Bias (%) of the variance estimators (10,000 sam-
ples).

Number Variance Relative Bias (%)
of Cells New method Shao-Steel

1 0.008575 1.73 0.35
3 0.007981 3.14 5.78
5 0.007693 2.88 7.70
7 0.007528 3.17 9.95
9 0.007446 3.64 11.60
11 0.007310 5.00 13.03
13 0.007206 6.33 13.81
15 0.007269 5.37 14.18

The following conclusions can be drawn from the
simulation

1. All the point estimators are unbiased because
the assumption of within-cell equal response
probability holds for all cases.

2. There are differences in the efficiency of the
point estimators. The variance of the point es-
timator is larger for smaller number of impu-
tation cells. This is consistent with our the-
ory in the sense that the variance term in (17)
will be solely determined by e2

ig in our simula-
tion setup. Note that the eig can be written as
an cell-mean adjusted form ei − ēg, the error
from the imputation model minus its cell mean.
Thus, the improvement will be substantial if the
magnitude of the original error is large and less
variable within each cell.

3. The reduction of the variance is not a linear
function of G. In Table 1, the reduction is not
substantial for large G. This is because there
is a lower bound on the variance of imputed
estimator. Note that, in the simulation setup,

the variance of y is decomposed as

V ar (Yi) = V ar (β0 + β1xi) + V ar
[
β2

(
x2

i − 1
)]

+V ar (ei) .

The first term in the right side of the above
equation is the variance of the systematic part
we can catch from the imputation model. The
third term is the variance of the pure error term
that we can never catch even if the imputation
model is equal to the true model. The second
term, the variance of β2

(
x2

i − 1
)
, represents the

magnitude of difference between the imputation
model variance and the true model variance.
When G = 1, the second term contributes to
the imputation model variance so that, condi-
tional on the number of respondents,

V ar
(
θ̂I | r

)

= n−1β2
1 +

(
2β2

1 + 0.16
) [

r−1 + n−2 (n− r)
]

= 0.00838.

If we use multiple imputation cells suitably, the
contribution of the imputation model variance
will be reduced. The lower bound of the im-
puted estimator among all class of linear unbi-
ased estimator is

inf V ar
(
θ̂I | r

)
= n−1

(
β2

1 + 2β2
1

)
+ r−10.16

= 0.00659,

where the infimum was taken over all unbiased
linear estimator of the mean of y.

4. There is a slight bias of the variance estimator.
The bias is essentially a type of ratio bias and
will be negligible for large sample size. In fact,
we actually increased the sample size to n = 200
and found that all the relative biases are within
1% in absolute values. However, for a moderate
sample size, when there are many imputation
cells relative to the number of respondents, the
bias for the variance estimators will not be neg-
ligible, as is the case with G > 10 and n = 100
in Table 1.

5. The proposed variance estimator shows better
performance than the Shao-Steel variance esti-
mator for multiple cells. Because the proposed
variance estimator uses replicated version of π̂g

in the variance estimation, the variability of π̂g

for G > 1 is fully captured in the proposed vari-
ance estimator.
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Imputation cell is often justified as a method of
reducing the nonresponse bias of the imputed esti-
mator. This simulation shows that a suitable choice
of imputation cells also make the point estimator ef-
ficient. Generally speaking, if the number of imputa-
tion cells are large, the point estimator is more effi-
cient but the variance estimator will be more biased.
Thus, there is a trade-off between the efficiency of
the point estimation and the accuracy of the vari-
ance estimation in choosing a suitable number of
imputation cells. Eltinge and Yansaneh (1997) also
discuss the issue. The choice of optimal number of
imputation cell is not discussed here and will be a
topic of future research.

Appendix

B. Assumptions and proof of Theorem 2..1

Assumptions

Assume a sequence of finite populations as described
in Isaki and Fuller (1981). Define (xi, yi) to be a vec-
tor of auxiliary variables and an outcome variable
defined on the full population and assume each of
these variables have bounded fourth moments. As-
sume the population consists of G mutually exclu-
sive and exhaustive cells, where Ng is the population
size, ng is the sample size, and rg is the number of
respondents in cell g. Assume

K1G
−1 < N−1Ng < K2G

−1 for all g, (B.1)

G < K3n
λ, (B.2)

K4 ≤ nwi ≤ K5, (B.3)

K6 ≤ πg for all g (B.4)

where K1,K2, · · · ,K6 are fixed positive constants,
0 ≤ λ < 0.5, πg is the common response probability
in cell g, and the wi is the weight of unit i. Assume
the complete sample estimator θ̂n is unbiased for the
finite population total and satisfies

V ar
(
θ̂n

)
< KMV ar

(
θ̂SRS,n

)
(B.5)

for a fixed KM for any y with bounded moments
and θ̂SRS,n is the estimator of θ based on a simple
random sample of size n.

Proof

The difference between estimator (9) and the full
sample estimator is

θ̂FE − θ̂n =
G∑

g=1


 ∑

i∈Ag

wi



−1 

 ∑

i∈Ag

wiπ
−1
g Ri




×





 ∑

i∈Ag

wiπ
−1
g Riêi


−


 ∑

i∈Ag

wiêi






 ,

where Ri is the response indicator function of unit
i, πg is the unknown response probability in cell g,
and êi = yi− ŷi. In order to work with means, we let
wi be the inverse of the initial selection probability
divided by N . Now

E





∑

i∈Ag

wi



 = E





∑

i∈Ag

π−1
g Riwi



 = N−1Ng,

[
E

{∑

i∈A

wi

}]−1

E





∑

i∈Ag

wi



 = N−1Ng =: z̄Ng,

E





∑

i∈Ag

π−1
g wiRieig



 = N−1

∑

i∈Ug

eig =: ēNg,

E





∑

i∈Ag

wieig



 = ēNg,

where z̄Ng is the fraction of the population in cell g

and eig = yi − Ȳg + (xi − x̄g)
′
β0 with β0 = E

(
β̂

)
.

Because the wi are bounded by fixed multiples of
n−1,

E





∑

i∈Ag

w2
i



 = O(G−1n−1). (B.6)

Therefore, by the assumption that the variance of
an estimator of a population mean is O(n−1),

V





∑

i∈Ag

wi (1, eig,x′i)



 = O(G−1n−1),

(B.7)

V





∑

i∈Ag

wiπ
−1
g Ri (1, eig,x′i)



 = O(G−1n−1).

(B.8)
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Let

(
∑

i∈Ag

wi,
∑

i∈Ag

π−1
g wiRi,

∑

i∈Ag

wiêig,
∑

i∈Ag

π−1
g wiRiêig)

= (z̄g1, z̄g2, ēg1, ēg2)

and

 ∑

i∈Ag

wixi,
∑

i∈Ag

π−1
g wiRixi


 = (x̄g1, x̄g2)


 ∑

i∈Ag

wieig,
∑

i∈Ag

π−1
g wiRieig


 = (ūg1, ūg2) .

Since êi = eig − x′i
(
β̂ − β0

)
, we have ēg1 = ūg1 −

x̄′g1

(
β̂ − β0

)
and ēg2 = ūg2 − x̄′g2

(
β̂ − β0

)
. Using

(13) and (B.8), we have

V ar (ēg2) = V ar (ūg2) [1 + o (1)]
= O

(
G−1n−1

)
, (B.9)

and, similarly, by (B.7),

V ar (ēg1) = O
(
G−1n−1

)
. (B.10)

Then by (B.7), (B.8), (B.9), and (B.10),

(z̄g1, z̄g2, ēg1, ēg2) = (z̄Ng, z̄Ng, ēNg, ēNg)

+Op(G−
1
2 n−

1
2 )

and
z̄−1
Ng = N−1

g N = Op(G).

Then

θ̂FE − θ̂n =
G∑

g=1

z̄g1z̄
−1
g2 (ēg2 − ēg1) (B.11)

and by a Taylor expansion

z̄g1z̄
−1
g2 (ēg2 − ēg1) =

[
1 + z̄−1

Ng(z̄g − z̄g2)
]
(ēg2 − ēg1)

+Op(G1/2n−1.5)
= ēg2 − ēg1 + Op(n−1). (B.12)

Because the estimator is defined to have moments,

θ̂FE − θ̂n =
G∑

g=1

∑

i∈Ag

wi

(
π−1

g Ri − 1
)
êi + Op(Gn−1)

and

θ̃FE = θ̂n +
G∑

g=1

∑

i∈Ag

(
π−1

g Ri − 1
)
wieig.

By assumption (B.2), Gn−1 = o(n−1/2) and the re-
sult is established.
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