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Abstract 

 
Estimation from multiframe survey data is essentially a 
problem of combining domain estimates such that the new 
auxiliary information (for key study variables, z) obtained 
from several estimates for overlapping domains is used in 
addition to the usual auxiliary information for socio-
demographic and geographic variables (x) used in 
poststratification. A natural approach is to use optimal 
regression, but as in the case of single frame surveys, it may be 
unstable due to insufficient degrees of freedom available for 
estimating regression coefficients when the number of z-
variables is large while estimating for all z in a multivariate 
sense. As an alternative, an extension of the generalized 
regression (GREG or GR) estimator can be used which is 
suboptimal but has stable regression coefficient estimates in 
the case of multivariate z, and has a convenient calibration 
form involving final weights. The main problem in GR 
formulation is how to take account of possibly different 
designs from multiple frames.  An earlier attempt (MR-
dualframe of Singh and Wu, 1996), based on the modified 
regression (MR) methodology of Singh (1994,1996), was 
made using the relative effective sample size (based on design 
effect) as the scaling factor in the GREG covariance matrix, 
but only with partial success. In this paper, we present an  
enhancement of MR-dualframe which takes account of 
different designs, allows for range-restricted weights  as in 
single frame surveys, provides calibration weights, has built-in 
bias-correction due to difference in survey mode effects and 
can be applied to dependent samples. Monte Carlo simulation 
results on relative performance of a few dual frame estimators 
are also presented. 
 
Key Words:  Calibration weights, Combining estimates, 
Mode effects, Optimal regression 
 

1. Introduction 
  
We consider the problem of efficient estimation by combining 
information in samples from overlapping frames which 
together cover the target population.  Typically, in practice, a 
dual frame problem arises when one frame is complete but 
expensive to sample, while the other frame is incomplete but 
cheaper to sample.  In this paper, we introduce a methodology 
for estimating parameters and variances of their estimates for 
dual frames although generalization to multi-frame problem is 
fairly straightforward.  While we are mainly concerned with 
efficiency at the estimation stage, it should be emphasized that 
this is not a substitute for efficiency considerations at the 
design stage while dealing with cost-variance issues in sample 
allocation in anticipation of dual frame estimation.  An 
important aspect that differentiates dual frame from single 
frame problem is due to the possibility of different sampling 

designs (simple or complex) for different frames.  For a good 
review, see Skinner and Rao (1996). 
  
The pioneering work in the area of multiple frames is due to 
Hartley (1962, 1974). Later, important contributions were 
made by Lund (1968), Fuller and Burmeister (1972), Bankier 
(1986), Kalton and Anderson (1986), Skinner (1991), Skinner 
and Rao (1996), Singh and Wu (1996), and Lohr and Rao 
(2000).  We will now define the estimation problem in the case 
of two frames A and B.  Let A B, s s  be two independent 

samples drawn respectively from A and B under designs sAp  

and sBp .  For simplicity, we will allow for the possibility of 

duplicate units in the two samples, and assume that the 
resulting loss of efficiency is negligible.  Let A B, N N  denote 

the population sizes and A B, n n  denote the corresponding 

sample sizes.  We will make the usual assumption that the 
population counts A B, N N  are known.  In addition, 

population totals (frame-specific or not) may be available in 
practice for several auxiliary variables (x) such as 
demographic and geographic counting variables; the term 
frame-specific signifies that the auxiliary information is 
separate for frames A and B.  Let domains c cA  ,   BB A∩ ∩ , 
and A B∩  be denoted respectively by a, b, and c.  Then, for 
the study variable y, parameters of interest are the population 
total ydT  and average ydA  for each domain d.  Denoting by 

cN  the unknown population count of domain c, the 

component parameters of the population total of y  for the 

combined frame are given by  

y ya yb yc

A c B c cya yb yc

T  = T  + T  + T
  

= (  -  )A  + (  -  )A  + AN N N N N
 (1.1a) 

where yb yba bya yaA   =  T  /  ,        /  ,  N NA T=

, .yc c a A c b B cycA  /     =  -  ,        -  N N N N N N NT= =    (1.1b) 

 

Let ˆ ˆGR GR
y a y b,  T T  denote the usual generalized regression (GR) 

estimates of yaT  and ybT  respectively from samples As  and 

Bs  as defined by Särndal (1980).  In particular, they could be 

simply ratio-adjusted Horvitz-Thompson estimates when 
A B, N N  are the only available auxiliary information.  For the 

common (or overlapping) domain c, let ˆ GR
y c AT  and ˆ GR

y c BT  

denote the two estimates from As  and Bs  respectively.   

  
Now, a naive GR-estimator of yT  can be defined as 
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( ),ˆ ˆ ˆ ˆ ˆGR GR GR GR GR
y naive y a y b y c A y c B  =    +    +   +   /2T T T T T ,   (1.2) 

where the component estimates are equally weighted and thus 
are not combined optimally.  The methods proposed in the 
literature use, however, some form of optimality 
considerations to obtain a composite estimator.  They can be 
classified as either under separate frame or combined frame 
approaches. In the separate frame approach, using GR, 
sampling weights are first adjusted separately for each of the 
samples As  and Bs in light of the usual auxiliary information 

on x to get estimates of domain totals in the linear 
parametrization (1.1a) of yT . Then unlike the above naïve 

GR-estimator (1.2), efficient estimates for the overlapping 
domain are obtained via optimal regression for combining the 
two estimates as well as for incorporating extra auxiliary 
information contained in two estimates of the overlapping 
domain for a key set of other correlated study variables, z. 
This can be done as a problem in weight calibration by 
suitably defining optimal regression for complex designs under 
the assumption of with replacement PSUs as shown by  Rao 
(1994). The methods of Hartley (H), and Fuller-Burmeister 
(FB) fall under this category. The method of modified 
regression (MR-dualframe) of Singh-Wu also falls under this 
category although it uses suboptimal regression. Note that in 
computing expansion estimates under the separate frame 
approach, the two estimates for the common domain are 
averaged using either optimal or suboptimal regression.  
  
On the other hand, in the combined frame approach, sampling 
weights for the combined sample, s, are adjusted so that it can 
be visualized as a single sample.  These weights could be 
further calibrated in light of the auxiliary information.  Finally, 
the expansion estimates are computed from the calibrated 
weights in the usual way.  Under this approach, yT -estimation 

problem can be addressed either through the linear 
parametrization (1.1a) in terms of domain totals or through the 
nonlinear parametrization (1.1b) in terms of domain means.  In 
the nonlinear case, the estimates are nonlinear functions (e.g. 
ratio-cum-product) of usual regression (i.e. GR) estimates.   
The methods of Bankier (B), and Kalton and Anderson (KA) 
take the linear parametrization for the yT -estimation problem, 

and consider the combined sample A Bs  =    s s∪  as coming 

from a single frame, and assign inclusion probabilities to units 
in the three domains a, b, and c.  Once this is done, usual 
expansion methods can be applied for estimating yT . The 

methods of Lund (L), other one due to Fuller-Burmeister 
(FB*) when the design is restricted to simple random samples, 
and the method of Skinner-Rao (SR)) which is applicable to 
complex designs, use the nonlinear parametrization via 
domain means, and can be classified under the combined 
frame approach.   

    
 Before considering limitations of the existing methods, it is 
useful to list desirable goals for a dual frame composite 
estimator: 
 
 (i) it can be expressed as a calibration estimator, 
 (ii) the adjusted weights should satisfy the usual x-controls, 
and the weight adjustment factors should satisfy range 
restrictions such as being nonnegative, 
 (iii) it should take into account of difference in complexity of 
the sample designs from the two frames, 
 (iv) it should allow for possible dependence of the two 
samples, 
 (v) it should be multivariate in nature, i.e., composite 
estimates for several y-variables can be generated from the 
same set of calibration weights which may depend on a 
common set of z-variables, 
 (vi) it should correct for possible bias due to difference in 
survey mode from the two frames, 
 (vii) it should be applicable to three or more frames, and 
finally 
 (viii) it should provide significant gains in efficiency. 
  
If there was no bias due to mode effect, then the method based 
on optimal regression can be used to meet most of the goals 
above except possibly the final one about efficiency which is 
after all the ultimate goal of  any composite estimation. The 
reason for this is that optimal regression may lead to instability 
of estimates in the presence of several auxiliary variables (re: 
Goal (v)) due to inadequate degrees of freedom available for 
estimating covariance matrices (see, e.g., Rao, 1994).  The 
MR-dualframe method was proposed to serve as a GR-type 
alternative to the optimal regression (i.e., optimal for simple 
random samples but expected to be robust for complex 
designs) to overcome the problem of insufficient degrees of 
freedom. The main differences between MR-dualframe and 
the usual GR method for single frames are that general 
predictors (in the form of difference of two estimates for the 
overlapping frame), and relative measures of the effective 
sample size as a scaling factor in the GR-covariance matrix are 
incorporated.  However, there are two main limitations: lack of 
an alternative factor as a measure of the effective sample size 
without relying on the design effect which is inadequate for 
the multivariate case, and lack of a more objective factor than 
using 1/2 for combining estimates for the overlapping frame. 
The main purpose of this paper is to propose an objective and 
efficient choice of the two factors ( , )A Aη ζ defining 

respectively the scaling factor in the GR-covariance matrix 
and the combining factor for frame A, the corresponding 
factors for frame B are defined by the complements, 

1 , 1B A B Aη η ζ ζ= − = − .  The enhanced version of MR-

dualframe is termed in this paper as the dual frame calibration 
(DFC) method.  Besides optimal regression and MR-
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dualframe, other existing methods mentioned above also have 
various limitations with respect to the eight goals listed above, 
see Singh and Wu (1996).  In Section 2, a review of MR-
dualframe and motivation for the proposed enhancements are 
provided. The proposed DFC method is described in Section 3 
followed by its properties in Section 4. Empirical evaluation of 
some methods based on a Monte Carlo study is presented in 
Section 5 followed by concluding remarks in Section 6. 
 

2. Review of MR-dualframe and motivation 
   
MR-dualframe uses the modified regression methodology of 
Singh (1994, 1996) which was inspired by the contributions in 
survey statistics of Fuller (1975) and Särndal (1980) on 
regression methods, and of Rao and Scott (1981) on pseudo-
maximum likelihood estimation, and the contributions in 
classical statistics by Liang and Zeger (1986) on generalized 
estimating equations, and of Godambe and Thompson (1989) 
on optimal estimating functions.  The MR-methodology, based 
on the idea of finite population (semiparametric) modelling 
with a working covariance structure within the estimating 
function framework, encompasses the GR-methodology of 
Särndal (1980) (see also Fuller, 1975), based on the idea of 
superpopulation modelling within the model-assisted 
framework. 
 
2.1 MR-dualframe for completely overlapping case 
    
Suppose, for convenience, the two frames A and B overlap 
completely and the samples are independent.  In other words, 
we have two independent samples from a single frame. Thus, 
the problem reduces to the familiar problem of combining two 

(approximately) unbiased and independent estimates ˆ GR
zAT  and 

ˆ GR
zBT  of the same parameter zT .  Such problems often arise in 

practice with rotating panel surveys.  Besides combining the 
two estimates, it is desirable in the interest of efficiency gains 
to combine correlated auxiliary information in the form of 
predictor zero functions for other selected study variables (z) 
via regression. Also, it is important to continue to satisfy the 
usual x-controls used in GR-estimator by the composite 
estimator if z is replaced by x.  One way to do this is to use 
partial regression with new z-predictors after GR is performed 
using the x-predictors.  A simpler alternative is to perform a 
multiple regression on all the usual predictor zero functions 

based on the design weights denoted by 
HT

xAxAˆ    -   TT  (used 

in ˆ GR
zAT ), 

HT
xBxBˆ    -   TT  (used in ˆ GR

zBT ), and the additional 

predictors, ˆ ˆHT HT
zA zB  -   T T , due to overlapping frames.  Here, 

A B,  x x  denote respectively the vector of auxiliary variables 

specific to frames A and B  (which are identical for the 
present case) and HT  signifies the Horvitz-Thompson 

estimator.  Now, instead of optimal regression, the MR-

estimator, ˆ MR
zT , uses a suboptimal regression under a working 

covariance matrix.  This is done under a finite population 
(semiparametric) common mean model for the elementary 
estimates, consisting of four types of estimates of zT : 

 (i) ,ˆ ˆ ˆHT HT HT
z naive zA zB := (   + ) /  2T T T , (ii) 

HT
xA, xAˆ ˆ  - )HT

z naive+ ( TT T , 

(iii) 
HT

xB, xBˆ ˆ  - )HT
z naive + ( TT T , (iv) 

HT HT
, zA zBˆ ˆ ˆ - )HT

z naive + (T T T .  

In other words, each predictor zero function gives rise to a 

new estimator of zT  by adding it to ,ˆ HT
z naiveT ; the predictor is 

of course assumed to be correlated with ,ˆ HT
z naiveT  in order to be 

useful.  In the above model, elementary estimates can be 
visualized as working sufficient statistics for zT  as they 

represent a condensed form of raw survey data before being 
modelled.  When the designs sBand psA p  are identical, MR 

can be defined in a manner similar to GR  as follows; 

expressions for ˆ GR
zAT  and ˆ GR

zBT  are also given for comparison 

purposes. 

-1
A A A A A xA A A Aˆ ˆ )( ( - ))X X X X 1

GR HT
AzA zA = +(z TT T ′ ′ ′Γ Γ Γ  

-1
B B B B B xB B B Bˆ ˆ )( ( - ))X X X X 1

GR HT
BzB zB = +(z TT T ′ ′ ′Γ Γ Γ  

-1
x

1 ˆˆ ˆ ) (z X)(X X ( -X 1))(
2

HTMR HT
z zBzA

 = + + TTT T ′ ′ ′Γ Γ Γ     

           (2.2) 

where ˆˆ
A B

HTHT
k kA k kBzA zBk s k s

 = z h ,  = z hTT ∈ ∈∑ ∑ , 

A Bz ( : ), z ( : )k A k Bvec z k s vec z k s= ∈ = ∈ , the design 

weights are Ah ( : )k Avec h k s= ∈ , Bh ( : )k Bvec h k s= ∈ , 
( ), ( )A A B Bdiag h diag hΓ = Γ = , ,xA xBT T  are auxiliary control 

totals, A B1 ,1 ,1 are vectors of 1s of dimensions 
, ,A B A Bn n and n n n= + respectively, A Bz  = ( z ,  z ), ′ ′ ′  

A B  = block diag ( , )Γ Γ Γ , x xA xBT = (T , T , 0)′ ′ ′  and  

 

                         : A A A

B BB

X X O z
X

O X zX

∗

∗

   
= =     −  

   (2.3) 

  
Note that the X and Γ  matrices for MR are simply enlarged 
versions of the corresponding matrices for GR. Also the 
covariance matrices used in the regression are suboptimal in 
that for simple random samples, they reduce to being optimal 
provided the initial design weights sum to the population count 
for each frame., see Singh and Sarndal (2003). If the two 
designs sAp  and sBp  are different, then one could use a 

relative measure of inverse effective sample size for a chosen 
variable (using the design effect as in Skinner-Rao) to give 
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differential weights to the two matrices A B, Γ Γ  used in the 

working covariance structure for MR.  Denoting by 
1 1 11A B A, λ λ λ− − −= −  the relative measures of the effective 

sample size for designs sA sB,  p p , the working covariance 

matrix for the case of different designs is modified by 
replacing Γ  by ΛΓ  defined as 

 A B=block diag( , )A Bλ λΛΓ Γ Γ  (2.4) 

Clearly A B =  = 1λ λ  if the two designs are identical. Also 

notice that the final calibrated weights { }A Bw =(w , w )′ ′ ′ , 

through which ˆ MR
zT  can be represented as an expansion 

estimator (i.e. 
MR
zT̂ / 2z w′= ) except that estimates for the 

common domain are averaged, can be obtained as 

 
-1

xw= h+ X(X X (T -X 1))′ ′ΛΓ ΛΓ Γ , (2.5) 

where A Bh=(h , h )′ ′ . Now, in the realistic situation where the 

two frames overlap only partially, we get three domains 
a,  b,  c , and the additional predictors for MR are generated 
from two estimates for c corresponding to several study 
variables.  This does not pose any new problems as the 

estimator ˆ MR
zT  of (2.2) can be easily modified by redefining 

the part of X  corresponding to additional predictors, as shown 
in the next subsection. 
 
2.2  MR-dualframe for partially overlapping frames 
  
From the samples in the common domain c , we get additional 

predictors such as ˆ ˆHT HT
zcA zcB  -   T T  corresponding to each 

selected z , and of course ˆ ˆHT HT
cA cB  -   N N  for the counting 

variable.  The usual predictors are 
HT

xAxAˆ   -   TT  and  
HT

xBxBˆ   -   TT  respectively for the two frames.  In practice one 

may also have some predictors for the combined frame which 

can be expressed as 
HT

xx, naiveˆ - TT . Now ˆ MR
zT   combines above 

pieces of information (available in the form of predictors) with 

the domain estimates ˆ ˆ ˆ,HT HT HT
za zb zcA,    T T T , and ˆ HT

zcBT  to get 

ˆ MR
zT .  Note that the proposed method also allows for using 

other correlated study variables ( z ) in estimating the total for 

any y .  To define ˆ MR
yT for any study variable, we start with 

HT
x, naiveT̂ and then all we need is to modify the matrix X  in 

(2.5) appropriately to get w  so that ˆ MR
yT  can be represented 

as 

  ( )
ˆ ˆ ˆ ˆ

/ 2

MR MR MR MR
y ya yb yc

a a b b cA cA cB cB

T T T T

y w y w y w y w

= + +

′ ′ ′ ′= + + +
(2.6) 

where 
                    a cA cB by = (  ,  ,  , ) ,y y y y′ ′ ′ ′ ′                                    

                a cA cB bw  = (  ,  ,  , ) w w w w′ ′ ′ ′ ′ .  (2.7)  

 
Now, the matrix X  is n  q×  where A Bn =  + n n , and q is the 

total number of predictors.  The number q  is, in general, 

equal to 1 2 3 4  +    +    +  q q q q  where 1q  is the number of 

frame A-specific predictors, 2q  is the number of frame B-

specific predictors (these are the usual predictors for GR), 3q  

is the number of predictors for the combined frame, and 4q  is 

the number of predictors chosen for the common domain  c .  
As in (2.3), the matrix X  can be horizontally partitioned into a 

An q×  matrix *
AX  and a Bn q×  matrix *

BX .  These matrices 

are defined as follows in four parts: 
(i) the first 1q  columns of the matrix *

AX  represent An  

observations on the usual predictors for frame A, 
(ii) the next 2q  columns are zeros because they correspond 

to frame B predictors, 
(iii) the next 3 q  columns contain for each x  for the 

combined frame either kx or / 2kx depending on whether 
k  is in a  or c , and finally 

(iv) the last 4q  columns contain for each chosen variable y  

for the common domain either k +  z  or 0  depending on 

whether k  is in c  or not.  
 The matrix *

BX  is similarly defined, the main difference 

being in the last 4q  columns which contain either k- z  or 0  

depending on whether k  is in c  or not.  This completes the 
description of the proposed method.  Note that the control 

totals xT ∗
 corresponding to predictors 

HT HT
zcA zcBˆ ˆ  -   T T  for the 

common domain c  will be simply zeros.  Moreover, when y is 

replaced by z, we will have ˆ ˆ ˆMR MR MR
ycA ycB yc =  = θ θ θ . 

 
2.3  Motivation for enhancing MR-dualframe   
 

One of the main limitations of ˆ MR
yT is the heuristic use of the 

combining factor of 1/2 in 
HT
x, naiveT̂ in the GR-framework. The 

other main limitation is the use of the scaling factors 
1 1 11A B A, λ λ λ− − −= −  as the relative effective sample sizes 

obtained via design effect.  Again, this is only heuristic 
because design effect is not applicable to covariance terms in 
the GR-covariance matrix. To get a better understanding, we 
consider optimal regression under SRS for combining 
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estimates from a common frame. An optimal linear 
combination to minimize the variance is given by 
 

              ( ), ( ) ( )
ˆ ˆ ˆ
y opt opt y A opt y BT T Tα α= + 1−                      (2.8a) 

where,  

( ) ( ) ( ) 1

( ) ( ) ( )
ˆ ˆ ˆ

opt y B y A y BV T V T V Tα
−

 = +
  (2.8b) 

 
For SRS, we have  
 ( )

ˆ

A

y A kA kA
s

T y d=∑  

where, dka = N / nA  and the usual variance estimate is 

( ) ( )( )
ˆ ˆ 1

1
A

A
y A kA kA kA A

A s

n N
V T y d y y

N n

  = − −   −  
∑          (2.8c) 

Similarly, ( )ŷ BV can be defined. Thus                          

    

( )

( ) ( )( ) ( )

ˆ1
ˆ ˆ ˆ ˆ

A

A
kA kA kA A

As

opt

y A y B

n N
y d y y

N n

V T V T
α

  − 1−    −1  
− =

+

∑
     (2.8d) 

Now, rewriting ,ŷ optT as 

( ), ( ) ( ) ( )
ˆ ˆ ˆ ˆˆ(1 )y opt y A opt y B y AT T T Tα= + − −  (2.9a) 

   

wehave, ,ŷ optT =

( ) ( )( )1
( ) ( )

1

ˆ ˆ ˆ0

ˆ[1 ( / ) ( / )( )]

A

A

A A

kA kA kA kA A y A y B
s

kA kA A yA kA A
s

kA kA kA kA kA
s s

y d c y y V T T

y d n n n y y

y d a y w

λ

−

−

 1+ − − −  

+ −

=

≈

=

∑

∑

∑ ∑

 

                                              (2.9b) 
where, 

                 A
kA

A A

n N N
c

N n n
 = 1− ≈  −1 

 , 

 ignoring the finite population correction (fpc);    

( ) ( ) ( )( )1

( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ ˆ ˆ ˆ0yA y A y B y A y BN V T V T T Tλ

−
 = + − −
 

; 

and 

            
1 ˆ1 ( / ) ( / )( )kA A yA kA Aa n n n y yλ−= + − . 

 
This formula is similar to a linear regression calibration 

estimator. The factor ˆ /yA nλ can be seen to be 
1/ 2( )pO n−

under usual conditions. Note that unlike the usual 

regression estimation for single frame surveys with 

auxiliary x-variables, here the λ -parameter in the 
adjustment factor is scaled by the inverse of the relative 
effective sample size nA / n.  It may be instructive to note 
that the larger sample, as expected, tends to have smaller 
adjustments (i.e., the factors are closer to 1).  In other 
words, weights for each sample are differentially adjusted, 
the sample with higher relative sample size is relatively less 
adjusted such that the two estimates become identical. 
 
Similarly, we can write ,ŷ optT in terms of wkB. We have 

         
( ), ( ) ( ) ( )

ˆ ˆ ˆ ˆˆy opt y B opt y A y BT T T Tα= + −              (2.11a) 

 
Therefore,  

1
,

ˆ[1 ( / ) ( / )( )]ˆ
B

B B

kB kB B yB kB B
s

kB kB kB kB kB
s s

y opt y d n n n y y

y d a y

T

w

λ−+ −

=

≈

=

∑

∑ ∑
(2.11b) 

                                              
Equations (2.9b) and (2.11b) imply that the initial weights 
dkA for sA and dkB for sB are calibrated to wka and wkb, 
respectively, such that estimates from each sample are 

identical and equal to ,ŷ optT . In other words, after 

calibration, the difference between the two estimates 
becomes zero, the new control total.  
 

3. Dual Frame Calibration (DFC) Estimator 
  
For given scaling and combining factors ( , )A Aη ζ , the DFC 

estimator is defined as 
 

              
ˆ ˆ ˆ ˆ

( ) ( )

DFC DFC DFC DFC
y ya yb yc

a a b b A cA cA B cB cB

T T T T

y w y w y w y wζ ζ
= + +

′ ′ ′ ′= + + +
     (3.1) 

 
The parameter Aη is part of the weight adjustment factor.  

For complex designs, it is difficult in general to write the 
optimal linear combination in a calibration form. However, 
based on the motivation in the previous section, we propose 
the following model for the calibration adjustment factors  
as 
 

 
1

1

1 ( ) ,

1 ( )

kA A A A A z

kB B B B B z

a

a

η λ λ
η λ λ

−

−

′ ′= + +
′ ′= + −

x z

x z
            (3.2) 

 
where x denotes the usual auxiliary covariates with known 

control totals xT , and z is the set of key study variables (y). 

It may be of interest to note that the above adjustment 
factors can be obtained by minimizing the following 
distance function subject to calibration constraints:  
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2 2( , ) ( 1) ( 1)

A B
A kA kA B kB kBs s

w d d a d aη η∆ = − + −∑ ∑    (3.3) 

 
Note that z appears with different signs in the above two 
adjustment factors because control totals for z are zero. 
However, the λz parameters are common to both adjustment 
factors. Also the factors ( , )A Aη ζ are chosen via a grid 

search such that variance of ,ẑ compT (or trace of the 

covariance matrix if z is multivariate) is minimized. Note 
that the definition of Aη comes from minimizing the 

variance, and so it reflects the impact of different designs 
via covariance matrix, but it is not the relative effective 
sample size as used in MR-dualframe.  In the case of 

common frames, ,ẑ compT is same for all Aζ , and its choice 

could be based on minimizing the generalized variance for a 
set of other y-variables. 
 

4. Asymptotic Properties of the DFC Estimator 
 

It can be shown that ˆ DFC
yT  is the solution of the estimating 

equation 
-1
gG 0g′Γ = where g  is the ( 1)q + -vector 

g, x
ˆ( 1 X - T ) ,HT
y naive yT  - T ,  ′ ′ ′Γ Γ  is the ( 1) ( 1)q q+ × +  working 

covariance matrix of g  with first row as y   y, y  X)( ′ ′Γ Γ  and 

the matrix of the last q  rows as X   y, X   X)( ′ ′Γ Γ , and G  is 

the ( 1) 1q + ×  vector (1,  0, , 0)′K .  Then the estimated 

asymptotic variance, ˆ ˆ( )DFC
yV T , of ˆ DFC

yy TT −  has the 

sandwich form, 
 

            
1 1 1

g g
ˆ ˆ ˆ( ) B G ( ) ( )DFC

yV T  = V g G B− − −′ ′ ′Γ Γ ,                 (4.1) 

where V̂(g)  is a consistent estimate of the true covariance 

matrix of g , and -1
gB = G   G′ Γ  which is a scalar in our case.  

Note that the vector g  consists of HT-estimators for various 

parameters, and therefore, standard results in sampling can be 
used for estimating its covariance matrix. 
 Now under the asymptotic setup of Isaki and Fuller 
(1982) for a sequence of finite populations and samples as 

A B A B ,    ,  ,    n n N N → ∞ such that A B A B /   ,  /  n n N N  tend to 

positive constants, the HT estimators in vector g  defined 

above are consistent estimates and follow the multivariate 
central limit theorem, i.e.,  
 

       2
d q+1g - 0 )   ( 0 ,V( g) n / )N N

1
2 -1  (  n N → .            (4.2) 

Suppose also that g
-1  N Γ  converges in probability to a 

positive definite matrix where A BN =  + N N .  Now using the 

delta method, it follows that ˆ DFC
yT  is asymptotically design 

consistent.  Moreover, it is asymptotically normal with mean 
yT  and variance given by (4.1), which can then be used for 

constructing confidence intervals.   
 

5. Empirical Results 
  
We conducted a simulation study to compare empirical MSE 
(denoted as EMSE) of GR(naïve), FB,  and DFC estimators 
when the two frames are completely overlapping. Both x- and 
y -values for samples from frames A and B were generated 

according to a superpopulation model similar to Skinner-Rao 
which approximates asymptotically a two stage cluster 
sampling for frame A and a simple random sample for frame 
B for finite populations.  Thus, the evaluation of the estimators 
corresponds to the infinite population case.  The samples were 
generated as follows: 
  
For frame A, we set ij ij i ijy bxµ α ε= + + + where ijy is the ith 

observation in cluster i, µ is the overall mean of ijy ,  
2~ (0, )ijx N σ generates the covariate values, b is the 

regression coefficient, 
2 2~ (0, (1 ) )i N bα ρ σ− is the cluster 

effect, 
2 2~ (0, (1 )(1 ) )ij N bε ρ σ− − is the random error, and 

ρ is the intra-cluster correlation coefficient.  All the random 

components are generated independently of each other.  In this 
study, µ was set to 10, 

2σ was set at 5, b was set at .3, and 
ρ was chosen as .1 or .2. The population average of x-

variables is zero while the average for counting variables for 
each frame is 1. The sample size for Frame A varied over 200, 
400, and 600; and the sample size for Frame B over 300, 600, 
and 900. The sample size of each cluster in Frame A was set at 
10.  
  
A total of 100 replications was performed for each selected set 
of the design parameters. The empirical MSE (EMSE) is 
chosen to evaluate the performance. EMSE is defined as the 
average MSE of the estimators about the true value of 10 over 
the 100 replications. Table 1 shows the EMSEs for GR(naïve), 
FB,  and DFC. The GR(naïve) is obtained by averaging the 
two GR estimates from each frame. It is seen from the 
evaluation results that the two methods FB and DFC have 
significantly smaller EMSE compared with GR, as expected. 
For cases considered, DFC performed better than FB, 
indicating the instability of the variance estimates under 
optimal regression.. The last column of Table 1 shows the 
average value of Aη obtained over the 100 runs via grid search. 

  
It would be interesting to further increase the sample size to a 
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point where FB can consistently outperform DFC. It is 
planned to conduct a more extensive simulation study which 
allows for more x-and z-controls  available for composite 
estimation. 
 

6.  Concluding Remarks 
 
It can be summarized as follows: 
 
 (i) The DFC estimator can also be obtained in two 
steps, first GR for each frame to satisfy x-controls, and then 
 the GR-weights are adjusted to satisfy z-controls.  
However, to continue to satisfy x-controls, the z-predictors 
need to be orthogonalized with respect to x-predictors as in 
partial regression. 
 (ii) To get range-restricted weights, the generalized 
exponential model of Folsom and Singh (2000) can be used 
with DFC; see Singh, Iannacchione, and Dever (2003) for 
an application. 
 (iii) It is easily seen that the DFC estimator 
remains applicable to dependent samples.  The choice of 
the factors ( , )A Aη ζ is automatically adjusted to reflect 

dependence while minimizing the generalized variance. 
 (iv) In the presence of bias due to mode effects 
(such as under- or over-reporting), the zero functions are no 
longer unbiased, and the regression framework to get 
optimal or suboptimal estimator is not really applicable.  
However, using (3.2) as a model for bias correction, one 
can still use the same set of calibration equations to arrive 
at the same estimator (3.1).  This observation is similar to 
the dual property of poststratification for both variance and 
bias (due to over/under coverage) reduction. Using z-
controls along with x-controls, the DFC estimator implies 
that the difference in biases of the two estimators for z 
becomes zero.  This implies that the bias of the DFC 
estimator is a compromise between biases of the individual 
ones.  It is not bias-free but would be so as long as one of 
the two estimators is unbiased. 
 (v) The zero controls used in DFC are different 
from the x-controls in that there is no external estimate for 
the z-variable provided as a control total.  In fact, the main 
purpose of the DFC method is to provide composite 
estimates in the calibration form for the z-variables used in 
the zero controls.  This should be distinguished from the 
use of random controls in Zieschang (1990) and Renssen 
and Nieuwenbroek (1997) which are first obtained for use 
in the calibration step. In practice, it is desirable to obtain 
estimates of the selected z-variables that take advantage of 
the correlation with other z-variables in a multivariate dual 
frame set-up by using a set of final calibration weights, such 
that these same weights are later used to produce estimates 
for any other y-variable.  This is what DFC offers in a way 
that it has built-in internal consistency with estimates for 

the z-variables. This problem of maintaining internal 
consistency is an important and interesting one, and is also 
addressed when using the empirical likelihood method for 
combining information from multiple surveys, see e.g., the 
recent paper by C. Wu  (2003).  However, with empirical 
likelihood, it seems difficult to allow for different designs 
and dependence of samples from multiple frames. 
 
Acknowledgement The first author's research was partially 
supported by a grant from Natural Sciences and Engineering 
Research Council of Canada held at Carleton University, 
Ottawa. Thanks are due to C. Wu for sending a preprint of his 
paper. 

References 
 
Bankier, M.D. (1986), "Estimators Based on Several Stratified 
Samples with Applications to Multiple Frame Surveys," 
Journal of the American Statistical Association, 81, 1074-
1079. 
 
Folsom, R.E. Jr. and Singh, A.C. (2000). “A Generalized  

    Exponential Model for Sampling Weight Calibration for a 
Unified Approach to Nonresponse, Post-stratification, and 
Extreme Weight Adjustments.” ASA Proc.Surv Res. Meth. 
Sec., pp. 598-603. 
 
Fuller, W.A. (1975). Regression analysis for sample surveys.  
Sankhya Series C., 37, 117-132. 
 
Fuller, W.A., and Burmeister, L.F. (1972), "Estimators for 
Samples Selected from Two Overlapping Frames," in 
Proceedings of the Social Statistics Section, American 
Statistical Association, pp. 245-249. 
 
Godambe, V.P. and Thompson, M.E. (1989). An extension of 
quasi-likelihood estimation (with discussion). Jour. Statistical 
Planning and Inference, 22, 137-172. 
 
Hartley, H.O. (1962), "Multiple Frame Surveys," in 
Proceedings of the Social Statistics Section, American 
Statistical Association, pp. 203-206. 
 
______ (1974), "Multiple Frame Methodology and Selected 
Applications," Sankhya, Ser. C, 36, 99-118. 
 
Isaki, C.T. and Fuller, W.A. (1982). Survey design under the 
regression superpopulation model. J. Amer. Statist. Assoc., 77, 
89-96. 
 
Kalton, G., and Anderson, D.W. (1986), "Sampling Rare 
Populations," Journal of the Royal Statistical Society, Ser. A, 
149, 65-82. 
 

2003 Joint Statistical Meetings - Section on Survey Research Methods

3917



Liang, K.-Y. and Zeger, S.L. (1986). Longitudinal data 
analysis using generalized linear models. Biometrika, 73,13-
22.  
 
Lohr, S. L. and Rao, J.N.K. (2000). Inference from dual frame 
surveys. Journal of the American Statistical Association, 95, 
271-280. 
 
Lund, R.E. (1968), "Estimators in Multiple Frame Surveys," in 
Proceedings of the Social Statistics Section, American 
Statistical Association, pp. 282-288. 
 
Rao, J.N.K. (1994).  Estimating totals and distribution 
functions using auxiliary information at the estimation stage.  
Journal of Official Statistics,10, 153-165. 
 
Rao, J.N.K.,and  Scott, A.J. (1981). The analysis of categorical 
data from complex sample surveys: chi-squared tests for 
goodness-of-fit and independence in two-way tables. J. Amer. 
Statist. Assoc., 76, 221-230. 
 
Renssen, R.H., and Nieuwenbroek, N.J. (1997). Aligning 
estimates for common variables in two or more sample 
surveys. Journal of the American Statistical Association, 92, 
368-374. 
 
Särndal, C.-E. (1980).  On π -inverse weighting versus best 
linear unbiased weighting in probability sampling. Biometrika, 
67, 639-650. 
 
Singh, A.C. (1994).  Sampling design-based estimating 
functions for finite population means.  Invited paper, Abstracts  

of the Annual meeting of the Statistical Society of Canada, 
Banff, Alberta, May 8-11, p. 48. 
 
Singh, A.C. (1996).  Modified regression for combining  
information in survey sampling with applications. Invited  
paper, ASA Proc. Surv. Res. Meth. Sec. 120-129.  
 
Singh, A.C., and S. Wu (1996). Estimation for Multiframe  
Complex Surveys by Modified Regression. Proceedings of  
 the Statistical Society of Canada, Survey Methods Section, 
pp. 69-77. 
 
Singh, A.C. and Sarndal, C.-E. (2003) Optimal Regression, 
Generalized Regression, and Modified Regression, 
manuscript under preparation. 
 
Singh, A.C., Iannacchione, V.G.,and Dever, J.A. (2003). 
Efficient estimation for surveys with nonresponse follow-up 
using dual frame calibration, ASA Proc., Surv. Res. Meth. 
Sec. (in print) 
 
Skinner, C.J., and Rao, J.N.K. (1996).  Estimation in dual 
frame surveys with complex designs.  Journal of the American 
Statistical Association, 91, 349-356.  
 
Wu, C. (2003). Combining information from multiple surveys 
through empirical likelihood method. The Canadian Journal 
of Statistics, 31, (in print) 
 
Zieschang, K.D. 91990). Sample weighting methods and 
estimation of totals in the consumer expenditure survey. 
Journal of the American Statistical Association,85, 986-1001.

  
 

Table 1:  EMSE (x100) of Estimators 
 

EMSEx100 

sample size (A/B) b  ρ  
GR 

(naive) FB DFC Av Aη  

200/300 0.3 0.1 2.192 1.455 1.379 0.264 
400/600 0.3 0.1 1.648 0.952 0.909 0.260 
600/900 0.3 0.1 1.107 0.574 0.543 0.260 
200/300 0.3 0.2 2.685 1.473 1.452 0.206 
400/600 0.3 0.2 2.882 0.815 0.781 0.209 
600/900 0.3 0.2 2.148 0.795 0.779 0.207 
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