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1. Introduction 
Weighting is a common form of unit nonresponse 
adjustment in sample surveys where entire 
questionnaires are missing due to noncontact or 
refusal to participate. Weights are inversely 
proportional to the probability of selection and 
response. A common approach computes the 
response weight as the inverse of the response rate 
within adjustment cells based on covariate 
information.  When the number of cells thus created 
is too large, a coarsening method such as response 
propensity stratification can be applied to reduce the 
number of adjustment cells.  Simulations in 
Vartivarian and Little (2002) indicate improved 
efficiency and robustness of weighting adjustments 
based on the joint classification of the sample by two 
key potential stratifiers:  the response propensity and 
the predictive mean, both defined in Section 2. 
Predictive mean stratification has the disadvantage 
that it leads to a different set of weights for each key 
outcome. However, potential gains in efficiency and 
robustness make it desirable to use a joint 
classification.  Here, we consider the efficiency and 
robustness of weights that jointly classify on the 
response propensity and predictive mean, but that 
base the predictive mean dimension on a single 
canonical outcome variable. 

 
2. Coarsening the Set of Covariates 
Let D = (X,Z) be all fully-observed survey variables 
X and design variables Z, Y be the set of outcome 
variables and R be a response indicator.  In principle, 
adjustment cells might be based on a joint 
classification of the variables D. We assume that 
given the classification D, nonresponse is missing at 
random (MAR; Rubin, 1976; Little and Rubin, 2002), 
that is  
 |R Y DC  (1) 

where C  denotes independence. Since classification 
on D  may be unrealistic, we seek a coarsening A of 
D, such that 
 |R Y AC . (2) 

Little (1986) defines the response propensity 
as 

( ) ( 1| )p D pr R D= =  

and supposes that ( ) 0p D >  for all observed values 
of D.  Then Little (1986) uses the theory of 

Rosenbaum and Rubin (1983) to show that (1), i.e. 
ignorable nonresponse, implies that 
 
 | ( ).Y R p DC  (3) 

The response propensity can be modeled via a 
logistic regression fit to the sampled cases, for 
example, and a grouped version of the response 
propensity can be the basis for adjustment cells, 
where grouping can be based on the quintiles of the 
distribution of the estimated response propensity. If A 
is a coarsening of D based on response propensity 
stratification, then (2) holds approximately so 
adjustment based on A controls nonresponse bias. 

Modeling the distribution of the outcome Y 
given D is the second strategy for reducing the 
number of adjustment cells suggested in Little 
(1986). Since (1) implies that the distribution of the 
population values Y for respondents and 
nonrespondents are homogeneous given D, Little 
(1986) notes that pooling over values of D such that 
the distribution is constant results in subpopulations 
where the outcome Y and response R are still 
independent.  Thus, Little (1986) specifies a model 
for the distribution of Y given D such that the 
distribution of the outcome Y differs only in the 
location parameter for different values of D. Then 
forming adjustment cells such that the location 
parameter is constant within the adjustment cells 
satisfies (2), implying 

 
 ˆ| ( )Y R y DC . (4) 

Since the location parameter is usually unknown, an 
estimate is obtained as the predicted mean ˆ( )y D  
from the regression of the outcome Y given D fitted 
to responding cases, for example.  A grouped version 
ˆ ( )Gy D  of the predictive mean can be the basis for 

forming adjustment cells. One possible choice is to 
base the groups on the quintiles of the distribution of 
ˆ( )y D .   If A is a coarsening of D based on the 

predictive mean stratification, then (2) holds 
approximately so adjustment based on A controls 
nonresponse bias. 
 
3. Joint Classification of the Response Propensity 
and the Predictive Mean 
Simulations in Vartivarian and Little (2002) examine 
the response propensity and the predictive mean as 
potential stratifiers.  Response propensity 
stratification is attractive since it requires less 
modeling and has zero large sample bias for domain 
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and cross-class means, where cross-classes are 
classes that cut across adjustment cells. However, it 
does not control variance and can be very inefficient.  
Predictive mean stratification has the advantage of 
controlling both bias and variance of the overall 
mean. Yet, it produces a different stratification and 
thus a different set of weights for each outcome,  and 
it does not in general control the bias of cross-class 
means. Following Little and Rubin (2000), 
Vartivarian and Little (2002) propose to cross 
classify on the response propensity scores ˆ ( )p D  and 

the best linear predictor ˆ( )y D  to form adjustment 
cells. The motivation is to capture the bias-reduction 
property of response propensity stratification and 
gains in efficiency for predictive mean stratification.  
The joint classification also has potential gains in 
robustness because of the “double robustness” 
property, where unbiasedness is gained if one of the 
models is correct, and efficiency is gained if both are 
correct.  

Simulations in Vartivarian and Little (2002)  
suggest that an improvement in efficiency is gained 
in situations where the response propensity 
stratification alone is inefficient, with some loss in 
efficiency when the response propensity is efficient. 
Further, the simulations demonstrate robustness of 
the joint classification to misspecification of the 
model for the response propensity or the predictive 
mean. However, the simulations in Vartivarian and 
Little (2002) focus on the simple situation of a single 
outcome Y, where predictive mean stratification 
yields a one-dimensional classification variable. In 
surveys with multiple key outcomes, the method of 
crossclassification proposed in Vartivarian and Little 
(2002) would lead to a different set of weights for 
each outcome, as illustrated in Table 1, which is 
practically cumbersome and leads to complications 
for multivariate analysis.   
 

Table 1.  Number of Sets of Weights Needed for 
Adjustment Cell Stratification 

 
Method of Adjustment  

Cell Stratification 
 

Number  
of  

Weight 
Sets 

Number 
of 

Cross-
classifiers 

Response Propensity Score 1 1 
Predictive Mean based on 1st 

Canonical Covariate 
1 1 

Response Propensity Score 
and Predictive Mean based 
on 1st Canonical Covariate 

1 2 

Predictive Mean of  
Each Outcome Y 

k 1 

Response Propensity Score 
And Predictive Mean of 

Each Outcome Y 
k 2 

 

We desire a compromise predictive mean 
that limits the number of sets of weights, but 
potentially offers gains in efficiency and double 
robustness when crossclassified with the response 
propensity. 

 
 

4. Joint Classification of the Response Propensity 
and the Canonical Covariate 
One approach to limiting the sets of weights to a 
smaller number, whilst retaining the efficiency of 
estimation for the means of individual outcomes is to 
base weights on a predictive mean stratification using 
the first canonical covariate determined by the set of 
outcomes and covariates.  Let 1( ,..., )kY Y Y=  denote 
the set of k continuous key outcomes and 

1( ,..., )pD X X=  denote the set of p covariates. We 

assume that k p≤  in our application of the 
theoretical canonical correlation results, though the 
results also hold when the smaller set is the covariate 
set.  Let ( )yy

jjs  be  the sample variance of outcome jY , 

1, ,j k= K ,  and ( )yy
ijs be the sample covariance of iY  

and jY , for  and ,  1, ,i j i j k≠ = K , resulting in the 

sample variance-covariance matrix ˆ
YYΣ  of Y: 

 
( ) ( ) ( )
11 12 1

( )
22

( ) ( )
1

ˆ

yy yy yy
k

yy

YY

yy yy
k kk

s s s

s

s s

 
 
 
 Σ =
 
 
 
 

L

M M

O

M O M

L L

. 

 
Similarly, let ( )xx

jjs  be  the sample variance of 

covariate jX , ( )xx
ijs be the sample covariance of iX  

and jX , for  and ,  1, ,i j i j p≠ = K  ,where all 

variances and covariances are based on complete 
cases.  The resulting complete case sample variance-

covariance matrix of D is denoted by ˆ
DDΣ ,    

 
( ) ( ) ( )
11 12 1

( )
22

( ) ( )
1

ˆ

xx xx xx
p

xx

DD

xx xx
p pp

s s s

s

s s

 
 
 
 Σ =
 
 
 
  

L

M M

O

M O M

L L

. 

 
Finally, let the vector V , 
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have variance-covariance matrix 
 

ˆ ˆ
ˆ

ˆ ˆ
YY YD

DY DD

 ∑ ∑
 Σ =
 ∑ ∑ 

, 

where  
 

( ) ( ) ( )
11 12 1
( ) ( ) ( )
21 22 2

( ) ( ) ( )
1 2

ˆ

yx yx yx
p

yx yx yx
p

YD

yx yx yx
k k kp

s s s

s s s

s s s

 
 
 
 Σ =
 
 
 
  

L

O

M O M

L

 . 

 
Then, we reduce the dimension of the outcome set Y  
by choosing a linear combination of the outcomes, 
say U a Y′= , where 1( , , )ka a a′ = K  is a coefficient 
vector, to replace the entire set Y.  We would like this 
set of outcomes to be maximally correlated with the 
set of covariates D. Specifically, we would like U to 
be maximally correlated with a linear combination of 
D, say T b D′= , where 1( , , )pb b b′ = K is a coefficient 

vector. The relevant result taken from Johnson and 
Wichern (1992, p.472) is as follows and can be found 
in standard multivariate texts such as Kshirsagar 
(1972): 

 

Result 10.2.  Let *2 *2 *2
1 2

ˆ ˆ ˆ
kρ ρ ρ≥ ≥ ≥L  be the k 

ordered eigenvalues of 1/ 2 1 1/ 2ˆ ˆ ˆ ˆ ˆ
YY YD DD DY YY
− − −Σ Σ Σ Σ Σ  with 

corresponding eigenvectors 1 2
ˆ ˆ ˆ, , , ke e eK , where 

the ˆ
YYΣ , ˆ

DDΣ  and ˆ
YDΣ  are as defined previously, 

and k p≤ .  Let 1 2
ˆ ˆ ˆ, , , pf f fK  be the eigenvectors 

of 1/ 2 1 1/ 2ˆ ˆ ˆ ˆ ˆ
DD DY YY YD DD
− − −Σ Σ Σ Σ Σ , where the first k  '̂sf  

may be obtained from 
* 1/ 2 1/ 2ˆ ˆ ˆ(1/ )j j DD DY YY jρ − −= ∑ ∑ ∑f e ,  for 1, ,j k= K .  

The jth sample canonical variate pair is: 

1/ 2 1/ 2ˆˆ ˆˆ ˆˆ ;  j j YY j j DDU Y T D− −′= Σ = Σe f   (5) 

The first sample canonical variate pair 1 1
ˆ ˆ( , )U T  

have the maximum sample canonical correlation 

*
1 1 1

ˆ ˆ ˆ( , )r U T ρ= .   (6) 

The proof can be found in the same referenced 
text. 

 

 
We replace our p covariates by the linear 

combination that has the maximum correlation 
*2 2
1 1 1

ˆ ˆˆ ( , )r U Tρ =  with the first canonical variate 1Û  of 
the outcomes.  Note that using a standardized set of 
outcomes and covariates may be desirable because of 
increased interpretability of the coefficients and of 
descriptive summary measures. For example, if the 
measurement scale is vastly different for each of the 
variables, using the standardized variables then 
allows the coefficients to more accurately reflect the 
contribution of each variable to its canonical variate. 
Also, when the variables are standardized, one can 
then examine the proportion of total sample 
standardized variance within the outcome set 
explained by its first canonical variate: 

 
1 1

2 2
ˆ ˆ| ,

1

1
j

k

Y U U Y
j

R r
k =

= ∑ , (7) 

where the 
1

2
ˆ , jU Y

r is the coefficient of determination 

between 1Û  and  jY , for  1, ,j k= K .  This quantity 

may be used as one indication of how well the 
efficiency of the estimate of the mean of jY is 

preserved when using 1Û  as a compromise predictive 
mean crossclassifier.  Note that the full set of 
outcomes Y may be used in subsequent analyses as 
the data reduction of the outcomes we consider is 
only with respect to the formation of adjustment cells 
and obtaining the corresponding weights. 
 
5. Simulation Study  
We consider a case with three outcome variables and 
four covariates. The population is structured such that 
one outcome is unbiased, while the remaining two 
outcomes are biased, but have different relationships 
with the response mechanism. We assume a MAR 
response mechanism.  

  
5.1 Simulation Superpopulation Structure 
A superpopulation model for six covariates, 

1 2 3 4 5 6( , , , , , )D X X X X X X= , and three outcomes, 

1 2 3( , , )Y Y Y Y= , is assumed to be a multivariate 
normal distribution with zero mean vector and the 
following covariance matrix ∑ : 
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1 0 0 0.9 0 0 0 0 0

0 1 0 0 0.9 0 0 0 0

0 0 1 0 0 0.64 0.64 0 0

0.9 0 0 1 0 0 0 0 0

.0 0.9 0 0 1 0 0 0 0

0 0 0.64 0 0 1 0 0 0

0 0 0.64 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0. 0 0 0 0 0 1

YY YD

DY DD

∑ ∑ 
Σ =   ∑ ∑ 

 
 
 
 
 
 
 =
 
 
 
 
 
  
 

 

 
It should be noted that covariate 1X  is highly 

correlated with outcome 1Y , covariate 2X is highly 

correlated with outcome 2Y , and covariates 3X  and 

4X  have a high multiple correlation with  outcome 

3Y .  Covariates 5X and 6X  are uncorrelated with all 
of the outcomes. 

The following probit model was assumed for 
response: 

   

{ }
1 2 3 4 5 6

1 1 3 2 5 6

( 1| {      })
0.2 *( ) *( ) ,

P R D x x x x x x
x x x xβ β ε

= =
= Φ + + + + +  

ε is a standard normal error term, and the coefficients 

{ }1 2 β β β= are varied according to Table 2  forming 

three different response mechanisms.   
 

Table 2. Simulation Response Probability 
Coefficients. 

 
 

1β  2β  

1. 0.5 0.5 
2. 0.2 0.8 
3. 0.8 0.2 

 
Therefore, we have a total of three 

superpopulations, each determined by one value of 

{ }1 2 β β β= . The response rate is approximately 

fifty-five percent in each scenario.  One hundred 
replicate simple random samples, each of size n = 
2200, were drawn for each scenario. 

 
5.2 Modeling the Predictive Mean 
Predictive mean models for iY , i = 1, 2, 3, include all 
covariates and were fit to the respondent sample.  
The notation y1F denotes a multiple regression of 1Y  

on 1 2 3 4 5 6( , , , , , )D X X X X X X= fit to the respondent 

data, whereas y2F and y3F are based on outcomes 2Y  

and 3Y , respectively.  Five adjustment cells were 
formed according to the quintiles of the distribution 
of the predicted values for each model. 

 
5.3 Modeling the Compromise Predictive Mean 
A canonical correlate analysis was performed, fit to 
the respondent data. All covariates and outcomes 
were included. The first canonical covariate of the 
outcome set was then used as the compromise 
outcome variable. A regression of the compromise 
outcome variable on all covariates was fit to the 
respondent data. The quintiles of the distribution of 
predicted values from this regression formed the five 
adjustment classes. The first canonical correlate is 
referred to as ycc1F since all covariates and 
outcomes were included in the canonical sets. 

 
5.4 Modeling the Response Propensity 
Two probit response propensity models were fit to 
the sample data: a full model denoted by pF including 
all covariates that the response propensity depends 
on, and a mismodeled response propensity denoted 
by pM where covariates 5X and 6X are omitted.  
Specifically, pF denotes a probit regression of the 
response indicator R on 1 2 3 4 5 6( , , , , , )X X X X X X , 
whereas pM denotes a probit regression of  R on 

1 2 3 4( , , , )X X X X .  The models are summarized in 
Table 3. Joint classifications are denoted by the 
predictive mean followed by the response propensity 
model. For example, a joint classification of y3F and 
pM is represented as “y3FpM”, where a joint 
classification of ycc1F and pM is denoted by 
“ycc1FpM” . 

 
Table 3.  Models for Classifiers. 

 
 

Model   
Mean 

Classification 
Covariates 

Included in Model 
1. pF 1 2 3 4 5 6( , , , , , )X X X X X X  

2. pM 1 2 3 4( , , , )X X X X  

3. y1F 1 2 3 4 5 6( , , , , , )X X X X X X  

4. y2F 1 2 3 4 5 6( , , , , , )X X X X X X  

5. y3F 1 2 3 4 5 6( , , , , , )X X X X X X  

6. ycc1F 1 2 3( , , )Y Y Y  

1 2 3 4 5 6( , , , , , )X X X X X X  

 
 

5.5 Results 
The root mean square error (RMSE) and absolute 
bias (AB) relative to the superpopulation mean were 
examined for each outcome variable.  In this 
simulation study, averaging over all three 
populations, we can see that a joint classification of 
the compromise predictive mean and the response 
propensity does not entail a great loss with respect to 
the RMSE.  In fact, the compromise stratification 
performs similarly to the correct model for the 
response propensity, but the potential benefit of 
protection from model misspecification and possible 

2003 Joint Statistical Meetings - Section on Survey Research Methods

4361



 

 

gains from double robustness is an advantage in 
using the crossclassification.  See Figures 1 and 2, 
where the mean before deletion of cases due to 
nonresponse and the respondent mean are also 
included, denoted by meanbd and meanr, 
respectively.   
 Outcome 1Y  represents a case where the 
predictive mean adds efficiency to the response 
propensity as seen in y1FpF. This efficiency is 
compromised by using the canonical correlate instead 
of the predictive mean in the crossclassification, but  
this loss may be offset by potential protection for 
model misspecification.  Also, the canonical 
crossclassification does not show a great loss when 
compared to the response propensity classification 
alone: average 10000(RMSE) = 348.59  and 343.59 
for ycc1FpF and pF, respectively. 

For outcome 2Y , since the response 
probability does not involve the covariate associated 
with outcome 2Y , there is no bias. Using the 
canonical crossclassification offers a slight loss in 
precision over the response propensity in this case.  
The predictive mean classification is efficient as 
expected with a high correlation between 2Y  and 2X . 

Outcome 3Y  has considerable bias that is 
corrected by the canonical crossclassification as well 
as the classification by the response propensity or the 
predictive mean.  However, the response propensity 
is inefficient in this case. The canonical 
crossclassification performs well here compared to 
the response propensity classification, with gains in 
efficiency.  Much of the efficiency gained by the 
using the predictive mean as a crossclassifier is 
retained when the predictive mean dimension is 
replaced by the compromise canonical correlate.   
 
6. Summary 
This research is promising for survey practitioners in 
that a relatively fast and easy compromise predictive 
mean that leads to only one set of weights (with two 
classifiers) may be applied when multiple key 
outcomes are present.  The efficiency is comparable 
to that based on the predictive mean stratification 
alone, but potential protection from model 
misspecification is allowed with the second 
compromise canonical classification used with the 
response propensity.   
 
6. Further Work 
Future work should examine the efficiency of the 
canonical variate classification when the set of 
outcomes and covariates are not multivariate normal. 
It may also be useful to consider the canonical 
covariate based on the residual space, after partialing 
out the response propensity since the predictive mean 
dimension is viewed as an additional classification 
that may improve the efficiency of the response 
propensity. 
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Figure 1:  Overall Performance of Various Weight Classifications 

 
 

Figure 2:  Performance of Various Weight Classifications with RMSE < 450 
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