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Abstract 
 
In surveys where response rates are low, a follow-up 
survey of nonrespondents may be used to augment 
the respondents from the main survey. Using the 
theory of double sampling for stratification, estimates 
from this combined sample provide a less-biased 
alternative to nonresponse-adjusted estimates from 
the main survey.  This is due to the bias-correction 
limitations of the main survey nonresponse model in 
the presence of high nonresponse. However, when 
cost considerations require that the follow-up sample 
size be small, the reduction in bias of estimates 
obtained from the combined sample may be negated 
by the increase in sampling variance due to 
variability in selection probabilities between the main 
and the follow-up samples. In this situation, a 
possible solution might be to trim the extreme 
weights to reduce the mean square error (MSE) 
associated with key survey estimates. However, it is 
not clear how to define a model to measure and 
control bias introduced by trimming.   
 
We present an alternative in which we make more 
efficient use of information in the data to construct 
estimates by minimizing MSE under joint design- 
and model-based randomization.  Analogous to the 
small area estimation setting, our goal is to obtain a 
composite estimator that strikes a balance between 
variance of the unstable estimator based on the main 
and follow-up samples and bias of the stable 
estimator based on the main sample only. However, 
this situation it is a large area and not a small area 
problem, and so the dual frame estimation framework 
can be used for its formulation. Moreover, composite 
weights can be obtained from weight calibration with 
built-in controls for extreme weights while 
preserving the known population control totals as 
well as zero control totals for difference estimates 
from the two samples for a key set of study variables. 
The proposed method is illustrated for a survey of 
Gulf War veterans with a nonresponse follow-up 
survey. 
 
Key Words:  dual-frame estimation, extreme 
weights, mean square error, nonresponse bias, small-
area estimation, weight calibration. 
 
 

1. Introduction 
 
An important application of double sampling for 
stratification involves the use of a follow-up survey 
to temper the effect of nonresponse in the main 
survey (Hansen and Hurvitz, 1946; Cochran p370, 
1977). In this situation, nonrespondents are classified 
as a distinct stratum based on the outcome of the 
initial (or first-phase) sample attempt. The rationale 
for the application is based on the population 
response model (for a recent reference, see e.g., Fay, 
1991; and Shao and Steel, 1999) which under given 
survey conditions assumes that a random response 
indicator can be assigned to each unit in the 
population before actual sampling takes place. 
However, the membership of the units in the 
nonresponse and response strata is not known until 
the initial or first phase of data collection has been 
completed.  For the second phase, a sub-sample of 
the initial nonrespondents is drawn and fielded for 
follow-up, usually with a more intense effort than 
was used to field the initial sample.   
 
In theory, follow-up samples can be used to alleviate 
the limitations of model-based nonresponse 
adjustments in survey estimates that use only the 
main sample because bias adjustments via 
nonresponse modeling may not be adequate for 
surveys with high nonresponse. However, the reality 
is that less-than-complete response to a follow-up 
dilutes the actual amount of bias reduction thus 
requiring some nonresponse modeling.  Cost 
considerations typically limit the size of the follow-
up sample thus increasing the variability of estimates 
due to the high unequal weighting effect (UWE) in 
the combined sample. Even so, a nonresponse follow-
up can provide important information about 
nonrespondents and nonresponse bias especially for 
surveys with low response rates. There is an 
important additional benefit of a follow-up survey 
which constitutes the main purpose of this paper.  It 
is shown that unlike the traditional estimator based 
on double sampling for stratification, a more efficient 
estimator can be developed by an alternative way of 
combining information from main and follow-up 
samples.  
 
For surveys of populations where expected response 
rates and information about potential nonresponse 
bias can be obtained from prior studies, an optimum 
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sub-sampling fraction among the initial 
nonrespondents can be determined and integrated 
into the double-sampling procedure before the survey 
begins (Cochran 1977, p331).  This allows for 
efficiency considerations at the design stage.  
However, despite optimization at the design stage, 
precision of estimates for certain study variables may 
not be adequate.  The present paper considers the 
problem of improving efficiency at the estimation 
stage.  Note that for surveys of populations where no 
information about response rates is available a priori, 
the decision to conduct a follow-up may be made 
during the survey based on lower-than-expected 
response rates. In this situation, efficiency 
considerations at the estimation stage become more 
important because (1) the sub-sampling fraction 
applied to the initial nonrespondents may be less than 
optimum, and (2) the reduction in bias obtained from 
the follow-up may be offset by the increase in 
sampling variance due to the UWE.  
 
A possible solution to the UWE problem in the 
combined sample is to trim the weights to reduce 
mean square error (MSE) associated with key survey 
estimates (Potter, 1990). The goal of weight trimming 
is to reduce sampling variance of an estimate more 
than enough to compensate for the possible increase 
in bias caused by the use of trimmed weights. 
However, it is not clear how to model for measuring 
and controlling the bias introduced by weight 
trimming. If the problem of a high UWE is attributed 
to a few extreme values, then a solution might be to 
use a weight calibration method with unit-specific 
range restrictions such as the generalized exponential 
model (GEM) of Folsom & Singh (2000).  GEM is a 
general unified weight-calibration model that controls 
for extreme weights by incorporating pre-specified 
upper- and lower-bounds both for extreme and non-
extreme weights into the adjustment factors made for 
nonresponse and post-stratification. Thus extreme 
weight values are controlled while desired population 
control totals are maintained during weight 
calibration. 
 
As an alternative, we borrow ideas from composite 
estimation for dual-frame surveys to extract more 
information from the data. In our case, the composite 
estimator is a weighted combination of two correlated 
estimators: 
 
• The first estimator ignores the follow-up and 

uses only the first-phase sample (adjusted for 
unit nonresponse). This estimator is expected to 
be stable but potentially biased in spite of 
nonresponse model adjustments since the model 
is limited in bias correction when response rates 

are low.  This can be viewed as a quasi-model 
based estimator because modeling for 
nonresponse plays a major role as the relative 
proportion of nonrespondents in the sample is 
high. 

• The second estimator combines the first-phase 
sample with the follow-up (or second-phase) 
sample.  This estimator is expected to be 
relatively unbiased, but unstable especially if the 
follow-up sample is small. Typically, another 
model is needed to adjust for nonresponse in the 
follow-up. This can be viewed as a quasi-design 
based estimator because here modeling for 
nonresponse plays a minor role due to the 
relative small proportion of non-respondents in 
the sample. 

 
The proposed method is motivated in Section 2 using 
a small area estimation analogy, but is formulated 
using the dual-frame calibration (DFC) method of 
Singh and Wu (1996, 2003) after suitable 
modifications for dependence between samples. After 
providing a brief overview of DFC, we discuss how 
the GEM calibration method can be used to produce 
range-restricted (e.g., nonnegative) weights with 
built-in control on extreme sampling weights.  
Additionally, we discuss how the method was 
adapted to include extra controls provided by the two 
estimators. A step-by-step description of the 
proposed DFC method is presented in Section 3. The 
problem of variance estimation is considered in 
Section 4. We show that after Taylor linearization, 
the standard variance estimator for double sampling 
for stratification can be used. A simpler variance 
estimate similar to the case of single-phase multi-
stage sampling is also proposed when the follow-up 
sample is nested within primary sampling units 
(PSUs).  We present empirical results based on an 
application to a survey of Gulf War Veterans in 
Section 5, and we summarize our approach with 
concluding remarks in Section 6. 
 
2.     Motivation and Formulation of DFC Method 
 
To improve efficiency of survey estimators, we need 
to incorporate as much relevant information as 
possible at the estimation stage. To achieve this end, 
as mentioned in the introduction, we consider the 
following two estimators of a population total Ty 
corresponding to a study variable y. 
 
First, let sA denote respondents from Phase 1 (i.e., the 
main survey) and p1 the corresponding probability 

sampling design. We define an estimator )(
ˆ

AyT  

suitably adjusted for Phase 1 nonresponse under 
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model ξ1, where the subscript A signifies that only 
respondents from Phase 1 are used in the estimation. 
Clearly for this estimator to be useful in view of 
anticipated low response to Phase 1, we need to 
obtain good nonresponse predictors (possibly from 
administrative sources) to link respondents and 
nonrespondents under the model ξ1. 
 
Next, let sB denote respondents from both Phase 1 
and Phase 2 (i.e., the main survey and the follow-up) 
with corresponding probability sampling designs p1 

and p2. We define a second estimator )(
ˆ

ByT suitably 

adjusted for nonresponse in Phase 2 under model 2ξ , 
where the subscript B signifies that all respondents 
are used in the estimation. This is similar to the usual 
estimator employed in double sampling for 
stratification. 
 
The estimator 

)(
ˆ

AyT  is approximately unbiased under 

the design p1 and the corresponding nonresponse 
model 1ξ . Similarly, the estimator 

( )ŷ BT  is 

approximately unbiased under design p1p2, and model 

2ξ .  The estimator 
)(

ˆ
AyT  is stable but likely to be 

biased because of the limitations of 1ξ , while 
( )ŷ BT  is 

unstable but likely to be nearly unbiased.  Now the 
problem of combining these two estimators can be 
motivated by small area estimation (SAE) in that the 
combined estimator should exhibit a suitable trade-
off between bias of 

)(
ˆ

AyT and variance of 
( )ŷ BT .  As in 

SAE, a composite estimator can be formed by a 
convex linear combination such that the MSE defined 
jointly under model 1ξ =( 1ξ , 2ξ )and design p =(p1,p2) 
is minimized.  Note that it is not possible to get a 
stable estimate of bias without a model.  So we 
assume models 1ξ  and 2ξ hold true for computing 

MSE.  However, since the model 1ξ  is deemed to be 
tenuous, the resulting composite estimator is 
expected to be biased but closer in value to though 
more stable than 

( )ŷ BT . 

 
The above analogy with SAE is only used to explain 
the trade-off between variance and bias.  Our 
situation is not a SAE problem since there is no need 
to borrow information from other domains of interest 
via a separate model.  In our case, modeling is only 
used to connect nonrespondents to respondents as in 
any large area estimation problem.  So, the problem 
can be formulated in a dual-frame estimation 
framework by regarding the two samples sA and sB as 
being drawn from two identical frames UA and UB, 

respectively. However, unlike the usual goal of 
minimizing variance, here the goal is to minimize 
MSE. Note that under the specified designs and 
models, MSE can be estimated like the usual variance 
estimator under the usual assumption that the 

pV Eξ component is negligible compared to the 

pE Vξ component. So for all practical purposes, we 

can treat the new dual-frame estimation problem as 
the usual one based on minimizing variance.  
 
Typically in the dual-frame setting the two frames 
overlap partially and the two samples are 
independent. In our case, however, the two frames 
are identical and the two samples are dependent, as 
they share the same set of respondents sA from Phase 
1. Dual-frame calibration (DFC) for constructing 
combined estimates as expansion estimators was 
considered by Singh and Wu (1996, 2003) using 
linear regression estimation for simultaneous post-
stratification of samples from two frames. This is 
done such that the control totals corresponding to the 
usual auxiliary variables (x) are satisfied as well as 
some new control totals of zero corresponding to new 
auxiliary variables (z). Here the z-variables denote 
certain key study variables used in the composite 
estimation method which are collected for both 
samples. The variable y is used to denote an arbitrary 
study variable which may be one of the z-variables 
which are directly controlled in composite estimation.  
 
We will first briefly review the DFC methodology 
before discussing the necessary modifications needed 
to account for dependent samples.  For simplicity in 
illustration, we consider how the problem of 
combining two unbiased and independent estimators, 

)(
ˆ

AyT and 
( )ŷ BT , of a common population total Ty can 

be cast into a calibration problem with a new 
constraint defined in terms of the study variable y and 
a control total of zero. Suppose we have two simple 
random samples (SRS) of sample sizes nA and nB (the 
total sample size is denoted by n) from a population 
of size N.  An optimal linear combination to 
minimize the variance is given by 
 

              ( ), ( ) ( )
ˆ ˆ ˆ
y opt opt y A opt y BT T Tα α= + 1−          (2.1a) 

where,  
1

( ) ( ) ( )
ˆ ˆ ˆ( ) ( ) ( ) (2.1b)opt y B y A y BV T V T V Tα

−
 = +   

 
For SRS, we have  
 ( )

ˆ

A

y A kA kA
s

T y d=∑  

where, dka = N / nA  and the usual variance estimate is 
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( ) ( )( )
ˆ ˆ 1

1
A

A
y A kA kA kA A

A s

n N
V T y d y y

N n

  = − −   −  
∑ (2.1c) 

The variance estimate for ( )ŷ BV  is defined similarly.  

 
Therefore, 

( )

( ) ( )( ) ( )

ˆ1
ˆ ˆ ˆ ˆ

A

A
kA kA kA A

As

opt

y A y B

n N
y d y y

N n

V T V T
α

  − 1−    −1  
− =

+

∑
(2.1d) 

Now, rewriting ,ŷ optT  as 

( ), ( ) ( ) ( )
ˆ ˆ ˆ ˆˆ(1 )y opt y A opt y B y AT T T Tα= + − −  (2.2a) 

 
we have, 

,ŷ optT =

( ) ( )( )1
( ) ( )

1

ˆ ˆ ˆ0

ˆ[1 ( / ) ( / )( )]

A

A

A A

kA kA kA kA A y A y B
s

kA kA A yA kA A
s

kA kA kA kA kA
s s

y d c y y V T T

y d n n n y y

y d a y w

λ

−

−

 1+ − − −  

+ −

=

≈

=

∑

∑

∑ ∑

 

                                              (2.2b) 
where, 

( ) ( )
ˆ ˆ ˆ ˆ ˆ( ) ( )y A y BV V T V T= + ; 

 

A
kA

A A

n N N
c

N n n
 = 1− ≈  −1 

 , 

ignoring the finite population correction (fpc);    

( ) ( ) ( )( )1

( ) ( ) ( ) ( )
ˆ ˆ ˆ ˆ ˆ ˆ ˆ0yA y A y B y A y BN V T V T T Tλ

−
 = + − −
 

; 

and 

1 ˆ1 ( / ) ( / )( )kA A yA kA Aa n n n y yλ−= + − . 

 
This formula is similar to a linear regression 
calibration estimator. Note that unlike  
the usual regression estimation for single frame 
surveys with auxiliary x-variables, here the λ-
parameter in the adjustment factor is scaled by the 
inverse of the relative effective sample size nA / n.  It 
may be instructive to note that the larger sample, as 
expected, tends to have smaller adjustments (i.e., the 
factors are closer to 1).  In other words, weights for 
each sample are differentially adjusted; the 
adjustments are smaller for the sample with higher 
the relative sample size so that the two estimates 
become identical. 
 

Similarly, we can write ,ŷ optT in terms of wkB. We have 

( ), ( ) ( ) ( )
ˆ ˆ ˆ ˆˆy opt y B opt y A y BT T T Tα= + −                (2.3a) 

 
Therefore,  

1
,

ˆ[1 ( / ) ( / )( )]ˆ
B

B B

kB kB B yB kB B
s

kB kB kB kB kB
s s

y opt y d n n n y y

y d a y

T

w

λ−+ −

=

≈

=

∑

∑ ∑
 

                                               (2.3b) 
 
Equations (2.2b) and (2.3b) imply that the initial 
weights dkA for sA and dkB for sB are calibrated to wkA 
and wkB, respectively, such that estimates from each 

sample are identical and equal to ,ŷ optT . In other 

words, after calibration, the difference between the 
two estimates becomes zero, the new control total.  
 
The above idea of zero control totals for new 
auxiliary variables defined by the key study variables 
(henceforth denoted by z), such that differences 
between the two estimates for the overlapping frame 
are constrained to be zero, is central to the proposed 
calibration approach. In our case, the two estimators 
are dependent because of common samples, and so an 
appropriate modification of the combination 
parameter αopt taking account of the covariance needs 
to be made.  
 
For complex designs, it generally is difficult to write 
the optimal linear combination in a calibration form. 
For this reason, Singh and Wu (1996, 2003) used an 
extension of GREG (generalized regression) 
estimator to propose a suboptimal composite 
estimator in the form of a calibration estimator. 
Forms of the adjustment factors are given by 
 

 
1

1

1 ( ) ,

1 ( )

kA A A A A z

kB B B B B z

a

a

η λ λ
η λ λ

−

−

′ ′= + +
′ ′= + −

x z

x z
 (2.4) 

 
where, x denotes the usual auxiliary covariates with 
known control totals Tx and z is the set of key study 
variables. It may be of interest to note that the above 
adjustment factors can be obtained by minimizing the 
following distance function subject to 
  

2 2( , ) ( 1) ( 1)
A B

A kA kA B kB kBs s
w d d a d aη η∆ = − + −∑ ∑  

                   (2.5) 
 
Note that z appears with different signs in the above 
two adjustment factors because control totals for z are 
zero. However, the λz parameters are common to both 
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factors. The parameters (or scaling factors) ηA and ηB 
are pre-specified and signify relative sample sizes 
depending on the design of each sample. They are 
analogous to the relative sample sizes in the SRS 
case.  In practice, the η-parameters can be determined 

via a grid search such that variance of ,ẑ compT (or 

trace of the covariance matrix if z is multivariate) is 
minimized. Thus the choice of Aη  and Bη  will 
automatically reflect the dependence, if any, between 
the two samples. 
 
In the next section, we discuss our use of the 
generalized exponential model (GEM), instead of 
GREG, as it has a built-in control for extreme 
weights for suitable outlier domains and gives 
adjustment factors in pre-specified ranges. Also, 
GEM provides a unified approach for both 
nonresponse and post-stratification adjustments. 
 
3.  Proposed DFC Estimator 
 
3.1 Definition of DFC.  For the two overlapping 
samples of respondents, sA (Phase 1), and sB (Phase 1 
and Phase 2) defined in Section 2, let ||A Bs denote the 

concatenated sample. Our goal is to develop the 
following composite estimator of a population total:  
 

( )
ˆ (1 )

A B

y A B A kA kA A kB kB
s s

T w y w yζ ζ|| = + −∑ ∑         (3.1) 

where, 
  ykA = outcome of interest for kth respondent of sA 

  ykB = outcome of interest for kth respondent of sB 
  wkA = calibrated weight for the kth respondent in sA 
  wkB = calibrated weight for the kth respondent in sB.  

 
Additionally, we require that the usual controls on x 
and the new controls of zero on z are satisfied. 

 
The combining factor is given by  

1

2 2 2 2
B A A B A

A kB kA kB kA kB kA kB

s s s s s

w w w w w w wζ
−

   
= − + −   
   
   
∑ ∑ ∑ ∑ ∑

(3.2a) 
 

The parameter Aζ  reflects the dependence between 
sA and sB.  The parameter is chosen to minimize the 
variance when the variance is approximated by a 
constant times the UWE formula 2(1 ( ))CV w+  under 
a simple super population common mean model 
(Kish, 1965). As a result, ζA  is an approximation for 

opta given in equation (2.1b). Under this simple 

superpopulation modeling, the minimum variance of 

an estimated population mean with optimal ζA is 
proportional to   

2

2 2

2
2 2 2

A B A

A B A

kA kB kA kB
s s s

kA kB kA kB
s s s

w w w w

N
w w w w

−

 
−  
 

+ −

∑ ∑ ∑

∑ ∑ ∑
 (3.2b) 

   
For the z-variables, the parameter ζA has no impact as 
the two estimates from sA and sB are the same. 
However, the choice of the scaling factor Aη  affects 
the combination which is implicit in the weight 
calibration (2.5).  The choice is made a priori or 
empirically by a grid search over the range 
0 1Aη< <  such that variance is minimized. On the 
other hand, for an arbitrary variable y, the two 
estimates are not the same, and the parameter ζA is 
needed for their combination. The choice (3.2a) for ζA 
is simple and heuristic.  Alternatively, for various 
variables y, one can choose a suitable Aζ  common 
for all y’s such that it minimizes the generalized 
variance. In variance computation, the factors Aη  and 

Aζ are treated as pre-specified under the premise that 
past data have been used for their estimation. 
 
The composite estimator can also be expressed as: 

*
( )

ˆ
B

y A B k kBs
T w y|| =∑                         (3.3) 

 
where, kw∗  denotes a single set of final calibrated 
weights for the full sample sB and is given by 
 

*
,

, ( )
A kA B kB A

k

B kB B A

w w if k s
w

w if k s s

ζ ζ
ζ

+ ∈=  ∈ −
       (3.4) 

 
The calibrated weights in the above formulas are 
defined as follows. 
 

 
, ,

, ,

kA kA kA nr kA ps

kB kB kB nr kB ps

w d a a

w d a a

=

=
               (3.5) 

  
where, dkA and dkB are the design weights as defined 
earlier, and the a-factors denote adjustments for 
nonresponse (nr) and post-stratification (ps). Note 
that a Hajek-type (1971, in his comments on Basu's 
paper) ratio adjustment is useful prior to any weight 
adjustments (for nr or ps) are made since it attenuates 
the effect of extreme weights as in the elephant fable 
of Basu . In fact, it gives rise to the desired centering 
(Singh and Sarndal, 2003) in regression coefficients 
in the usual GREG for post-stratification so that the 
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SRS optimal regression estimator (of Section 2) can 
be obtained as a special case of GREG. 
 
3.2 Use of GEM Calibration for DFC.  As 
mentioned in Section 2, GEM provides a unified 
approach to both nonresponse and post-stratification 
adjustments. We use GEM to determine the weight 
adjustment factors of the following form (given here 
for the post-stratification factor as an illustration) for 
pre-specified bound parameters  
 

,kA kA kA kB kB kBc u c u< < < <l l  
 

( ) ( ) exp

( ) ( )exp
kA kA kA kA kA kA A

kA
kA kA kA kA A

u c u c
a

u c c

− + −
=

− + −
l l

l
 

 
( ) ( ) exp

( ) ( )exp
kB kB kB kB kB kB B

kB
kB kB kB kB B

u c u c
a

u c c

− + −
=

− + −
l l

l
 (3.6) 

      
where,  

1exp exp[ )]A A kA kA A kAAη−= ′ + ′(x zx zλ λ  

( )
, / ,

( )( )
kA kA kA

kA kA kA kA
kA kA kA kA

m u
A m b d

u c c

−
= =

− −
l

l
 

and the corresponding parameters for sample B are 
defined analogously. 
 
The parameter bk (here subscripts A and B are 
suppressed for convenience) denotes the boundaries 
for defining the extreme weights. Thus extreme 
weights after calibration satisfy k k k k kb w b u< <l  or 
the corresponding adjustment factors satisfy 

,k k k k km a m u< <l where ak = wk / dk.. In other 
words, the adjusted extreme weights are not 
necessarily truncated to the boundaries bk, but stay in 
its neighborhood depending on the data and the 
control totals used in the calibration process. For the 
non-extreme weights, note that mk = 1.  
 
In actual applications, it is clearly not practical to 
have all different bounds for different units k. In our 
experience, it is sufficient to have three sets of 
bounds: 1 1( , , )l c u , 2 2( , , )l c u  , and 3 3( , , )l c u  for high 
extremes, non-extremes, and low extremes, 
respectively. The center c is set to 1.0 for post-
stratification adjustment and to a number greater than 
1.0 (e.g., the overall inverse response propensity) for 
the nonresponse adjustment. The scaling factors Aη  

and ( 1 )B Aη η= −  appearing in the adjustment factors 
can be interpreted as parameters that reflect different 
relative effective sample sizes for the two samples as 
well as effect of dependence of samples.  

Estimates of the λ-parameters in the adjustment 
factors (3.6) are obtained by simultaneously solving 
the following equations. 
 

0 (3.7)

A

B

A B

kA kA kA
s

kB kB kB
s

kA kA kA kB kB kB
s s

d a T

d a T

d a d a

=

=

− =

∑

∑

∑ ∑

x

x

x

x

z z

 

 
where, Tx is the vector of usual post-stratification 
totals for x. RTI’s GEM macro uses Newton-
Raphson to solve these equations. 
 
The adjustment factors (3.6) can be obtained directly 
by minimizing a distance function using Lagrange 
multipliers under the calibration constraints (3.5) 
given below. 
 

( , ) ( , ) ( , ),

( , )

( ) log ( ) log

(3.8)
A

A A A A B B B B

A A A

kA kA kA kA kA
kA kA kA kA

s kA kA kA kA kA

w d w d w d

w d

d a l u a
a l u a

A c l u c

η η∆ = ∆ + ∆
∆ =

 − −− + − − − 
∑

and B∆ is similarly defined. 

 
While GEM is a generalization of Deville and 
Sarndal’s (1992) Logit method to allow for unit-
specific bounds, the dual-frame GEM is a further 
extension of GEM to encompass zero controls 
defined by (3.7). 
 
3.3 DFC Steps.  The proposed DFC method can be 
summarized in the following steps: 
 
1. Define two samples of selected units:  Sample A 

(sA* = all units selected for the main survey), and 
Sample B (sB* = Phase 1 respondents plus all 
units selected for the follow-up). Also, set values 
for the η-parameters as well as bounds for the 
nonresponse and post-stratification adjustment 
factors. 

2. Perform a Hajek-ratio adjustment to the design 
weights for each sample so that each set of 
weights adds up to the specified population 
totals. 

3. Perform a nonresponse adjustment via GEM to 
the weights in Step 2 for the set of respondents sA 
in sA* and sB in sB*; the adjustments factors are 
defined as akA,nr and akB,nr, respectively.  Note 
that the sum of the adjusted weights for both sets 
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of respondents equals the total population count 
specified in Step 2 due to the Hajek adjustment. 

4. Implement GEM post-stratification on the 
concatenated sample ||A Bs with the usual 

demographic controls and the new calibration 
controls of zero (3.7); the adjustments factors are 
defined as akA,ps and akB,ps for the respective 
samples. 

5. Choose ηA such that the objective function 
defined by the variance or trace of the covariance 
matrix (see next section) is minimized.  
Calculate the final calibrated weights for Sample 
A (wkA) and Sample B (wkB). Use the formula in 
3.2a (or generalized variance minimization) to 
calculate the parameter ζA and hence, wk* as 
defined earlier (3.4). 

 
4. Variance Estimation 
 
We will consider the cases of simple and complex 
designs separately. 
 
4.1 Simple Designs with Nonrandom Adjustment 
Factors.  If the design is a (stratified) SRS at both 
phases and if the GEM calibration adjustment factors 
(akA,nr and akA,ps for Sample A and akB,nr and akB,ps for 
Sample B) are treated as nonrandom, then we can use 
the estimate developed by Rao (1973), see e.g., Lohr 
(1999). In this paper, we first review the usual 
estimator for double sampling for stratification.  
 
The following formula for variance estimator 
assumes no nonresponse in the follow-up survey (sB* 
= sB) and could be modified via Taylor linearization 
in the case of nonresponse. The estimator is written 
as 
 

           ( ) * *
ˆ (4.1)

A M

y B k k
s sA A

N N
T y y

n n ν
1= +∑ ∑               

 

where, ν is defined by ( )*
B A A An n n n= + ν − , ηA* is 

the size of sA*,and sM is the size of the follow-up 
subsample. 
 
Then, ignoring the finite population correction, we 
have 

( )

( ) ( )

( ) ( )2
( ) * * * *

2
* * *

ˆ ˆ

(4.2)

y A y MA B
y B

A A A A

A M
A M

A A A

s sn n
V T N

n n n n

n n
N y y y y
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2 2

2 2

 −1 −1= + 
−1 −1 ν  

  1+ − + −  −1   
 

where, 

( )*, ,
M

A k M k M A A
s sA M

y y y y n n n
n n

Α

1 1= = = ν −∑ ∑  

and 
* *
A M

A M
A A

n n
y y y

n n
= +  

We can express ( || )ŷ A BT  in the above form (4.1), and 

then use the formula (4.2) for variance estimation. 
Here, the adjustment factors ak,nr and ak,nr are 
subsumed in yk since they are treated as nonrandom. 
 
4.2 Simple Designs with Random Adjustment 
Factors.  This is the more realistic case. To properly 
account for random adjustment factors, we can use 
Taylor-linearization (see e.g., Singh and Folsom, 
2000; Binder, 1996; Binder, et al., 2000) to obtain an 
approximately unbiased estimator of variance. We 
will assume that the parameters ηA, ηB, ζA and ζB  are 
given a priori, and therefore can be treated as 
nonrandom. This is a reasonable assumption if these 
parameters are estimated from historical data. Now 
for simplicity in illustration, we will consider only 
the post-stratification adjustment factors as random. 

For ( || )ẑ A BT , the linearized estimator containing the 

Taylor deviations as residuals is given below. It can 
be done in two ways, one based on sample A and the 
other based sample B. We have 
 

||

( ) , ,

( || )

ˆ

ˆ (4.3)

A
A

A B

z A B kA kA kA kA kA nr kA pss
s
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where, 
 

1

A
k kA kA kA k kA k kAs

w z A H w B zδ −′∆ = − ∑  

1 1
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1 1
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( , , )
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Additionally, δkA is one if the unit is in As , and zero 

otherwise; kBδ  is similarly defined. The variable 
φkA,ps is defined as 
 

, , , ,1
,

, , , ,

( )( )
(4.4b)

( )( )
φ η− − −

=
− −
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and the matrix H  is 

||
, , , ,

A B
k ps k ps k k nr k pss

x x d a φ∗ ∗′∑  where 

, ( , , )kA ps kA kA kB kB kA kA kB kBx x x z zδ δ δ δ′ ′ ′ ′ ′= − . 
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Alternatively and equivalently, we can write the 
linearized estimator in terms of sample B as 
 

||

( ) , ,

( || )

ˆ

ˆ (4.5)

|| = =

≈ ∆ + ≡ +

∑ ∑

∑
B B

A B

z A B kB kB kB kB kB nr kB ps
s s

linB
k z A B

s

T z w z d a a

const T const
 

 
For an arbitrary y-variable, the linearized expression 

for ( || )ŷ A BT  for variance estimation purposes would 

involve ζA as the two samples may not give identical 
calibrated estimates. It can easily be obtained as 
 

( || ) ( || ) ( || )
ˆ ˆ ˆ(1 ) (4.6)ζ ζ≈ + −linA linB
y A B A y A B A y A BT T T  

 
which can be re-expressed as a sum of two terms, one 
involving sample A and the other sample B. If y 
happens to be one of the z-variables, then we would 
get the same variance estimate as (4.3) or (4.5) 
because 
 

2 2
( || ) ( || )

( || ) ( || )

2 2
( || )

( || )

ˆ ˆ( ) (1 ) ( )

ˆ ˆ2 (1 ) ( , )

ˆ[ (1 ) 2 (1 )] ( )

ˆ( ) (4.7)

ζ ζ

ζ ζ

ζ ζ ζ ζ

+ −

+ −

= + − + −

=

linA linB
A z A B A z A B

linA linB
A A z A B z A B

A A A A z A B

z A B

Var T Var T

Cov T T

Var T
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Once the linearized version of the estimator is 
available, an estimate of the variance can be obtained 
from the formula (4.2) by replacing the y-variable by 
the appropriate residuals.  Similar formulas can be 
developed to account for variation due to both 
nonresponse and post-stratification adjustments.  
Note that the usual raking-ratio method of weight 
calibration is a special case of GEM, and the simple 
post-stratification consisting of ratio adjustments is a 
special case of raking ratio. Thus the residuals given 
above represent a generalization of residuals used for 
linearizing ratio estimates. 
 
We remark that replication methods, such as 
Jackknife, can be used as an alternative to Taylor 
linearization (Kott & Stukel, 1997; Fuller, 1998; Kim 
and Sitter, 2003).  
 
4.3 Complex Designs.  For single-phase, multi-stage 
designs, simple variance estimate formulas are 
available if the PSUs are treated as being drawn with 
replacement, and unbiased estimates of the 
population total from each PSU are available. Under 
this assumption, simple or stratified SRS-type 
formulas can be used for variance estimation. This is 

possible because for usual multi-stage designs, 
sampling at the second and higher stages satisfy the 
assumptions of invariance (i.e., higher stage selection 
probabilities do not depend on the outcome of the 
first stage), and independence (i.e., selection of SSUs 
is independent from PSU to PSU), see e.g., Sarndal, 
Swensson, and Wretman (1992). While these are 
sufficient conditions, they can be relaxed.  The main 
requirements are that (1) conditional on the first-stage 
sample, higher stage selections are independent 
across PSUs, and (2) the estimate from each PSU is 
conditionally unbiased for the PSU total. 
 
Now, for two-phase sampling, typically the 
assumption of independence of the conditional SSU 
selection within PSUs is violated. However, as in our 
case of double sampling for stratification, if the 
stratification respects PSU boundaries, and second-
phase sampling is designed to be nested within PSUs 
(i.e., the design treats PSUs as substrata), then the 
simplified single-phase variance estimation method 
would be applicable under the usual assumption of 
with replacement PSU selection. Note that in the case 
of surveys with nonresponse follow-up, the follow-up 
sample units are selected independently within each 
PSU.  If the first-phase sampling does not involve 
PSUs, then it may be reasonable to construct pseudo-
PSUs for the sake of simplified variance estimation. 
To account for the random calibration adjustment 
factors, the simplified formula based on the with-
replacement PSU assumption can be applied to the 
linearized estimator of Sections 4.1 and 4.2. 
 
5.  Application 
 
The Tenth Anniversary Gulf War Veterans Health 
Survey (GWHS) is a national probability-based 
survey of men and women who served in the 1991 
Persian Gulf War within all branches of the U.S. 
Armed Forces.  The primary objectives of the study 
are (1) to provide national estimates of Gulf War 
veterans who report significant health concerns and 
(2) to model the key correlates of those health 
concerns.  Other objectives include comparisons 
between active-duty military and reservists, and the 
development of separate explanatory models for the 
occurrence of health concerns in male and female 
veterans.  The objective of the sample design for this 
study was the selection of a probability sample of 
veterans from the target population of sufficient size 
to support these analytic objectives. 
 
The target population for the GWHS is the over 685 
thousand men and women who served in the 1991 
Persian Gulf War with all branches of the U.S. 
Armed Forces.  We selected a stratified systematic 
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sample of 10,301 veterans from the sampling frame 
maintained by Defense Manpower Data Center.  We 
defined four primary strata by subdividing active-
duty military and reservists by gender.  Within each 
primary stratum, veterans who had registered with 
Department of Defense’s Gulf War Comprehensive 
Clinical Evaluation Program (CCEP) and received a 
medical diagnosis based on International 
Classification of Diseases, 9th Revision were over-
sampled to obtain a sufficient number of veterans 
reporting significant health concerns.  Additionally, 
the frame was sorted by race/ethnicity to ensure a 
representative sample. 
 
The survey originally was implemented as a mail 
survey in 2001.  An overall response rate of 54.4 
percent (using the AAPOR RR3 definition) was 
achieved after three mailings of the instrument, as 
well as a reminder post card, and a reminder 
telephone call.  Response rates to the mail survey 
were highest among females, reservists, and those 
who had been evaluated by the CCEP.   
 
The response rate to the mail survey was 20 
percentage points lower than expected.  In an effort 
to reduce the potential bias associated with 
nonresponse to the mail survey, the project team 
decided to conduct a telephone follow-up of a sub-
sample of nonrespondents to the mail survey.  We 
based the follow-up sub-sample size of 1,000 mail 
nonrespondents (about one-fifth of all mail 
respondents) on funding available to the study. 
 
We allocated the follow-up sample inversely 
proportional to the mail response rates of each 
stratum.  Prior to selection, each mail nonrespondent 
was classified as probable ‘easy’ or ‘difficult’ to 
contact based on whether an interviewer had made 
contact with someone in the veteran’s household 
during calls made to prompt the return of the mail 
survey.  Mail nonrespondents classified as ‘easy to 
contact’ were over-sampled to increase the expected 
effective sample size of the follow-up.  To decrease 
response burden, the telephone follow-up obtained 
information on 69 of the 151 questions included in 
the mail survey.   
 
We achieved a 55.5 percent overall response rate 
(AAPOR RR3 definition) among the 1,000 mail 
nonrespondents selected for telephone follow-up.  
The response patterns for the follow-up were similar 
to the mail survey although the largest increase in 
response rate occurred among active-duty males not 
evaluated by the CCEP. A total of 5,709 eligible 
sample members responded to either the mail survey 
or the telephone follow-up.  The overall weighted 

response rate (a.k.a. the effective response rate) 
among eligible sample members for the combined 
mail survey and telephone follow-up was 70.5 
percent with a 95 percent confidence interval of +/- 
3.3 percent.  The weighted response rate can be 
thought of as an estimate of a population parameter.  
That is, the parameter is the response rate that would 
be achieved if everyone on the sampling frame had 
been selected for the survey.   
 
We applied the DFC methodology detailed in the 
previous sections to compute the GWHS analysis 
weights where sA* = 10,301 veterans initially selected 
for the survey; and sB* = 5,182 mail respondents plus 
1,000 mail nonrespondents selected for follow-up. 
Note that sB* is a proper subset of sA*.  The design 
weights are such that  ΣsA*  dkA = ΣsB*  dkB = 685,074 
veterans on the sampling frame. The two over-
lapping samples of respondents are sA containing 
5,182 respondents to the mail survey; and sB 
containing the 5,182 respondents to the mail survey 
plus 527 follow-up respondents. Note that sA is a 
proper subset of sB. 
 
To estimate the variances of survey outcomes in a 
design-consistent fashion, we created 294 variance 
replicates (a.k.a. random groups) that enabled us to 
combine data obtained from the mail survey and the 
telephone follow-up.  Within each of eight first-phase 
strata, we randomly assigned 35 sample members to 
each replicate with the requirement that each 
replicate have approximately equal numbers of mail 
respondents and at least one follow-up respondent.  
The primary advantage of random groups is that 
standard survey software packages (e.g., SUDAAN®) 
can be used to analyze the data.  In fact, the variance 
estimates that we obtained for outcomes for mail 
respondents (i.e., excluding the follow-up) using 
random groups are only slightly conservative 
compared to the usual variances obtained for (single-
phase) stratified designs.  For two-phase variance 
estimation, we calculated 294 sets of replicate 
weights for use with the ‘delete one’ Jackknife 
method of variance estimation (Lohr 1999, p 298).  
We constructed each set of replicate weights by 
serially deleting one replicate from the sample and 
then adjusting the DFC weights to account for the 
deleted replicate.  
 
The post-stratification control totals Tx corresponded 
to the following 17 counts:  
 
• First-stage strata (8): Gender x Component x CCEP 

evaluation  
• Branch of Service (4): Army, Navy and Coast 

Guard, Marine Corps, Air Force  
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• Race/ethnicity (3): White, Black, Other 
• Military rank group (2): Officer, Enlisted.  
 
Next, we used GEM separately for each sample to 
calculate post-stratification adjustment factors akA,ps 
and akB,ps that were applied to the nonresponse-
adjusted design weights to force them to sum to the 
17 control totals.  It may be useful to perform this 
post-stratification separately for each sample to 
reduce coverage bias before doing the final DFC for 
improving efficiency.  These weights are used as 
input weights to the DFC procedure. The following 
ten survey outcomes comprise the z-vector of zero 
controls: 
 
• CDC Multi-Symptom Illness (2 levels)  
• Post-traumatic Stress Disorder (2 levels) 
• Chronic Fatigue Indicator (2 levels) 
• SF 36 Impairment Score (continuous) 
• Hopkins Symptom Depression (continuous) 
• Chalder 13-Item Fatigue Score (2 levels) 
• Partner has Discomfort during Sex (3 levels) 
• Current Smoking status (3 levels) 
• Current Drinking status (5 levels) 
• Current Marital Status (2 levels) 
 
To obtain each of the 294 DFC replicate weights, we 
used GEM to calculate DFC adjustment factors 
akA,DFC and akB,DFC that were applied to the 
nonresponse-adjusted and post-stratified design 
weights so that the differences between the ten key 
outcomes using wKA and wkB were zero while 
maintaining the 17 control totals.  Using a grid 
search, we determined that a scaling constant of ηA = 
0.80 minimized the sum of the variances of the key 
outcome variables.  We used the scaling constant to 
calculate the DFC weights wKA and wkB and then a 
combining factor of Aζ  = 0.82 to calculate w*k, the 
set of final DFC weights for the full respondent 
sample sB.   
 
5.1 Unequal Weighting Effects.  The combination 
of a one-in-five sub-sampling rate for the telephone 
follow-up and a 55 percent response rate to the 
follow-up resulted in analysis weights for follow-up 
respondents that were approximately ten times as 
large as those for mail respondents.  As a result, the 
reduction in bias obtained from the follow-up was 
adversely affected by the increase in sampling 
variance that resulted from the increased variability 
in the sampling weights of the combined sample.   
 
In Table 1, we show that before DFC the effective 
sample size actually decreases significantly from 
1,672 to 535 when the follow-up respondents are 

included in the analysis.  In other words, the  
variances associated with estimates based on the 
overall sample are larger than those based only on the 
mail portion of the survey.  After DFC, the effective 
sample sizes of the overall sample exceed those of 
the mail survey for every major reporting domain. 
 
5.2 Effects of Dual-Frame Calibration (DFC) on 
Survey Estimates.  In Table 2, we present survey 
estimates and corresponding sampling errors before 
and after DFC calibration.  Two sets of survey 
outcomes are presented.  The first set includes the ten 
key outcomes that comprise the z-vector of zero 
controls.  After DFC, the difference between these 
estimates for these variables using wKA and wkB is 
zero.  The second set of ‘other’ outcomes illustrates 
the effects of the DFC procedure on outcomes that 
are not explicitly part of the calibration procedure (y 
variables).  For these outcomes, the DFC estimator is 
the composite of the wKA and wkB estimates using the 
combining factor of Aζ  = 0.82.   
 
6.  Concluding Remarks 
 
The method proposed in this paper provides more 
efficient estimates when efficiency is addressed at the 
estimation stage.  It was emphasized that this is not 
substitute for efficiency considerations at the design 
stage using optimal allocation for double sampling 
for stratification. Different designs in the main and 
follow-up samples were allowed in the proposed 
DFC framework. The GEM calibration method with 
range restrictions and built-in controls for extreme 
values provided a convenient tool to produce a final 
set of calibrated weights for each sample. For those 
variables not collected in the follow-up survey, 
estimates are constructed based on only sample A 
weights. It was observed that simplified variance 
estimates as in single phase designs can be obtained 
by nesting the second phase within first phase 
(pseudo) PSUs.  
  
In this paper, we did not address the issue of possible 
bias difference in estimates due to different survey 
modes used in the initial and follow-up surveys as in 
our application to the GWHS.  Since the calibration 
process makes estimates for a set of key study 
variables (z) equal for the two samples by using the 
zero controls, the proposed DFC method eliminates 
the difference in bias from the two estimates for the 
selected z-variables. This does not imply that the final 
composite estimator is free from bias but that it 
represents a compromise between the biases of the 
two estimates.  
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Table 1. Comparison of Unequal Weighting Effects (UWE) and Effective Sample Sizes (Eff. n) 
Before and After Dual-Frame Calibration (DFC) 

     Before DFC After DFC 

  Respondents Mail-Only  Mail & FUs Mail-Only Mail & FU 

Domain 
Mail  
Only 

Mail & 
Follow-Up UWE Eff. n UWE Eff. n UWE Eff. n UWE Eff. n 

 
Overall 5,182 5,709 

 
3.10 1,672 

 
10.67 535 

 
3.11 1,666 

 
3.09 1,850 

Active Duty 3,214 3,566 2.62 1,227 9.01 396 2.63 1,223 2.62 1,362 

Reserves 1,968 2,143 2.32 848 7.50 286 2.33 845 2.33 919 

Males 3,382 3,735 2.31 1,464 7.98 468 2.32 1,458 2.31 1,620 

Females 1,800 1,974 1.76 1,021 6.51 303 1.77 1,014 1.79 1,100 

Active Duty, Males 2,100 2,339 1.91 1,101 6.58 355 1.91 1,097 1.91 1,223 

Active Duty, Females 1,114 1,227 1.72 649 6.60 186 1.73 645 1.75 700 

Reserve, Males 1,282 1,396 1.93 666 6.26 223 1.93 664 1.94 721 

Reserve, Females 686 747 1.79 383 5.81 129 1.80 381 1.82 411 
 

 

Table 2.  Effects of the DFC Procedure on Survey Outcomes 

Before DFC After DFC 
Sample A Sample B   Sample A Sample B DFC 

    wkA wkB w*
k 

 
Survey Outcomes 

 Mean SE Mean SE Diff  Mean SE Mean SE Mean SE 

Key Outcomes (z-variables):             
   % w/Multi-symptom Illness 68 1.16 63.6 1.91 4.5 § 67.3 1.05 67.3 1.05 67.3 1.05 

   % w/PTSD Indicator 7.6 0.63 8.5 1.17 -0.9  7.8 0.59 7.8 0.59 7.8 0.59 

   Chronic Fatigue Indicator 10.3 0.64 11.7 1.49 -1.3  10.5 0.65 10.5 0.65 10.5 0.65 

   Chalder Fatigue Score 60.5 1.26 57.9 2.05 2.6  60.1 1.16 60.1 1.16 60.1 1.16 

   % w/Sexual Discomfort 10.1 0.77 9.5 1.44 0.5  10.1 0.75 10.1 0.75 10.1 0.75 

   % Current Smoker 24.3 1.16 28.6 1.93 -4.3 § 25.0 1.05 25.0 1.05 25.0 1.05 

   % Drinking (Mult X/Week) 31.3 1.20 32.1 2.05 -0.8  31.4 1.10 31.4 1.10 31.4 1.10 

   % Married/Cohabiting 76.4 0.96 73.8 1.94 2.6 § 76.1 0.92 76.1 0.92 76.1 0.92 

   Depression Subscale 1.7 0.02 1.7 0.03 0.0  1.7 0.01 1.7 0.01 1.7 0.01 

   Physical Impairment Score 7.0 0.04 7.0 0.07 0.1  7.0 0.04 7.0 0.04 7.0 0.04 

Other Outcomes:             

   % w/General Health =Excel 8.8 0.63 11.7 1.53 -3.0  8.8 0.60 11.3 1.50 9.2 0.61 

   % w/General Health =VGood 29.4 1.14 27.1 1.74 2.3  29.5 1.11 26.8 1.77 29.0 1.05 

   % w/General Health =Good 38.5 1.21 39.2 2.31 -0.7  38.3 1.20 40.7 2.18 38.7 1.18 

   % w/General Health =Fair 20.0 1.13 18.4 1.69 1.5  20.0 1.09 17.9 1.50 19.7 1.05 

   % w/General Health =Poor 3.3 0.42 3.5 1.07 -0.2  3.4 0.44 3.3 0.96 3.4 0.42 

   % w/Reduced Time at Work 16.5 0.92 18.6 1.70 -2.1  16.7 0.96 17.2 1.19 16.8 0.93 

   % w/Limit Type of Activities 22.9 1.14 24.5 2.09 -1.6 § 23.1 1.11 23.0 1.37 23.1 1.10 

   % w/Loss of Interest in ADLs 57.7 1.27 61.5 1.93 -3.8 § 57.7 1.19 61.3 1.73 58.4 1.18 

      § Difference significant at the 0.05 level.  

 

2003 Joint Statistical Meetings - Section on Survey Research Methods

3930


	Return to Main Menu
	===================
	Search CD-ROM
	===================
	Next Page
	Previous Page
	===================
	Program Book
	Table of Contents
	===================
	Full Text Search
	Search Results
	Print
	===================
	Help
	Exit CD



