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Abstract:

Replication methods for variance estimation with
complex survey data have been widely used in prac-
tice. The Successive Difference Replication Method
(SDRM) is a replication method for variance estima-
tion developed based on a systematic sample. Even
though this method has been consistently used in
several large government surveys; however, only a
few literatures about the SDRM are available.

The SDRM variance estimator was developed by
Robert E. Fay based on the variance for a system-
atic sample proposed by Wolter (Wolter 1984). The
basic theoretical development of the SDRM (Wolter
1984, Fay and Train 1995) was described in terms
of linear estimators (simple mean and total). Here,
our work focuses on the use of SDRM for non- lin-
ear statistics, such as ratio, correlation coefficient,
regression coefficient, and median. The SDRM vari-
ance estimates are evaluated against the variance es-
timates computed through the Taylor Series method
and the Jackknife method using Monte Carlo simu-
lation under several different stratified populations.
An empirical example is given using the 1993 Na-
tional Survey of College Graduate (NSCG) data.

1. Introduction

The SDRM variance estimator is one of the replica-
tion methods of variance estimator that so far has
been successfully applied by federal government sta-
tistical agencies, such as the U.S. Bureau of Census.
The Bureau widely uses the SDRM variance esti-
mation for large scale surveys such as the National
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Survey of College Graduate (NSCG), the Current

Population Survey (CPS), and the 2000 Census -
Long Form survey.

This method was developed by Robert E. Fay (Fay
and Train 1995) based on the variance estimator
proposed by Wolter (Wolter 1984) for a systematic
sample, where the variability is calculated based on
the squared differences between neighbouring sam-
ples. The SDRM variance estimator utilizes or-
thogonal Hadamard matrix to create the replicates.
Fay and Train (1995) showed that the estimator is
analytically equivalent to the original variance cal-
culated through differencing neighbouring samples.
Fay and Train (1995) presented the development of
this method based on a linear estimator. In this
paper we will extend the use of this method for non-
linear estimators.

The SDRM variance estimator has not much been
studied especially for complex statistics, neither
has it been compared with other replication vari-
ance estimators. This paper focuses on such com-
parison particularly for estimating non-linear esti-
mators, such as ratio estimator, correlation coef-
ficient, regression coefficient, and medians. Using
Monte Carlo studies, the variance estimates com-
puted through the SDRM will be compared with
the variance estimates computed through the Jack-
knife method. In the comparison we will also include
variance estimates calculated through the standard
linearization (Taylor Series) method.

Section 2 will present theoretical background of
the SDRM variance estimator, and describe how the
replicates are constructed based on a Hadamard ma-
trix. Section 3 presents an empirical comparison
of the SDRM variance estimates with the variance
estimates computed through the Taylor Series and
Jackknife methods using the 1993 NSCG data. Sec-
tion 4 describes the simulation setting, i.e. the finite
pseudo-populations generated, the sampling design
used, and the statistics under study; as well as the
results. Section 5 summarizes the study.
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2. The Successive Difference Replica-
tion Method

One of the variance estimators proposed by Wolter
(1984) for estimating variance of a mean estimator,
7= (1/n) > yi, from a systematic sample is the vari-
ance estimator based on differences of two consecu-
tive observations as

n

= (1= /)(1/n) Y (B —yi-1)*/2(n = 1)

=2

v2(Y)

where f is the sampling fraction n/N. Even though
this estimator is not unbiased, the estimator per-
forms reasonably well for different systematic sam-
ples drawn from several different population models.
Similar estimator for a total § = Y., y}, where
y} = (N/n)y;, can be expressed as

n

(L= f)nd (yi —yi1)*/2(n = 1).

i=2

v2(9) =

Notice that the estimator is computed based on (n—
1) pairs of neighboring samples.

Fay and Train (1995) modified this estimator by
adding a difference between the first and the last
observations, i.e.

vam (9) = (1/2)(1 = f) | (¥n — 91) +Zyz vio)?

and showed that a replication version of vs,, can be
developed, which will be explained in the following
sections. This replication variance estimator is then
called the SDRM variance estimator.

2.1 SDRM Variance Estimator

The SDRM utilizes a k x k¥ Hadamard matrix H to
create the replicates, where in this case k is the num-
ber of replicates used in a SDRM. Let H = {a;,} be
a Hadamard matrix of order k& where k is an integer
multiplication of 4, and for now suppose k > n + 2.
For i < n, the replicate factor f;, is defined as

fir =1+ 273/23i+1,r - 273/2ai+2’7”
and fori=n
for =1+ 2_3/2an+17r - 2_3/2(12:7”'

Let the rth replicate estimate of § be calculated as

n
i=1
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The SDRM variance estimator is calculated as

(4/k)(L—=£)> (r

r=1

ol

Ur?m( )

Fay and Train (1995) showed that this replicate vari-
ance estimator is equivalent to v, (3). Fay and
Train claimed that even though this estimator is not
unbiased for simple random samples the bias is rel-
atively small, even for relatively small n.

Without loss of generality, under a complex sam-
ple design the SDRM variance estimator for 6 can be
defined as (ignoring the finite population correction
factor)

k
vram (0) = (4/k) > (6, — )
r=1

where 6, is the point estimator calculated from the
rth replicate. The formula can be extended to in-
clude the finite population correction factor.

2.2 Construction of the Replicates

The replicates are constructed by first assigning
pairs of rows in H to each sample case, that is started
from assigning row 2 and 3 to the first observation,
then assigning rows 3 and 4 to the second observa-
tion, and so on until assigning rows n 4+ 1 and n + 2
of H to the last observation. This assignment gives
a unique set of pairs of rows in H. However, when
n is large and much greater than k, the assignment
will run out of rows of H before all observations can
be uniquely paired with two-rows in H. To solve
this problem, SDRM implements a row assignment
algorithm as follows.

Since the original variance estimator is calculated
based on the differences between two successive sam-
ple cases, prior to rows assignment, sample cases
must be sorted in a manner similar to the order of
the cases at the time of sampling. Then, choose an H
of order k such that (k—1) is a prime number. Never
use/assign row 1 in H because in most Hadamard
matrix it contains all +1’s. We start by assigning
rows 2 and 3 of H to the first sample case. Then,
assign rows 3 and 4 to the second sample case, assign
rows 4 and 5 to the third sample case, ---, and so
on until we reach row k. This two-rows assignment
from row 2 to k is called a cycle. The first cycle is
done with row increment of 1, i.e. assigning rows 2
and 3, rows 3 and 4, rows 4 and 5, - - -, and so on. If
n > k, at this point the assignment is started over
to the second row (again skip the first row), i.e. as-
signing rows k£ and 2 to the next sample case, then
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repeat the cycle but now with row increment 2, i.e.
assigning rows 2 and 4, rows 4 and 6, rows 6 and
8, -+, and so on. The cycle with row increment 2
should be done twice. The cycle with row increment
3 are done three times, the cycle with row increment
4 are done four times, - - - and so on until all sample
cases are paired with two rows in H. The row incre-
ment and cycles are re-set back to 1 after we reach
increment 10 (Finamore 2002).

The rth column in H corresponds to the rth repli-
cate of SDRM. For the ith sample case (i = 1,--- ,n)
and the rth replicate (r = 1,--- k) calculate the
replicate factor, fi,

=1+ [2_3/2h(R1i,r)] - [2_3/2h(R2"’7’)]’

where subscripts R1i and R2i, respectively, denote
the row number for the first and second rows from
the assignment described above for the ith case;
h(g1i,r) is the entry of the (R1i,r)th cell of H as-
signed to sample case i; and similarly h(ga; ) is the
entry of the (R2i,r)th cell of H assigned to sam-
ple case i. Since the value of (h(g1sr), h(r2i,r)) Will

be one of (1,1),(—1,1),(1,-1),(—1,—1), then the
value of f;. will be one of three values: 0.3, 1.0, 1.7.
By the end of this process, each sample case will
have k replicate factors. An SDRM replicate is then

produced by multiplying y; with f;,.

3. The 1993 National Survey of Col-
lege Graduate

The 1993 NSCG is an NSF survey conducted by the
U.S. Bureau of Census. The target population of
this survey consists of scientists and engineers with
at least a bachelor’s degree who (as of April 1, 1990)
were age 72 or younger. Sampling frame was con-
structed from the 1990 Decennial Census Long Form
sample.

The survey implemented a two-phase stratified
random sampling, where at the first phase, sam-
ple of the Long Forms was drawn using a stratified
systematic sampling, and at the second phase, sub-
sample of the Long Form cases was selected through
a stratified design with probability-proportional-to-
size systematic selection within strata. For variance
estimation the Census Bureau created 160 replicate
weights through SDRM.

Using some of the 1993 NSCG survey variables
we compared variance estimates of totals, ratios
(weighted means/proportions), and medians com-
puted through the SDRM with those computed
through the Taylor Series method and the Jackknife
method. For the Taylor Series estimation a sin-
gle phase stratified sample design is assumed, where
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stratification variable used is the original sampling
strata used for the 1993 NSCG. For the Jackknife
method, the original 1993 NSCG sample design is
approximated by a two-PSUs per stratum design.
A Jackknife replicate was produced by randomly
deleting one PSU within a stratum. For both the
SDRM and Jackknife replicate weights, the weights
have been adjusted for nonresponse and poststrati-
fication.

The statistics being estimated are listed in Ta-
ble 1. For each of these statistics we calculated the
point estimates and the variance estimates through
the Taylor Series, Jackknife, and Successive Differ-
ence Replication methods. We then compared the
standard errors (i.e. square-root of variances) by
calculating the relative differences defined as

stderr; — stderry,, gq « 100%
0

stderry o

where the Taylor Series standard error was used as
the baseline. The results of relative differences are
visualized in Figure 1 for (a) total estimator, (b)
ratio estimator, and (c) median.
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Figure 1: The relative differences of the 1993 NSCG
standard error estimates. Taylor Series (TS) was
used as the baseline. Legend: O = Jackknife, A =
SDRM

Based on the 1993 NSCG data, for the total es-
timation (figure (a)) the three variance estimation
methods agree to each other except for variable num-
ber 1 (grand total) and 11 (total non-science). For
the ratio estimation (figure (b)), both SDRM and
Jackknife method produce either smaller or larger
standard errors than does the Taylor Series method,
with the standard error of the SDRM tends to be
closer to those of Taylor Series. For the median
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Table 1: Variable Numbers and Labels for the Total, Ratio, and Median Estimators

Total Ratio Median

No. Variable No. Variable No Variable

1 All Level 19  Prop.Unempl, Look for Job 34 Salary All Level

2 Bachelor 20 Prop.Empl, Job-Edu Smwhat Relat 35 Salary Bach.

3  Master 21 Prop.Empl, Job-Edu Related 36 Salary Master

4 Ph.D. 22 Prop.Empl, Job-Edu Not Related 37 Salary Ph.D.

5  Prof. Degree 23 Mean Salary, All Level 38 Salary Prof. Deg.

6  Other Degree 24 Mean Salary, Bach. 39 Salary Other Deg.

7  Physical Science 25 Mean Salary, Master 40 Salary Physical Sci.
8 Math/Comp Science 26 Mean Salary, Ph.D. 41 Salary Math/Comp Sci.
9  Social Science 27 Mean Salary, Prof. Deg. 42  Salary Social Science
10 Engineering 28 Mean Salary, Other Deg. 43 Salary Engineering
11 Non-Science 29 Mean Salary, Physical Science 44  Salary Non-Science
12 Employed 30 Mean Salary, Math/Comp. Scien

13 Unemployed 31 Mean Salary, Social Science

14  Unemployed Bach. 32 Mean Salary, Engineering

15  Unemployed Master 33 Mean Salary, Non-Science

16 Unemployed Ph.D.

17  Unemployed Prof. Deg.

18 Unemployed Other Deg.

estimation (figure (c)), both SDRM and Jackknife
method do not agree with the Taylor Series method.
However, there is a tendency that the SDRM and
Jackknife method produce about similar standard
errors.

4. Monte Carlo Study

To further study the performance of the SDRM for
nonlinear estimators and median, we carried out
simulation study under several different hypothet-
ical populations. For each population, which will
be explained in the next sections, we replicate the
sample 1,000 times. We compared the SDRM vari-
ance estimator to the Taylor Series and the Jackknife
variance estimators based on the population used by
Kovar (1985, 1987).

4.1 Hypothetical Populations and Samples

For this simulation we used 30 stratified popula-
tions as described in Kovar (1985, 1987). Within
each population we have 32 strata and two variables
(X,Y), where within stratum h;h = 1,---,32, the
(Xp,Y,) is assumed to be distributed as bivariate
normal with parameters (uxn, 4vh, OxXh, Ovh, PXY)-
The 30 populations are distinguished by the different
values of these parameters and the stratum weight
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W}, = Ny /N. For all populations, within each stra-
tum then we generate sample of size two.

4.2 Parameters of Interest and the Estima-
tors

The parameters being estimated are defined as fol-
lows: (R = ratio, B = regression coefficient, C' =
correlation coefficient, M = median)

32 32
R = py/ua = Wanyn)/ (Y Whptan)
h=1 h=1
B = 222:1 Wh [pawhayh + (Hmh - Hm)(uyh - ,Uy)]

32
h1 Walo3y + (tzn — 1ia)?]

C 222:1 Whilpoznoyn + (an — pra) (fyn — py)]
{Sm ’ Syy}1/2

M = F(1/2)
where
32
Sz = Z Wh[afch + (ftzn — U1)2]
h=1
32
Syy = Z Wh[aih + (uyn — Ny)z]
h=1
32
F(t) = Y WiFu(1),
h=1
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and Fj(t) = P(X}, < t) is the distribution function
of Xh.

Let statistics calculated from a stratified sample
be defined as follows

32 2

il = ZWh ZCE}“’/Q
h=1 =1
32 2

to S Wi yni/2
h=1  i=1
32 2

t3 S Wi whiyni/2
h=1 =1
32 2

t4 Z W, Z Thi/2
h=1  i=1
32 2

t5 = Z Wh Zy%i/z
h=1 =1

Then the estimates of R, B,C, M are calculated re-
spectively by

= h/h
= (I3 —tiba)/(l - 17)

(F5 — 1f2) /[(Fa — B) (F5 — 8)]'/
= F,;'(1/2)

Z) oy W =
Il

where F,(t) =
Y2 I(wni < 1)/2.

222:1 Wthh(t) and Fnh(t)

4.3 Variance Estimators

Let § denotes the point estimate of interest com-

puted from the full sample (in this work g =
R,B,C,M). For R, B, C, the Taylor Series variance
estimator is respectively given as follow:

32 2
’UT(G) = Z W,? Z(ehi — Eh)2/2
h=1 i=1

R (Yni — ﬁﬂ?hi)/zl
B (281 B — t2)2ni — tiyni + ThiYni
—Ba})/s;

+ZhiYhi — (ésy/st)m?” - (6590/2511)?;’}2”
_(Csx/st)yiQn]/SxSy

where s2 = %, — T, and sy =15 — #>. For the me-
dian, we used Woodruff (1952) variance estimator
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[(@\flsy/sz — 22)1’}”' + (62231/33; - Zl)yhi

obtained by inverting the (1 — a)100% confidence
interval for M, i.e.

i) = E7N 5+ zaj2sp) — F7 (5 — 24 28p) 2
B QZQ/Q

’UT(

where s2 = 332 W2Fu,(5)[1 — Fun(.5)]/(ns — 1),
and 2,5 is the (1—a/2) quantile of standard normal
distribution. In this simulation we used o = 0.05.

In this study a Jackknife replicate was created
based on deleting the second observation within a
stratum. Let 6 denotes the corresponding point es-
timate calculated from the kth replicate. The Jack-
knife variance estimator is defined as

vi(0) = (6 - 6)*.
k=1

For the SDRM we chose a Hadamard matrix of
order (32 x 32) to create the 32 SDRM replicates.
This matrix can be found in Wolter (1985). The
SDRM variance estimator is given as follow:

32

vs(6) = (4/32) ) (Bx — 6)”.

k=1

4.4 Evaluation Methods

The simulation was carried out with 1,000 replica-
tions. The mean squares error (MSE) of the estima-
tor 6 is computed as

1000
MSE®) =Y (8, — 6)?/1000.
r=1

For the rth replicate (r = 1,...1000), we then cal-
culated the variance estimates under the jth method
(1 =1,2,3),v;-(0), as given in Section 4.3. To study
the bias and stability of the jth variance estimators,
respectively we used relative variance and relative
stability as follows

S1000 /1000

Rel. Var(v;) = W,
[ (i — MSE)?/1000)'/2
Stables) = MSE '

A value of relative variance equal to or close to
1 indicates that the variance estimator is less unbi-
ased. A relative variance value greater than 1 indi-
cates that the variance estimator is positively bias.
On the other hand, a value smaller than 1 indicates
that the variance estimator is negatively bias.

The value of relative stability is calculated as a
variability of the variance estimates to the MSE.
Thus, the smaller the value, the more stable the vari-
ance estimator.
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(a) ratio estimator (b) regression coeff.
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Figure 2: The relative variance for (a) ratio, (b)
regression, (c) correlation, (d) median, for the 30
populations. Legend: ® = TS, O = Jackknife, A =
SDRM

4.5 Simulation Results

Figure 2 presents the relative variance for (a) ratio
estimator, (b) regression coefficient, (c) correlation
coefficient, and (d) median, for each of the 30 pop-
ulations. The horizontal line across the y-axis at
point 1.0 can be used as a baseline to indicate the
biasness of the variance estimator. The closer the
relative variance to this line, the more unbiased is
the estimator.

Figure 3 presents the relative stability for (a) ratio
estimator, (b) regression coefficient, (c) correlation
coefficient, and (d) median, for each of the 30 pop-
ulations.

Based on the relative variance and relative stabil-
ity, for non-linear statistics such as the ratio esti-
mator (figure (a)), regression coefficient (figure (b)),
and the correlation coefficient (figure (c)), the three
methods seem to agree to each other. It is known
that the Jackknife and Taylor Series variance es-
timators are consistent and asymptotically equiva-
lent for linear and smooth non-linear statistics (Shao
1996). Thus based on our limited simulation, for
these statistics the SDRM variance estimator is com-
parable to the Jackknife and Taylor Series estima-
tors.

For the median estimator, there is a substantial
variation between the SDRM and the Jackknife,
with the SDRM is closer to the Taylor Series than
the Jackknife. The SDRM is comparable to the Tay-
lor Series method; while the Jackknife method pro-
duces positive bias and unstable variance estimates.
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Figure 3: The relative stability for (a) ratio, (b) re-
gression, (c) correlation, (d) median, for the 30 pop-
ulations. Legend: ® = TS, O = Jackknife, A =
SDRM

5. Conclusion

The Taylor Series, Jackknife and the Successive Dif-
ference Replication methods perform equivalently
for the variance of total estimator. The SDRM for
non-linear statistics is comparable to the Taylor Se-
ries and Jackknife methods. Moreover, the SDRM
for a non-smoth function such as median is compa-
rable to the Taylor Series method.

This study was based on a specific finite popula-
tion and/or a limited setting of the simulation. Dif-
ferent setting or finite population may result in dif-
ferent conclusions. Further investigation under dif-
ferent simulation setting (sample design, underlying
population, etc.) need to be carried out to get a com-
plete understanding of the performance of the Suc-
cessive Difference Replication Method. Theoretical
analytical investigation can also give a clear picture
of this method.
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