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Evidence suggests that the number of individuals
who enter treatment for substance abuse (SA) is
far fewer than the number who could benefit from
it. Among the many factors that may be preventing
people from obtaining treatment is that insurance
coverage, if available at all, is typically less gener-
ous for SA disorders than for other health problems.
Thus, there is interest in examining the demand for
SA treatment, including self-help treatment, among
substance-abusing individuals, to see how perceived
insurance coverage and other factors affect that de-
mand. One possible individual’s decision tree is
shown in the diagram below.
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Two natural modeling choices are 1. sequential logit,
according to which an individual first chooses whether
or not to enter treatment and then chooses the type
of treatment, and 2. multinomial logit, where all ul-
timate choices are equally substitutable. A more
general and flexible modeling approach is offered by

nested logit (NL) models. These models include the
sequential logit and the multinomial logit as special
cases. Furthermore, research has shown that often
NL models fit the data better than either the se-
quential or the multinomial logit models. (See, e.g.,
Fortney, Rost & Zhang 1998 in the context of choice
of treatment for depression.)

We are interested in fitting NL models to data from
the 2000 National Household Survey on Drug Abuse
(NHSDA)1. The NHSDA sample selection employs
a stratified multi-stage sampling design with over-
sampling younger age groups. Thus, the complex
sample design of the NHSDA is characterized by
unequal inclusion probabilities and by clustering.
These characteristics — if ignored — may lead to
biased point estimates (due to unequal inclusion
probabilities), and biased variance estimates (due
to clustering). We have used a pseudo-likelihood
approach to account for the unequal weighting, and
Taylor linearization approach to account for the clus-
tering and obtain correct standard errors.

The Utility Model
NL models are commonly derived from utility mod-
els. In our case, the utility model has the form
below:

Uno tx = Vno tx + εno tx

Uself-help = Vtx + Vself-help + εtx + εself-help

Uformal tx = Vtx + Vformal tx + εtx + εformal tx

(1)

where tx means ‘treatment.’ Vno tx, Vtx, Vself-help,
Vformal tx are the deterministic components of the
utilities Uno tx, Uself-help and Uformal tx and are treated
in our case as functions of the individual’s charac-
teristics.

The stochastic parts of the utilities, εtx, εno tx and

1Now called the National Survey on Drug Use and
Health (NSDUH)
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εformal tx are assumed to have Gumbel distributions.

The Probability of Choice Model
Under certain assumptions2 regarding the joint dis-
tribution of stochastic components of the utility model
we get our probability of choice (PC) model below:

Pr(self-help|tx) =
exp(V2)

exp(V2) + 1

Pr(no tx) =
exp(V1)

exp(V1) + [exp(V2) + 1]θ

(2)

where θ is referred to as the inclusive value param-
eter. When the PC model (2) follows from the
utility model (1), θ ∈ [0, 1]. However, when fit-
ting models such as (2) to real data, the estimate
θ might fall outside the [0, 1] range, providing evi-
dence against the utility model (1). In the above,
V1 = Vno tx − Vtx − Vformal tx and V2 = Vself-help −
Vformal tx. These are modeled as linear combina-
tions of the individual-specific covariates x1 and x2:

V1 = β′1x and V2 = β′2x. (3)

The covariates may be the same in both nodes—
i.e., x1 = x2. The PC model (2), combined with
the representation (3) of V1 and V2 is our NL model.

REMARK: The values θ = 1 and θ = 0 correspond
to the multinomial and to the sequential logit mod-
els, respectively.

ESTIMATION

There are two possible ways to estimate the model
parameters: two-step estimation and full informa-
tion maximum pseudo likelihood estimation.

Two-Step Estimation
In what follows, we will denote the vector of the
unknown model parameters by

ψ = (θ,ψ′1,ψ
′
2)
′. (4)

There is an easy way to obtain unbiased point esti-
mates of ψ using existing software, by the following
two-step approach. First, note that according to the
PC model (2), conditional on choosing treatment,
the choice between self-help and formal treatment

follows a dichotomous logit model. Next, note that
if we define a new variable x3 = log[exp(β′2x2 + 1]
then the probability of no treatment is given by

Pr(no tx) =
exp(V1)

exp(V1) + exp(θx3)
(5)

—a dichotomous logit model as well. In the first
step, we subset the sample to those who chose treat-
ment and fit the conditional model (first part of
(2)) to obtain an estimate of β2. These estimates
are then used to calculate estimates of x3 for each
individual. In the second step, the model (5) is fit-
ted, providing estimates of θ and β1. Variance es-
timation using this approach is not straightforward
because x3 is not known without error (as it is cal-
culated using an estimate β̂2, rather than an exact
value). We have tested this approach by a small
simulation which confirmed its validity. However,
because of its limitations, we have decided on the
pseudo-likelihood approach (discussed in the next
section), together with Taylor linearization variance
estimation (described in the section after next). How-
ever, the two-step approach provides a good start-
ing value for maximizing the pseudo-likelihood. Fur-
thermore, estimates from the two methods may be
compared for quality control purposes.

The Pseudo Log-likelihood and Point
Estimates
Denote outcome variables y, y1, y2 by

y =


0 No Treatment
1 Self-help Treatment
2 Formal Treatment

(6)

and y1 = I(y 6= 0), y2 = I(y = 2).

The contribution of individual j to the log-likelihood,
under a simple random sample is

`j =
∑
i∈s

{(1− y1)V1 + y1(1− y2)V2

+ y1(θ − 1) log (exp(V2) + 1)

− log
[
exp(V1) + (exp(V2) + 1)θ

]
}.

Had the entire finite population U been observed,
the (census) log-likelihood LU =

∑
j∈U `j could

have been used to obtain maximum likelihood esti-
mates (MLE) of the model parameters. Since only

2Details omitted for the sake of brevity.
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a sample s is available, we use the weighted log-
likelihood

Lw =
∑
j∈s

wj`j ,

where wj is the survey weight of individual j. We’ll
refer to Lw as the pseudo log-likelihood. We have
used scoring to maximize the pseudo log-likelihood.
To improve the estimates, we have followed the scor-
ing by a numerical maximization of the pseudo log-
likelihood.

REMARK: We have empirically found that the scor-
ing performed better when the off-diagonal elements
in the row and column in the Hessian which corre-
spond to θ were replaced by zeros. We do not have
an explanation yet for this phenomenon.

Variance Estimation
We have used a Taylor linearization (TL) approach
to derive sandwich variance estimators (Binder, 1983).

Denoting the model parameters collectively by ψ,
we have

V̂ar(ψ̂) = H(ψ̂)−1Σ̂(ψ0)H(ψ̂)−1

where H is the Hessian matrix, and Σ̂(ψ0) is the
estimated covariance matrix of the score function
∂Lw /∂ψ evaluated at ψ̂, treated as a total of the
individual contributions to the score:

∂Lw

∂ψ
=

∑
j∈s

wj
∂`j

∂ψ
.

(We calculated the covariance matrix assuming a
WR first stage design.)

SIMULATION RESULTS
We have simulated 50 samples from our NL model,
each of size 1000. An intercept (β10 in the upper
node of the decision tree and β20 at the lower node)
and two regression parameters (β11 and β12 in the
upper node of the decision tree and β21 and β22 at
the lower node) were assumed at each of the two
nodes of the decision tree. The results are given
below.

POINT ESTIMATES:

Parameter TRUE AVG MEDIAN
θ 0.700 0.707 0.708
β10 0.500 0.501 0.500
β11 0.600 0.603 0.609
β12 0.000 0.004 0.002
β20 -0.300 -0.294 -0.288
β21 1.000 1.011 0.995
β22 0.300 0.297 0.293

Here, ‘TRUE’ means the simulation parameter, ‘AVG’
is the average of the 50 estimates, and ‘MEDIAN’
is their median.

STANDARD ERRORS:

Parameter EMP AVG MEDIAN
θ 0.123 1.030 0.110
β10 0.042 0.104 0.048
β11 0.060 0.210 0.059
β12 0.020 0.065 0.020
β20 0.046 0.325 0.044
β21 0.146 1.045 0.134
β22 0.044 0.309 0.044

Here, ‘EMP’ means the empirical standard error,
‘AVG’ is the average of the 50 estimates, and ‘ME-
DIAN’ is their median.

Note that the average standard error is too high.
We have traced this to a numerical overflow that
affected the calculation of the Hessian in about 3–
5% of the simulations, which yielded extremely high
variance estimates. Indeed, the rest of the estimates
were well-behaved, as can be seen in the median es-
timates of standard errors. We are currently work-
ing on numerical improvements to solve these rare
cases.
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