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1. Introduction 

The exploration of dose-response relationships is 
the main focus of much clinical and epidemiological 
research. In recent years, dose-response analysis has been 
employed to evaluate public education campaigns that 
lacked design features required for the application of 
commonly used methods based on before/after 
comparisons and controlled dose-assignment. The data 
for such evaluations can come from standard household 
surveys with the usual complexities of multiple stages, 
stratification and variable selection probabilities. Judkins, 
Zador and Nadimpalli (2002) reported on the 
performance of a jackknifed Jonckheere-Terpstra (JT) for 
testing dose-response relationship on data from a 
complex survey the National Survey of Parents and 
Youth. The choice of statistic for analysis of data from 
this survey was the JT at first, but switched to Gamma as 
the chief analyst found it easier to interpret. Gary Simon 
(1978) indicated that most of the association tests for data 
from a simple random sample are asymptotically 
equivalent (but he did not study the JT). The focus of this 
paper is to extend our results on the jackknifed JT to tests 
based on other association measures and to the Cochran-
Mantel-Haenzel (CMH) test (SAS Procedures Guide, 
1999), and also to see if various tests are still equivalent 
even when the data are from a complex survey and the 
statistics are jackknifed. The hypothesis is that exposure 
to Campaign messages is monotonically related to 
outcomes.  

We opted to work with the Jonckheere-Terpstra 
test, tests based on the Gamma and Kendal’s Tau 
association measures, and the Cochran-Mantel-Haenzel 
test. These tests were developed for testing data from 
simple random samples, and therefore, may not be valid 
for data from complex samples; we present jackknifed 
versions of these tests that can be used for samples from 
complex surveys.  

 
2. Modification for Complex Sample Design 

Survey practitioners had already made 
considerable progress in determining how to analyze 
contingency tables based on complex sample designs. 
Kish and Frankel (1974) first established that although 
the impact of clustering on fixed parameters in models is 
smaller than on marginal means, it is nonnegligible for 
high intraclass correlation. Holt and Scott (1981) and 
Scott and Holt (1982) confirmed and expanded upon on 
that work. Rao and Scott (1981) reviewed the early work 
and suggested a series of three alternate adjusted  
chi-square statistics for two-way tables and later 

generalized these to multi-way tables (Rao and Scott, 
1984). Fay (1985) suggested a procedure for testing for 
independence and various forms of conditional 
independence in contingency tables using a jackknifed 
chi-square statistic. The Rao and Scott statistics have 
become standard features in Wesvar (Wesvar 4.2, 2002) 
and Sudaan (Sudaan 8.02, 2003). 

More recently, Wu, Holt and Holmes (1988) 
showed the seriousness of ignoring the clustering in 
determining an overall F statistic for clustered samples 
and how to correct it. Medical researchers have been 
slower to recognize these problems, but recent gains have 
been made in this field as well (Manda, 2002). We 
conjectured that the problems identified for other types of 
analyses would also impact the JT, Gamma, Tau and 
CMH unfavorably if we were to compute them from a 
weighted contingency table, even when the weights had 
been standardized. So we wanted to do something for 
these tests similar to the Fay or Rao and Scott corrections 
of the chi-square independence tests. 

Since the JT, Gamma, Tau and CMH test statistics 
all have an asymptotic normal distribution under the null 
hypothesis of independence, it seemed like a 
straightforward procedure to calculate these tests on each 
set of replicated weights, then calculate a variance on the 
replicated JT, Gamma, Tau and CMH statistic, and finally 
use this in a z-test. More specifically, let 0T  be the 
standardized test statistic formed on the contingency table 
of Y by Z using full-sample weights and let rT  be the 
standardized statistic formed on the contingency table of 
Y by Z using the r-th set of replicate weights. Let rb  be a 
factor associated with the r-th replicate and the method 
used to create the replicate weights. Then the proposed 
“jackknifed association” test is: 
 

 
( )

0

2
0rr

r

T
JAT

T Tb
=

−∑

 (1) 

 
Note that we use “jackknifed” more broadly here 

than to imply that the replicate weights need to be created 
by a jackknife method. The replicate weights can be 
created by balanced repeated replications, a bootstrap, or 
any of a variety of resampling schemes, as described in 
the Wesvar manual (Westat’s Wesvar 4.0 Users guide), 
which includes further references on variance estimators 
of the form given in the denominator of JAT. 

The rest of this paper reports on a simulation study 
to establish the properties of this test. 
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3. Parameters for the Simulation Study 
We chose to simulate only those features of the 

design of typical household surveys that seemed most 
likely to impact the performance of the jackknifed tests. 
The features we selected were clustering at the PSU level, 
variation in cluster size, and 100 replicate weights for 
variance estimation. We elected not to simulate 
stratification or any sort of differential weighting. Levels 
of intraclass correlation at the PSU level were set as 
might be expected if stratification had been employed. 
Variation in cluster size is of interest because of the 
natural variation in yields in the screening procedure 
across PSUs and because of aging in frames between 
decennial censuses. By this, we mean that each Decennial 
Census in the U.S. is used to set probabilities of selection 
for the PSUs in most surveys. Sometimes, PSUs are 
selected early in the decade and then used for a variety of 
surveys over the course of the decade. The optimal set of 
probabilities of selection would be proportional to total 
eligible population at the time of the survey data 
collection. As the decade progresses, new construction, 
natural increase, immigration, and internal migration 
conspire to degrade the quality of the probabilities of 
selection. This then results in variation in cluster sample 
size. 

Variation in cluster sample size has an impact on 
the variance of survey estimates that is more difficult to 
project in advance than the impact of intraclass 
correlation. It depends fairly strongly on the types of 
analyses being conducted with a general rule of thumb 
that more conditioning probably reduces its impact. 
However, in addition to its effect on variance, variation in 
sample cluster size affects the application of the central 
limit theorem to survey estimates. Basu’s elephant 
(Brewer, 2002) lies at the extreme of variation in cluster 
size. So we decided to incorporate rather strong variation 
in cluster sample size into our simulation. 

We chose to simulate 100 sample PSUs and 100 
replicate weights because this is a common sample design 
and variance estimation strategy at Westat. The PSU 
sample sizes were generated as a mixture of two iid 
gamma distributions as parameterized in Encyclopedia of 
Statistical Sciences, Volume 3. The formula is given 
by: ( ) ( )~ 7,5.7 0.3,33.3in Γ + Γ , rounded to the nearest 
natural number. On one replicate, this produced an 
average of 50 units (could be either people or households) 
per PSU with a standard deviation of 24, a skew of 1.9, a 
minimum of 12, and a maximum of 202. So the total 
sample size was about 5,000, but was left as a random 
variable. 

The replicate weights were generated with the 
jackknife method, meaning that each of the 100 PSUs 
was dropped in turn for one replicate. All the remaining 
PSUs in a replicate had their weights adjusted by a factor 
of 100/99. The full sample weights were all set equal to a 
constant. With this replication scheme, the replication 
factors are 99 /100rb = . 

Exposure Variable. To simulate an ordinal 
exposure or dose variable Y, we used a double normal 
distribution to simulate a latent score at the person level 
and then scored it as 0, 1, 2, 3, where the thresholds were 
selected as quartiles of the latent distribution. At the PSU 
level, the latent exposure score was allowed to depend on 
the cluster size through the distribution: 
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The latent exposure score for person j in cluster i was 

simulated as ( )2
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These latent scores for Y were then translated to 
manifest ordinal scores, ijy , representing the quartiles 

of µ . 
Outcome Variable. For the outcome variable Z, 

we constructed a model in terms of a PSU-level 
perturbation in the marginal mean, a PSU-level 
perturbation in the strength of the exposure-outcome 
relationship, and a person-level relationship between 
exposure and outcome. The PSU level perturbation in the 

marginal mean was simulated as ( )2
1~ 0,i zNξ σ , and the 

PSU-level perturbation in the strength of the  
exposure-outcome relationship was simulated as 

( )2~ ,i N θθ α σ , where α  can be thought of as an average 

slope and 2
θσ  as a measure of the between-PSU variance 

in the strength of the dose-response relationship. 
The latent outcome score for person j in cluster i 

was simulated as: 
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where 8 shapes were selected for the relationship, fλ , of 
the latent outcome score to the manifest latent exposure 

score and 2
1zσ  and 2

2zσ  were again varied to create a 
variety of intraclass correlations. 

Figure 1 shows the relationship between the mean 
latent Z score (vertical axis) and the manifest Y score 
(horizontal axis) for each of the 8 patterns. Patterns 
Linear, Square Root, Fourth Power, Early Jump and Late 
Jump reflect monotone relationships. Flat pattern reflects 
independence, and Patterns Central Butte and Early Spike 
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reflect nonmonotone dependence. We varied the level of 
α  to create patterns that were more or less easy to detect. 

 

 
Figure 1. Eight shapes tested in simulation 

 
Note that the intraclass correlation for Z is fairly 

complex. For the flat pattern, the intraclass correlation on 
Z is 
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We then converted the person-level latent Z scores 

into the manifest ordinal variable Z by splitting ξ  at its 
quartiles. 

Sample. We generated a sample of 2,000 draws 
from this distribution for each dependence pattern, fλ , 
and level of intraclass correlation, where we kept 

yρ = zρ . We hoped that the null hypothesis of 

independence would be rejected only five percent of the 
time for the flat, central butte, and early spike patterns, 
and that power to reject the null hypothesis would be 
reasonably strong for the other patterns. In this 
simulation, we also compared the jackknifed test against 
the ordinary test. 

4. Results 
The primary statistic of interest is the true size of 

the test, the percent of draws for which the null 
hypothesis was rejected when it is true. Of secondary 
interest was the power of the test under various alternate 
hypotheses and other hypotheses that are properly neither 
null nor alternate hypotheses. 

Figure 2 shows the true size of the test as a 
function of the intraclass correlation. A two-sided test 
with nominal size 0.05 was used. Any values greater than 
0.05 indicate that the test is overly aggressive (i.e., rejects 
at a rate above the nominal size). The same intraclass 
correlation was used for both the exposure and outcome 
variables. Note that ordinary gamma performs well for 
small to moderately large intraclass correlation. It is only 
when the intraclass correlation is about 0.05 or more the 
ordinary gamma no longer provides the nominal 
significance level. If the intraclass correlation is about 
0.1, then the ordinary gamma is much too aggressive. The 
jackknifed gamma protects the significance level at all 
levels of intraclass correlation. Note that with 2000 
draws, the 95 percent confidence interval on the 
estimated power is about plus or minus one percentage 
point. We obtained similar graphs for other statistics. 
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Figure 2. Probability of rejecting the null hypothesis of a 
flat relationship when the relationship is indeed flat 

(same intraclass correlation on Y and Z, total 
variance =35 on each) 
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Figure 3 displays power for the jackknifed JT, 
Gamma, Tau and CMH for a linear pattern with 0.66α =  

and 2 0θσ = . Note that power decreases as intraclass 
correlation increases, as would be expected. We produced 
similar graphs for other monotone patterns. We can also 
see that the jackknifed statistics are essentially 
equivalent. 
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Figure 3. Power with the jackknifed statistics for a 
linear pattern 

 
Figure 4 focuses on the relative power loss with 

jackknifed JT, Gamma, Tau and CMH for a linear pattern 
with 0.66α =  and 2 0θσ = . Note that for small to 
moderately large intraclass correlation, the loss of power 
with jackknifed statistics is minimal. Not surprisingly this 
range of intraclass correlation coincides with the range 
shown in Figure 2, where the ordinary test is valid. Figure 
5 shows test size for dependent but nonmonotone 
patterns.  

In the framework of the Gamma, these are patterns 
that have been ruled out a priori as not sensible.  

-35%

-30%

-25%

-20%

-15%

-10%

-5%

0%

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Int raclass Correlation

JT Gamma

Tau CM H

Figure 4. Relative power loss with the jackknifed 
statistics for a linear pattern 

 
As discussed above, the null hypothesis is that the two 
variables are independent while the alternative hypothesis 
is that there is a monotone dose-response relationship. 
Nonmonotone patterns are outside the parameter 
space.Nonetheless, there might be situations where a 
nonmonotone patterns exists for complex reasons.We 
used the Gamma in the hope that it would reject the null 
hypothesis no more than five percent of the time if such a 
nonmonotone pattern was found. This hope was fulfilled 
for the Central Butte pattern but partially disappointed for 
the Early Spike pattern. Nonetheless, because the 
jackknifed Gamma generally has lower size than the 
ordinary Gamma, using the jackknifed Gamma does 
result in fewer false claims of monotone trends even 
when there is an Early Spike pattern. We obtained similar 
graphs for the other statistics. 
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Figure 5. Size with the ordinary and jackknifed gamma 
for two nonmonotonically 

dependent patterns 
 

Figure 6 shows how the power of the jackknifed 
Gamma depends on the source of the intraclass 
correlation of the outcome variable. More specifically, it 
shows the effect of intraclass correlation caused partially 
or completely by variability in the strength of the 
relationship across clusters as opposed to be due to 
variability in the underlying outcome tendencies. In 
Figure 3, the entries for 0.1zρ =  were simulated by 

setting 2
1 0.1 35zσ = × , 2

2 0.9 35zσ = ×  and 2 0θσ = . When 

we simulated 0.1zρ =  by setting 2
1

0.1 35

2zσ ×= , 

2
2 0.9 35zσ = × and 2 7θσ = , so that half of the intraclass 

correlation on the outcome was due to variable slopes, 
power fell from the range of 54 to 63 percent down to the 
range of 32 to 37 percent. When we went further and 

simulated 0.1zρ =  by setting 2
1 0zσ = , 2

2 0.9 35zσ = ×  

and 2 14θσ = , so that all of the intraclass correlation on 
the outcome was due to variable slopes, power fell down 
to the range of just 26 to 28 percent. This power loss may 
not be a bad thing in the sense that the Gamma is 
supposed to be testing for a monotone dose-response 
relationship that is universal. If the strength of the 

relationship varies substantially because of interactions 
with unknown covariates, then one might not want to 
conclude that there is a universal monotone dose-
response relationship. 
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Figure 6. Power of the tests given variability in the slope 
of square root dose-response relationship 

 
5. Recommendations 

The jackknifed tests have been shown to be 
reasonable tests for monotone dose-response relationships 
on clustered data as might be expected in a complex 
sample survey, repeated measures design or randomized 
cluster design. It accepts the null hypothesis at the desired 
rate when the true pattern is flat or symmetric (as in the 
Central Butte pattern). It rejects the null hypothesis with 
only slightly worse power than the ordinary statistic for 
the monotone patterns when the true size of the ordinary 
test is close to its nominal size. The jackknifed tests 
accepts the alternate hypothesis of a monotone dose-
response relationship more often than desired for a true 
asymmetric nonmonotone dependent pattern (as in the 
Early Spike pattern), but it does reject this hypothesis 
more often than not and does much better than the 
ordinary statistic when there is strong clustering. 

With cluster sample sizes of about 50, an intraclass 
correlation of 0.05, (the level where we found jackknifing 
to be important), translates to a design effect of 3.45. This 
is larger than is typically seen in national household 
surveys in the U.S. because the PSUs in such surveys are 
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typically whole metropolitan areas and groups of 
nonmetropolitan counties, areas large enough to 
encompass great diversity. However, since the power loss 
is minimal in situations where the correction is 
unnecessary, we recommend that the procedure always be 
used on clustered data, regardless of the level of 
intraclass correlation expected.  

Also intraclass correlation considerably larger than 
0.05 can be seen in surveys of individuals associated with 
institutions such as schools or prisons. An example of 
such survey is the multinational surveys of Education 
Achievement (Rust and Ross, 1993). The intraclass at the 
level of primary school and secondary school population 
for various countries ranges from 0.05 to 0.88 for reading 
literacy. Another example of surveys with high intraclass 
correlation and large cluster sizes are third world surveys 
(Le and Verma, 1997). In such surveys, whole urban 
neighborhoods and rural villages are often canvassed and 
intraclass correlation for these levels ranges as high as 
0.15 for measures of child health and knowledge of 
contraception. Taking these into consideration, we 
recommend that the procedure be used on all the 
clustered data, regardless of the level of intraclass 
correlation.  
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