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1. Introduction 

 
The design effects of survey estimates can be 

used as tools for measuring sample efficiency and for 
survey planning. Kish (1965) defined the design effect 
as the ratio of the variance of an estimate under the 
complex sample design to the variance of the same 
estimate that would apply with a simple random sample 
(SRS) of the same size. Complex sample designs 
typically involve a number of design features, such as 
stratification, clustering, and unequal weighting. The 
efficiency of the complex sample design can be 
evaluated for each design feature through 
decompositions of design effects. If the loss of 
precision for survey estimates due to variable weights is 
found to be notable, then we may review the reasons for 
the variable weights and consider options to reduce that 
variation. If the design effect from clustering is very 
large for some survey estimates, then we may also 
consider options to reduce its effect. If the gain in 
precision of estimates due to stratification is negligible, 
then we may further enhance the current stratification 
scheme to obtain greater benefit from the stratification 
of the design. The ultimate goal is to lower design 
effects of key estimates and maintain sample precision 
with smaller sample size. 

 
This paper discusses a method of design effect 

decomposition analyses applicable to data from 
multistage stratified samples. Section 2 reviews Kish’s 
two-factor design effect decomposition model (Kish, 
1987) and discusses an option for a  3-factor model that 
takes into consideration the relative contribution from 
implicit stratification. Section 3 discusses a 
decomposition model developed for the Third National 
Incidence Study of Child Abuse and Neglect (NIS-3). 
The key statistics of interest for the NIS are estimates of 
total countable children. Section 4 discusses the method 
to compute the design effects for estimates of 
population totals. Section 5 describes the results of our 
estimation for ten key NIS-3 estimates. Section 6 
presents our discussion. 

 
2. Design Effect Decomposition Models 
 
2.1 Kish’s Production Model 

 
Models for design effect decomposition are 

discussed in Kish (1965), Verma, Scott, 
O’Muircheartaigh (1980), and Lê, Brick, and Kalton 

(2001). A direct approach to stating the overall design 
effect is relatively complicated under a complex sample 
design with more than one complex feature. As an 
indirect approach, Kish (1987) proposed a production 
model of the overall design effect as a function of 
independent components associated with clustering and 
unequal weighting. This approach is well-accepted by 
many survey samplers. For example, Gabler, Haeder, 
and Lahiri (1999) provided a justification for Kish’s 
model in their sample size determination in the 
European Social Surveys. 

 
For the sample proportion P̂ , Kish’s 2-factor 

production model is given as 

 

 ( ) ( ) ( )2 2 2ˆ ˆ ˆ
c wdeft P deft P deft P= × , (2-1) 

 

where ( )2 ˆ
cdeft P  and ( )2 ˆ

wdeft P  denote the design 

effect components for clustering and unequal 
weighting. These components can be evaluated as 
follows: 

 

 ( ) ( )2 ˆ 1 1cdeft P n ρ= + − , (2-2a) 

 
and 
 

 ( )2 2ˆ 1w wdeft P cv= + , (2-3) 

 

where 
1

/
a

ii
n n a==∑  is the average cluster sample 

size, a  is the number of sampled clusters, in  is the 
cluster sample size for the i-th cluster, ρ  is the 

intracluster correlation coefficient, and 2
wcv  is the 

relative variance of the sample weights. The intracluster 
correlation ρ  is a measure of homogeneity among 
elements within PSUs. 

 
Model (2-2a) for the effect of clustering is 

intended for self-weighting samples. When there are 
large cluster sample size variations, model (2-2a) tends 
to underestimate the clustering effect. Holt (1980) 
derived the following model for unequal size clusters: 

 

 ( ) ( )2 ˆ 1 1cdeft P n ρ′ ′= + − , (2-2b) 
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where 2
1 1

a a
i ii i

n n n= =′ = ∑ ∑  is an adjusted (or 

weighted) average of cluster sample sizes in . The ratio 

( 1) /( 1)n n′ − −  is the inflation factor for the clustering 
effect due to the variable cluster sample sizes. Model 
(2-2b) leads to an estimate of ρ ′  that is smaller than 
that provided by model (2-2a) by the inverse of the 
above rate. The intra-cluster correlation ρ ′  is estimated 
under model (2-2b) as 
 

 
2 ˆ( ) 1

ˆ
1

cdeft P

n
ρ

−
′ =

′ −
. (2-4) 

 
Model (2-3) specifies the design effect associated 

with the departure from self-weighting due to weight 
adjustments that are independent of the sample 
variation of the survey characteristic (Kish, 1965, 
1992). 

 
2.2 Extension of Kish’s Production Model 

 
Multistage sample designs often include a 

stratified selection of PSUs. Kish’s model (2-1) is 
applicable under some special sample designs with 
stratified selection of PSUs. For example, Kalton 
(1979) showed that model (2-2a) can approximate the 
design effect due to clustering for an overall self-
weighting sample with a proportionate stratified 
selection of PSUs. In an effort to factor out explicitly 
the design effect component due to stratification, we 
attempted an extension of Kish’s production model as 
follows: 

 

 ( ) ( ) ( ) ( )2 2 2 2ˆ ˆ ˆ ˆ
s c wdeft P deft P deft P deft P= × ×  (2-5) 

 

where 2 ˆ( )sdeft P  is the design effect component 

incorporating the stratification effect, ( )2 ˆ
cdeft P  is 

given in (2-2a) or (2-2b), and ( )2 ˆ
wdeft P  is given in (2-

3). Each component is positive and is expected to be 
around one when there is neither gain nor loss in 
sample efficiency as compared to simple random 
sampling with replacement (SRSWR). Under this 
model, the increase in the design effect due to 
clustering and unequal weighting can be compensated 
by the gain in precision due to efficient stratification. 

 
3. Decomposition Model for NIS-3 
 

This section discusses a method to model for the 

design effect component ( )2 ˆ
sdeft P  for the NIS-3 

sample design. 

3.1 NIS-3 Sampling and Variance Estimation 
 
The Third National Incidence Study of Child 

Abuse and Neglect (NIS-3) is based on a complex 
multistage and multiframe design. In this paper, we 
focus only on the selection of a list sample from the 
Child Protective Services (CPS) agency frame. Very 
briefly, the NIS-3 CPS sample used a multistage 
probability sample design with complex features 
including stratification, clustering, and unequal 
weighting. The first stage sampling units were primary 
sampling units (PSUs) selected through implicitly 
stratified probability sampling. The NIS-3 PSUs were 
single counties or adjacent small county groupings. 
Prior to sample selection, the PSU frame was sorted by 
the number of counties within PSUs, by census region, 
and by the degree of urbanicity. A sample of 40 PSUs 
was then systematically selected from the presorted 
PSU frame with probability proportional to size (the 
child population aged 0-17 in the 1990 Census). Two 
self-representing (SR) PSUs were selected with 
certainty and the remaining 38 were nonself-
representing (NSR) PSUs. 

 
Variance estimation for the NIS-3 used the 

jackknife replication method known as JK2 (Westat, 
2001), where PSUs and their consecutive pairs are the 
variance units and variance strata, respectively. The 
JK2 method assumes that PSUs are grouped into 
variance strata and that within each stratum two PSUs 
are selected as variance units, that is, a two-unit-per-
stratum design. A total of 21 variance strata were 
defined, 19 of which were formed by pairing the 38 
NSR PSUs in their order of selection from the PSU 
frame. Two strata were formed for the two SR PSUs, 
providing no between-PSU component of variation, 
only a within-PSU component of variation. The 
between-PSU variance component is reflected only in 
the 19 NSR PSU strata. We used the variation among 
the 38 PSUs to indicate the efficiency of implicit 
stratification in the PSU selection along with the 
framework of the JK2 variance estimation method.  

 
3.2 Modeling Component for Stratification Effect 

 
This section presents a design effect component 

model to include the effect of implicit stratification. 
One approach is to interpret the stratification effect as 
the efficiency of the adopted systematic PPS selection 
of PSUs under the JK2 method, as compared to a naïve 
PS selection (that is, systematic PPS selection with a 
random sort order) of PSUs. 

 
We denote N as the total number of children 

countable as abused or neglected under the 
endangerment definitional standard and denote Y  as 
the total number of children possessing attribute y (e.g., 
physically abused) among N total countable children. 
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We also denote kw  as the sample weight and ky  as an 
indicator variable of attribute y for a sampled child k 
(that is, 1ky =  if child k has attribute and 0ky =  if 
child k does not have attribute). A customary estimate 
of Y  is the weighted sample total given as 
 

 
1

ˆ
n

k k
k

Y w y
=

= ∑ . (3-1) 

 
The population proportion /P Y N=  is then estimated 

by the ratio ˆ ˆ ˆ/P Y N= , where 
1

ˆ n
kk

N w==∑  is an 

estimate of N. Note here that P̂  is the proportion of 
countable children with a specific attribute (not the 
proportion of children with attribute). The summations 
are over n  children in the sample who were 
evaluatively coded as being abused or neglected under 
the endangerment countability standard. 
 

Using the Taylor approximation, we can rewrite 

P̂  as a linear sum: 
 

 
1

ˆ
n

k k
k

P P w z
=

− ∑�  (3-2) 

 
where ( ) /k kz y P N= − . Assume that the 38 NSR 
PSUs are listed in the sort order of the PSU frame. 
Letting |k iw  denote within-PSU weights, the estimated 

PSU totals of ˆkz  for NSR PSU i are |
ˆ ˆi k i kk
Z w z=∑ , 

where ˆ ˆˆ ( ) /k kz y P N= −  are sample estimates of kz  

and the summation is over k within PSU i . Letting ip  

denote the PSU selection probabilities and iw  the 
associated weights, expression (3-2) can be rewritten as 

38
1

ˆ ˆ
i ii

P P w Z=− ∑� . Assume that the ˆ
iZ  are fixed 

quantities. If two ˆ
iZ  were selected with unequal 

probabilities, ip , from within each of 19 equal-sized 

strata, then the variance of P̂  is estimated by 
 

 

219
2 1 2

2
2 1 21

ˆ ˆ1ˆ( )
38

i i
stpps

i ii

Z Z
v P

p p
−

−=

 
= −  

 
∑ . 

 

If the ˆ
iZ  were selected with unequal probabilities, ip , 

with replacement, then the variance of P̂  is estimated  
by 
 

 

238

1

ˆ1ˆ ˆ( )
38 37

i
pps

ii

Z
v P Z

p=

 
= −  ×  

∑ , 

 

where 
1

ˆ ˆn
k kk

Z w z==∑ . (See, for example, Wolter 

1985, pp. 287.) The subscripts STPPS and PPS 
represent the variances estimated under the sample 
designs with implicitly stratified and naïve PPS, 
respectively. We used the ratio 
 

 2
ˆ( )

ˆ( )
ˆ( )

stpps
s

pps

v P
deft P

v P
=  (3-3) 

 
as a measure of the efficiency of the implicit 
stratification scheme with the JK2 variance estimation 

method. To calculate 2 ˆ( )sdeft P , we let |
ˆ

i k ik
N w=∑  

and |î k i kk
Y w y=∑  denote estimated total numbers of 

countable children and those with attribute y within 

PSU i, respectively, and let ˆ ˆ ˆ
i i iP Y N=  denote the 

corresponding PSU proportion estimates. We can 
rewrite (3-3) approximately as 
 

( ) ( )

( ){ }

19

2 1 2 1 2 2
2 1

38 2

1

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ2
ˆ1 ( )

ˆ̂ ˆ ˆ

i i i i
i

s

i i
i

N P P N P P

deft P

N P P

− −
=

=

− −
−

−

∑

∑

�  (3-4) 

 

where ˆ̂ ˆ /i i iN N p=  is the weighted total number of 
countable children based on the i th PSU sample. If 

PSU proportion estimates, 2 1
ˆ

iP −  and 2̂iP  are close to 

each other (both greater than or less than P̂  together), 
then the right hand side of expression (3-4) can be 

positive and 2 ˆ( )sdeft P  can be less than 1. For the 

opposite case (when 2 1
ˆ

iP −  and 2̂iP  are opposite relative 

to P̂ ), the right hand side of expression (3-4) can be 

negative, and thus 2 ˆ( )sdeft P  can be larger than 1. That 
is, if the implicit stratified selection of the PSU sample 
leads to consecutive PSU pairs in the sample being 

more homogeneous, the ratio 2 ˆ( )sdeft P  should be less 
than 1, indicating a gain due to implicit stratification. If 
the ratio is greater than 1, then implicit stratification did 
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 not improve sample efficiency. The magnitude of 
2 ˆ( )sdeft P  is determined by the quantities ˆ̂

iN  and 

ˆ ˆ
iP P− . 

 
4. Design Effects for Estimates of Totals 

 
The design effect models discussed in Section 

2.1 and Section 3.2 were defined for estimates of 
population means and proportions. While the same 
concept can be applied to other statistics, the magnitude 
of design effects for different statistics can vary. For 
example, Barron and Finch (1978), in their study for the 
Survey of Low Income Aged and Disabled, observed 
that the design effects for P̂ , estimates of population 

proportions, are less variable than those for Ŷ , 
estimates of population totals. In this section, we 

compare the overall design effects for P̂  and Ŷ . 
 

Denote ˆ ˆ( , )r P N  as the correlation coefficient of 

P̂  and N̂  under the complex sample design. Using the 
Taylor approximation (3-2), the relationship between 

two overall design effects for P̂  and Ŷ  under a 
complex sample survey is given as 
 

 2 2ˆ ˆ( ) ( ) ydeft Y deft P= + ∆ , (4-1) 

 
where 
 

 { }ˆ ˆ ˆ2 ( , ) ( )y y yQ Q r P N deft P∆ = × +  

 
is the difference between the design effects for Ŷ and 

P̂  and ˆ ˆ( ) ( )y srswrQ cv N cv P=  is the ratio of the 

coefficients of variation of N̂  under the complex 

sample design and of P̂  under SRSWR, respectively 
(Park and Lee, 2003). Recalling that ky  is binary (0,1), 

we have 2 2ˆ ˆ ˆ ˆ( ) ( ) (1 ) /( )srswr srswrcv P cv Y P nP= = − . In this 

situation, yQ  can be arbitrarily large as P̂  approaches 

one and small as P̂  approaches zero, assuming 
ˆ( ) 0cv N ≠ .1 This means that the difference y∆  is most 

influenced by the magnitude of P̂ , although it is 

affected by the other factors ˆ ˆ( , )r P N  and ˆ( )deft P  to a 

certain degree. In general, Ŷ  has a larger design effect 

                                                       

1 When ˆ( ) 0cv N = or N̂ N= , the two design effects are equivalent, 

that is, 2 2ˆ ˆ( ) ( )deft P deft Y= . 

than P̂ , unless ˆ ˆ ˆ2 ( , ) ( )yQ r P N deft P< − . See Park and 

Lee (2003) for more discussion. 
 
For the stratification effect, the design effect 

component model 2 ˆ( )sdeft Y  is analogous to model (3-

3) for P̂ , defined by replacing Ẑ  and ˆ
iZ  by Ŷ  and 

îY , respectively. That is, 
 

 2
ˆ( )

ˆ( )
ˆ( )

stpps
s

pps

v Y
deft Y

v Y
= , (4-2) 

 
from which we have 
 

 
( ) ( )

( )

19

2 1 2
2 1

38 2

1

ˆ ˆˆ ˆ ˆ ˆ2
ˆ1 ( )

ˆ̂ ˆ

i i
i

s

i
i

Y Y Y Y

deft Y

Y Y

−
=

=

− −
−

−

∑

∑

� , (4-3) 

 

where ˆ̂ ˆ /i i iY Y p=  is the contribution from the 
estimated total number of countable children possessing 
attribute y based on the i th PSU sample. Given 

( ) ( )ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ/i i i iN P P Y N N Y− = − , expression (3-4) 

indicates that 2 ˆ( )sdeft P  is influenced by whether ˆ̂
iY  

and ˆ̂
iN  are close to Ŷ  and N̂ , respectively. In 

contrast, 2 ˆ( )sdeft Y  depends only on ˆ̂
iY  compared to Ŷ . 

We expect ratios ˆ̂ ˆ/iN N  to be around one. Hence, 
2 ˆ( )sdeft Y  will not differ much in magnitude from 
2 ˆ( )sdeft P . 

 
For the effect of unequal weighting, the same 

model (2-3) can be applied for both P̂  and Ŷ , 
provided that the underlying assumptions of the model 
hold at least approximately. This is because the model 
assumption for expression (3-2) should hold also for 
expression (3-1). No good alternative is yet available 
except for the cases where the selection probabilities 
are correlated with a continuous characteristic of survey 
interest under a single-stage sample design with 
unequal selection probability (Spencer, 2000, and Park 
and Lee, 2001, 2002). 
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For the clustering effect, Kish (1987) notices that 

model (2-2a) for P̂  is not transferable to Ŷ . Särndal, 
Swensson, and Wretman (1992, Section 8.7) show that 
under a one-stage simple random cluster sample design, 

the difference between two design effects for Ŷ  and P̂  
can be quite large, provided cluster sizes iN  are 
variable. Park and Lee (2003) show that the differences 
under a two-stage unequal probability sample design 
can be attributable to the respective sources of variation 
from each sampling stage. The first stage contribution 
arises from the efficiency of selection probabilities as 
compared to the relative sizes of clusters. The second 
stage contribution arises from variations of estimates in 

different magnitudes, say ˆvar( )iY  and ˆ ˆvar( )i iY N P− . If 

PSU proportion estimates ˆ ˆ ˆ/i i iP Y N=  do not deviate 

much from the population proportion P , then îY  tend 

to be more variable than ˆ ˆ ˆ ˆ( )i i i iY N P N P P− = − , 

yielding ˆ ˆ ˆvar( ) var( )i i iY Y N P−�  in most cases. Thus, 
the second stage contribution can produce a larger 
design effect for Ŷ , unless the first stage sampling is 
dominant in determining the difference y∆  and favors 

P̂  to a larger extent. This indicates that, in general, Ŷ  
tends to have a larger design effect than P̂ . The 
clustering component of the design effect for estimates 
of population totals may be modeled in the following 
form: 

 

 2 2
2

ˆ ˆ( ) ( )
ˆ( )

y
c c

srswr

b
deft Y deft P

cv Y
= +  (4-4) 

 

where 2 ˆ( )cdeft P  can be defined by either (2-2a) or 

(2-2b), 2 ˆ( )srswrcv Y  is the relative variance of Ŷ  under 

SRSWR, and yb  is a factor that differentiates the two 

design effects. The way to express the quantity yb  can 

vary over different sample designs (Park and Lee, 
2003). In fact, the quantity y∆  in expression (4-1) is 

almost parallel to the ratio 2 ˆ/ ( )y srswrb cv Y . This is 

because the difference y∆  is not much influenced by 

the effects due to unequal weighting and stratification, 

as discussed above. Thus, 2 ˆ/ ( )y srswrb cv Y  may be 

understood as parallel to y∆  given in expression (4-1).  

 
 
 
 
 

5. Application to the Third National Incidence 
Study of Child Abuse and Neglect (NIS-3) 
 
We used the NIS-3 Public Use File (PUF) for 

analyses. Table 5-1 shows estimates of proportions and 
design factors (deft, i.e., square root of design effect) 
for estimates of proportions and totals for ten selected 
attributes by the child abuse endangerment standard 
definition. The first six attributes pertain to overlapping 
subclasses of children who are countable under the 
endangerment standard (such as educationally 
neglected, emotionally abused, etc.) Consecutive pairs 
of the last four attributes are exhaustive socio-
demographic categories. Note that the denominator for 
these proportions is relative to the entire population of 
endangerment standard children. For example, the first 
type of abuse or neglect applies to an estimated 28 
percent of the estimated total number of endangerment 
standard children investigated by CPS agencies 

( N̂ =814,331). The design factor for these estimates of 
proportions ranged from 1.30 to 3.82. The design 
factors for the estimates of totals, as expected, are larger 

than those for the estimates of proportions ( ˆ( )deft Y  
ranged from 2.21 to 7.61.) The only exception is for 
attribute 10, where the estimated total has a slightly 
smaller design factor than the estimated proportion. 

Note that the difference between ˆ( )deft P  and ˆ( )deft Y  

tends to be influenced by the magnitude of P̂  to a great 
extent, as discussed in Section 4.1. 

 
Table 5-1.  Proportion estimates P̂  and overall 

design factors for ten selected attributes 
 

Attribute P̂  
ˆ( )deft P  ˆ( )deft Y  

    
1 0.28 1.70 2.21 
2 0.14 1.72 2.26 
3 0.15 1.91 2.10 
4 0.52 1.30 4.28 
5 0.13 2.01 2.62 
6 0.03 2.59 2.76 
7 0.21 3.34 4.00 
8 0.79 3.34 7.61 
9 0.53 3.82 6.58 
10 0.47 3.82 3.75 

  Note: N̂ = 814,331. 
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We applied the multiplicative decomposition 
model (2-5) to evaluate the design effect components. 
The design factor for unequal weighting calculated 
from expression (2-3) was 1.20. The relative variance 

of sampling weights ( 2
wcv ) was 44 percent. 

 
Table 5-2.  Design factors due to implicit 

stratification for ten selected attributes 
 

Attribute ˆ( )deft P  ˆ( )deft Y  

   
1 1.11 0.93 
2 0.95 0.88 
3 1.06 0.83 
4 0.92 1.04 
5 0.80 0.81 
6 1.09 1.10 
7 0.85 0.95 
8 0.85 0.87 
9 1.04 1.10 

10 1.04 0.79 
Mean 0.97 0.93 

 
The design factors due to stratification for 

estimated proportions and totals were calculated from 
expressions (3-3) and (4-2), respectively. Table 5-2 
shows the estimates of the design factors due to implicit 
stratification for ten attributes. They varied from 0.80 to 
1.11 for P̂  and from 0.79 to 1.10 for Ŷ . Their 
respective average design factors were 0.97 and 0.93.  

 
The remainder of the total design effect was 

attributed to the clustering effect, from which the 
intraclass correlation for each attribute was then 
estimated. Table 5-3 shows the resulting estimates of 
the intracluster correlation for the ten attributes. 
Expression (2-4) was used to take the large variation in 
cluster sample sizes into consideration in calculating the 
intracluster correlation. They were typically small, 
ranging from 0.004 to 0.102. The adjusted (or 
weighted) average of cluster sample size was n′ = 94.7. 
It is larger than the unadjusted average of cluster size 
( n =46.1) by more than two-fold. That is, the variable 
cluster sample size inflated the impact of the 
intracluster correlation on the design factor due to 
clustering. Table 5-3 presents estimates of P , the 

factor yb , and 2 ˆ( )srswrcv Y  by attribute. The quantities 

yb
 
were estimated from expression (4-4). As expected 

 
 
 
 
 
 

(see Section 4) the ratio of 2 ˆ/ ( )y srswrb cv Y  was, in 

general, close to y∆ . This suggests that the difference 

between the two overall design effects for Ŷ  and P  
can be mostly attributed to the difference between the 
associated cluster effects.  

 

Table 5-3.   ρ̂ ′ , yb , 2 ˆ( )srswrcv Y  

 

Attribute ρ̂ ′  yb  2 ˆ( )srswrcv Y  

    
1 0.006 0.0032 0.0014 
2 0.013 0.0075 0.0033 
3 0.013 0.0066 0.0031 
4 0.004 0.0053 0.0005 
5 0.036 0.0099 0.0035 
6 0.031 0.0063 0.0165 
7 0.102 0.0033 0.0020 
8 0.102 0.0061 0.0001 
9 0.088 0.0074 0.0005 
10 0.088 0.0040 0.0006 

Note: The unadjusted and adjusted average cluster sample 
sizes are n =46.1 and n′ =94.7. Also, the inflation 
factor is ( 1) /( 1)n n′ − − =2.08. 
 
Figure 5-1 presents comparisons of design factor 

components for the proportion estimates across 
attributes. Figure 5-1 shows that unequal weighting was 
not a dominant contributing factor for the overall design 
factor. The clustering effect, by contrast, did determine 
the pattern of the design factor across attributes in 
general. The only exceptions were attributes 1 and 4. 
Stratification had a beneficial impact on the design 
effect for some attributes. For example, the overall 
design factor for attribute 5 was even less than its 
design factor component for clustering because the 
design factor for stratification was less than 1. 

 
Figure 5-2 presents the design factor components 

for estimated totals across attributes. Unequal weighting 
has a negligible impact on the overall design factor. 
Clustering parallels the overall design factor in its 
pattern across attributes. In contrast to the proportion 
estimates, its effect was always larger than the 
weighting effect in the size of the design factor 
component. In addition, the stratification was much 
more desirable than it was for the proportion estimates. 
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Figure 5-1. Comparisons of Design Factor Components 

for Proportion Estimates Across Attributes 
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Figure 5-2. Comparisons of Design Factor Components 

for Total Estimates Across Attributes 
 

6. Discussion 
 
Sample design often includes complex features 

such as (implicit) stratification, unequal weighting, and 
clustering. Each design feature has a different impact on 
sample efficiency. By examining their relative 
contributions, we seek alternatives to lower the overall 
design effect and improve the effective sample size in 
the next survey. In this paper, we explored a three-
factor design effect decomposition model suitable for 
the NIS-3 and estimated the design effects for each 
individual design component for ten key attributes. We 
observed relatively minor gain from the implicit 
stratification of NIS-3 PSUs and moderate loss from 
unequal weighting. The next NIS may benefit from 
adopting design options that would improve on both of 
these design features. 
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