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1. Introduction 

 
In this paper we compare, via a simulation study, three small 
area estimation (SAE) methods for survey data. The first 
method, known as Estimating Function Gaussian Likelihood 
(EFGL),  was developed by Singh, Folsom, and Vaish (2002a 
and 2002b); the second method, known as Pseudo Hierarchical 
Bayes (PHB), was developed by You and Rao (2003); and the 
third method is a hierarchical Bayes (HB) solution for the Fay 
and Herriot (F-H) (1979) model. For motivation, technical 
details, statistical properties, and performance of the three 
methods we refer to the above papers.  

 
The present paper, in comparison to our previously 

published papers, makes the following contributions. Unlike 
the comparisons of the EFGL method with a HB version of the 
F-H solution and unweighted solution for nonignorable sample 
designs reported earlier, we present new simulation results 
with samples generated using ignorable and nonignorable 
sample designs. Only a brief description of the EFGL, PHB, 
and F-H methods is presented here while simulation study and 
results are presented in details. 

 
 

2. Desirable Properties of Small Area Estimates (SAEs)   
 

Most of the small area models for survey data assume that the 
sample design is ignorable i.e. the distribution of errors 
associated with the assumed finite population model remains 
the same for the sample. But it is often the case that the 
population model cannot be assumed to hold for the sampled 
data due to selection bias. If selection bias is present then 
standard model based solutions will lead to biased estimates 
for small areas such as posterior means and variances. Hence 
it is important for a small area estimator to be robust against 
nonignorable sample designs.   

SAEs obtained from the EFGL and F-H models are robust 
against nonignorable sample design because sample design is 
fully accounted for in estimating the model parameters; 
whereas the PHB model assumes that the sample design is 
ignorable when estimating the variance components. Hence it 
produces biased SAE posterior variances when the design is 
nonignorable. 

 A natural way to overcome the presence of nonignorable 
sample designs in the joint design-model based estimation 
framework is to employ transformed or aggregate-level data 
such as the direct survey estimates for small areas.  With 
aggregate-level data, one can take account of the sampling 
design in specifying the likelihood of model parameters by 

appealing to the central limit theorem for large samples; here 
it is assumed that variances of the direct estimates can be 
treated as known which, in practice, amounts to smoothing 
them via generalized variance functions. If the preferred 
model is unit-level which is often the case in practice, there is 
clearly a loss of efficiency by using aggregate-level data. The 
EFGL and PHB methods allow the use of unit-level data in the 
model whereas the F-H model works on aggregate-level data. 
Hence the F-H model produces less efficient SAEs as 
compared to the SAEs produced by EFGL and PHB methods.   

The use of unit-level information also makes the SAEs 
internally consistent i.e. SAEs for higher levels (say states) are 
obtained by aggregating the SAEs at a lower level (say 
counties) by using appropriate population counts.  The EFGL 
and PHB methods produce internally consistent SAEs whereas 
SAEs obtained by the F-H method are not internally 
consistent. For the F-H solution, if SAEs at the state-level are 
desired then data is aggregated at the state-level and the model 
is fitted to the state-level data. If county-level SAEs are 
desired then the data is aggregated at the county-level and a 
county-level model is fitted. In this case if the county-level 
SAEs are combined using appropriate county-level population 
counts to produce state-level SAEs then these state- level 
SAEs will be different from the ones produced by fitting the 
state-level model to the state-level data. 

Often it is desirable to produce SAEs for binary outcome 
variables using nonlinear mixed models. The PHB approach 
adopted by You and Rao (2003) does not extend to nonlinear 
mixed models although the general pseudo hierarchical Bayes 
methodology is extendable to nonlinear mixed models, see 
Folsom, Shah, and Vaish (1999). The EFGL methodology is 
applicable to linear and nonlinear mixed models. In the 
interest of normality, there may be other concerns with the F-
H methodology when formulating a model with transformed 
aggregate-level estimates e.g. when modeling a low 
prevalence outcome variable at a lower level of geography 
such as prevalence of heroin usage in a county, then many 
counties will be discarded from the model since log (0) is not 
finite. 

It is also desirable that the SAEs converge to the true 
population parameters when the sample size increases. Such 
SAEs are called design-consistent (see Rao, 2003 for the 
definition of design-consistent). All three methods produce 
design-consistent SAEs. In the next section we give technical 
details of the three methods.  

 
3. Brief Description of EFGL, PHB, and F-H Models   

 
In this paper we consider a linear mixed model with one 
covariate.  A simulation study for a nonlinear mixed model is 
in progress. First we give a brief description of the EFGL 
methodology then we describe PHB and a hierarchical Bayes 
version of the F-H methodology.  
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EFGL Methodology: The EFGL methodology is based on

 

survey weighted Estimating Functions (EFs). To illustrate the
 

EFGL methodology, we consider the framework (at the census
 

level) for a linear mixed model with one covariate. Let  

0 1ij ij i ijy xβ β η ε= + + +  where 2~ (0, ),i N ηη σ  

0

2 2 2
0 1 0( , ) ~ ( ), ~ ( / 2, / 2),U R IGη ηβ β σ ν σ  
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Note that the EFGL solution does not require an estimate

 

of 2
εσ . If an estimate for 2

εσ  is desired, the prior for 2
εσ  can

 

be assumed to be improper like that of the mean
 

parameters β ’s. In that case, we can introduce a separate
 

EF, 2
εσφ , for 2

εσ  which treats 2
εσ  as a mean parameter.  It turns

 

out, as expected and as in the case of F-H, that 2
εσ  is not a part

 

of the variance-covariance matrix ofφ ’s (defined below) when 
a suitable design-based estimate is substituted.   

 
With a nonignorable sample design (small areas as strata),

 

define survey weighted EFs for 1 1, , Mandβ η ηK

             
                   

using the sample data as 
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where the ijw  are design weights.  The EF for 0β  is simply
 

the sum of
iηφ ’s.  We propose to use the above set of EFs as

 

the starting point for Bayes or HB estimation, i.e., the
 

likelihood would be defined by the distribution of these EFs. 
 

Clearly, these EFs use unit-level information and they use it
 

efficiently in view of their optimality properties.  It is also
 

known that EFs can be better approximated by a Gaussian
 

distribution even for modest sample sizes (McCullagh 1991)
 

because by their very nature, they are simple sums of
 

elementary zero functions, although the elementary functions
 

can be complex. Moreover, EFs can be easily collapsed to
 

improve the Gaussian approximation as well as the precision
 

of variance estimates.  
 Now, the vector of EFs serves as the condensed input data

 

which after collapsing, if necessary, gives rise to an
 

approximate Gaussian likelihood, L ( * | , )y β η  where *y
 

denotes the implicit condensing of information in y via EFs.
  

Thus, for the unit-level HB analysis, the original likelihood
 

L( y |⋅) (which would have been based on the ignorable design
 

assumption) is replaced by the estimating function based
 

Gaussian likelihood, L( *y |⋅), which does not assume
 

ignorability of the design.  
Let   

1 1

' ( , , , ), ( )
M

and V Covη η βφ φ φ Φ
Φ Φ= =

K where 

VΦ  is a design based variance-covariance matrix of  .Φ  

Further suppose, 1~ (0, )MN VΦΦ +& . Due to this assumption, the 
proposed method is referred to as Estimating Function Based 
Gaussian Likelihood. The EF Gaussian log-likelihood is given 
by ' 11

2( * , ) ( )l y const Vβ η ΦΦ Φ−= − . It may be noted that there 

is, in fact, a second component involving 2
εσ  when the 

variance-covariance matrix of the φ ’s is computed under joint 
design-model randomization.  However, this term involving 

2
εσ  is negligible in comparison to the first term,VΦ , under the 

usual assumption of i in N<< .  It should also be emphasized 

that, in practice, some collapsing of the 
iηφ ’s may often be 

required because the corresponding in ’s may be small.  We 
may need this collapsing to improve the Gaussian 
approximation, as well as to improve the precision of the 
estimate VΦ . With the specification of EFGL, estimation of 

parameters 2
1 0 1[ ( , , ), ( , ), ]M ηη η η β β β σ= =K  can proceed in 

the HB setup using MCMC steps.  The next section gives 
details of the full conditional posterior distributions needed for 
MCMC.   

For implementing Gibbs sampling, the full conditional 
posterior distributions are given below: 

' 1 1 ' 1 ' 1 1
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0
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M
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i

M ην ν ν σ η
=

= + = +∑  and  

1 1 2 2, , ,  and X Y X Y are defined in Singh, Folsom, and Vaish 
(2002b). Using the full conditional posterior distributions 
given above, we can now use the Gibbs sampling technique 
and generate MCMC samples from the joint posterior 
distributions of the model parameters as described in the 
above mentioned paper.   
 
PHB Methodology: You and Rao’s PHB solution assumes 
the sampling mechanism is ignorable and begins by generating 
an MCMC sample of 2 2( , )η εσ σ  pairs using the unweighted  

Gibbs algorithm given in the appendix section of You and Rao 
(2003). For each MCMC sample of 2 2( , )η εσ σ , they then solve 

for  0 1( , )w w wβ β β= in the survey weighted conditional 
estimating equations: 

0 1 0 1
1 1

[ ( )] 0
inM

ij ij ij w ij w iw iw w iw w
i j

w x y x y xβ β γ β β
= =

− − − − − =∑∑  

where 2 2 2/[ ( / )],  iw i inη η εγ σ σ δ σ= + iδ is Kish’s unequal 

weighting design effect, and ,iwy iwx are sample weighted 

averages of ,ijy ,ijx respectively. Once wβ is determined then a 

sample value of β is drawn from the conditional posterior 

distribution 2 2[ | , , ] ~ ( , )w w wNη εβ β σ σ β Φ  where wΦ  is 
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derived using the ignorable sample design assumption and is 
given in You and Rao (2003).  
 
HB Version of the F-H Model: A HB version of the F-H 
model is fitted using the improper uniform prior on the fixed 
parameters and an inverse Gamma prior on 2

ησ  similar to the 

ones used in the EFGL and PHB methodologies. For this 
purpose, EFGL modeling was transformed to aggregate-level 

by replacing ijx  with 
1

( )
iN

i ij i
j

X x N
=

= ÷∑ . 
  
4. Simulation Experiment 
 
We design our simulation study along the lines of Pfeffermann 
et al. (1998). Consider a universe of 1, ,i ML= strata (small 

areas) where 100M =  and let iN  denote the number of 

population members in stratum- i . In this simulation 

experiment, we set *
0 (1 exp( ))i iN N u= +  where 0N  is a 

constant and *
iu  is obtained by truncating ~ (0, 0.2)iu N  at 

0.2± . For simplicity, we consider a single covariate super 
population linear mixed model 0 1ij ij i ijy xβ β η ε= + + +  

where 0 0.5β = , 1 1β = , ~ (0, 0.2)i Nη , ~ (0, 1)εij N , and 

1, , ij NL= . The covariate ij i ijx υ δ= +  where ~ (0, 0.1)i Nυ  

and ~ (0, 1)ij Nδ .  We generate 150K = population-level data 

sets with common ijx  and iN  where the iN ’s are generated 

using 0N =3000.  We selected two samples from each of these 
populations. The first sample was selected in such a way that 
design was ignorable. The second sample was selected so that 
the design was nonignorable.  
 

To select a sample with an ignorable design we stratify the 
stratum- i  population into two substrata Χ +i  with 0>ijx and 

Χ −i  with 0≤ijx . To select a sample with nonignorable design 

we grouped the stratum- i  population into two substrata Ε +i  

with 0ε >ij and Ε −i  with 0ε ≤ij .    
 

Let iN + , iN −  denote the sizes of these substrata and in + , 

in − denote the sizes of the simple random samples selected 
without replacement from these strata, respectively. Note that 
the substratum sizes vary across populations. Let 

100

1
i

i

N N
=

= ∑ and 
100

1
i

i

n n
=

= ∑ where i i in n n− += + . From each 

population one sample was selected using the ignorable design 
and another was drawn with the nonignorable design. In our 
simulation experiment, 628897N = , 60 and 20i in n− += = so 
that we have  a sample of size 80 for each small area and 

8000.=n  
 

In the simulation study we compare EFGL, F-H, 
unweighted and PHB solutions by comparing average 
posterior means and standard deviations of the parameters of 
interest. We also compare 95% prediction interval coverage 

probabilities as well as the average lengths of 95% prediction 
intervals. These comparisons are done for the ignorable as 
well as nonignorable samples. 

 For each sample ( 1, ,150s L= ), using the Gibbs sampling 
technique, we generated 10,000 MCMC samples for each of 
the model parameters, namely 2

0 1 1 M, , , , ,  and  ηβ β η η σK . 

These MCMC samples were tested for convergence using 
CODA (Convergence Output Data Analysis software). The 
first 1000 MCMC samples were deleted as the “burn-in” 
period and from the rest of the 9000 MCMC samples we 
selected every ninth sample to minimize auto-correlation, 
yielding a final MCMC sample of size 1000. 

Let 2
0 1( , , )sc sc sc scηθ β β σ= denote the parameter values 

from the c -th MCMC cycle corresponding to the s -th 
sample. In Tables 1 and 3, the average posterior mean of θ  is 

defined as 
150 1000

1 1

( ) (1000 150)sc
s c

θ
= =

÷ ×∑∑  and the average posterior 

standard deviation of each element of  scθ  is defined as the 

square root of 
150 1000

2

1 1

( ( ) ) (1000 150)sc s
s c

θ θ
= =

− ÷ ×∑∑  

where 1000

1

( ) 1000s sc
c

θ θ
=

= ÷∑ . Let 0 1isc sc i sc iscXβ β ηΘ = + +  

denotes the small area estimate from the s -th sample for the 
i -th area using the c -th MCMC cycle. Also, define 

*
0 1is i isXβ β ηΘ = + +  where isη  is the true value of iη  for the 

s -th population. Let isL  and isU  denote the end points of the 
95% prediction interval (PI) based on the posterior distribution 
of isΘ obtained from 1000 MCMC samples of iscΘ . Define 

*1 if [ , ]
   

0 .
is is is

is

L U

otherwise
ψ Θ ∈= 


  

The coverage probability distribution characteristics given in 
Tables 2 are obtained from the distribution of 100 area-

i specific values of 
150

1

( ) 150is
s

ψ
=

÷∑ .  

Note that for the PHB methodology, we used the PHB2 
small area estimates and associated unconditional posterior 
variances as defined in You and Rao (2003).  
 
 5. Simulation Results 
 Tables 1 and 2 summarize the simulation results obtained from 
the ignorable sample design, whereas Tables 3 and 4 present 
the corresponding results for the nonignorable samples.   In 
Table 1, average posterior means and standard deviations for 
the EFGL method are compared with solutions from a HB 
version of the F-H model, PHB and unweighted solutions for 
the ignorable sample design.  Since the model holds in the 
sample, the unweighted solution is expected to be the most 
efficient solution. The average posterior means for all four 
methods are very close to each other. The average posterior 
standard deviation of 1β  for the F-H model is approximately 
13 times larger than the other methods. This is due to the fact 
that the F-H solution uses an aggregate-level model. The 
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average posterior standard deviations of 0β  and 2
ησ   for all the 

solutions are very close to each other. 
  

In Table 2, 95% prediction interval coverage probabilities 
for the EFGL solution are compared with the F-H, PHB, and 
unweighted solutions coverage probabilities. The coverage 
probabilities for all solutions are very close. However, the 
prediction intervals for the F-H solution are 16% wider than 
the EFGL solution, which is expected, since the EFGL 
solution utilizes unit-level covariate information whereas the 
F-H solution uses aggregate-level covariate information.  The 
unweighted method, being the most efficient, results in 
prediction intervals that are approximately 10% shorter than 
the EFGL solution. 
 

For the nonignorable sample design, Table 3, shows that 
the average posterior mean for 0β  from the unweighted 
solution is heavily biased (0.1043 vs 0.5) due to the fact that 
we over sample the iΩ −  substrata. On the other hand, the 
average posterior means for the F-H, EFGL and PHB 
solutions are very close to each other. The average posterior 
standard deviations of 0β  and 2

ησ   for all four solutions are 

also close to each other whereas the average posterior standard 
deviation for 1β  from the EFGL, PHB and unweighted 
solutions are more than 12 times smaller than the solution 
from the F-H model.  
 

From Table 4 (for nonignorable sample design), we see 
that 95% coverage probabilities for the EFGL solution and F-
H solution are very close to each other whereas the coverage 
probabilities for the PHB solution are approaching 1 and 
coverage probabilities for unweighted solution are close to 0. 
The unweighted method performed very poorly due to the 
heavily biased estimate of 0β .  For our nonignorable samples, 
the PHB solution substantially overestimates the SAE 
posterior variances. The prediction intervals for the F-H 
solution are 86% wider than the EFGL solution. This 
inefficiency in the F-H solution is expected, since the EFGL 
solution utilizes unit-level covariate information whereas the 
F-H solution uses aggregate-level covariate information.   
 
6.  Conclusion 
 
Our results show that SAEs based on unit-level predictors may 
be considerably more efficient than F-H type estimators. For 
our nonignorable samples, the EFGL and F-H solutions 
achieved PI coverage probabilities close to the targeted 0.95 
level.  
 In the nonignorable sample case, the F-H intervals were on 
average 86% wider than EFGL intervals. The nonignorable 
samples played havoc with the unweighted solution. The 
intercept estimate was severely biased and the PI coverage 
probabilities were close to zero. The PHB solution 
substantially overestimated the SAE posterior variances in the 
nonignorable case and yielded average PI coverage 
probabilities close to 1. 
 

In the ignorable sample case, the EFGL estimates had PIs 
that were on average about 10% wider than the most efficient 
unweighted intervals. In conclusion, we have demonstrated 
that the EFGL solution extends the robustness of F-H against 
nonignorable designs to the more efficient unit-level model. 
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Table 1: Average Posterior Mean and Standard Deviation for Model Parameters: Ignorable Sample Design   

Average Posterior Mean 
Average Posterior 
Standard Deviation 

Parameter 
(True Value) Fay-

Herriot 

 
EFGL 

 
PHB Unweighted 

Fay-
Herriot 

 
EFGL 

 
PHB Unweighted 

0β  (0.5) 0.5009 0.5020 0.5020 0.5024 0.0473 0.0461 0.0482 0.0461 

1β  (1.0) 0.9946 0.9988 0.9989 0.9983 0.1650 0.0129 0.0131 0.0121 

2
ησ (0.2) 0.1970 0.1974 0.1981 0.1981 0.0318 0.0309 0.0303 0.0303  

 
 

Table 2:  95% Coverage Probability and Ratio of Predication Interval Widths: Ignorable Sample Design  

Coverage Probability Ratio of Average PI Widths Percentiles 
and Means 
over Small 

Areas 

Fay-
Herriot 

EFGL PHB Unweighted Fay-Herriot/EFGL PHB/EFGL Unweighted/EFGL 

95% 0.973 0.970 0.973 0.980 1.19 1.03 1.00 
75% 0.953 0.953 0.960 0.967 1.17 1.02 0.97 
50% 0.940 0.940 0.953 0.953 1.16 1.01 0.91 
Mean 0.942 0.941 0.950 0.950 1.16 1.01 0.89 
25% 0.930 0.933 0.940 0.937 1.15 1.00 0.83 
5% 0.913 0.907 0.913 0.920 1.14 1.00 0.75  

 

Table 3: Average Posterior Mean and Standard Deviation for Model Parameters: Nonignorable Sample Design  
 
 
 
 
 
 
 
 
 
 
 

Table 4:  95% Coverage Probability and Ratio of Predication Interval Widths: Nonignorable Sample Design  

Coverage Probability Ratio of Average PI Widths Percentiles 
and Means 
over Small 

Areas 

Fay-
Herriot 

EFGL PHB Unweighted Fay-Herriot/EFGL PHB/EFGL Unweighted/EFGL 

95% 0.973 0.970 1.000 0.007 1.91 1.54 1.35 
75% 0.953 0.953 1.000 0.000 1.88 1.53 1.33 
50% 0.940 0.933 0.993 0.000 1.86 1.52 1.32 
Mean 0.941 0.933 0.995 0.001 1.86 1.52 1.32 
25% 0.927 0.913 0.993 0.000 1.84 1.50 1.31 
5% 0.910 0.897 0.987 0.000 1.82 1.49 1.30  

 

Average Posterior Mean 
Average Posterior                         

Standard Deviation Parameter 
(True Value) Fay-

Herriot 

 
EFGL 

 
PHB Unweighted 

Fay-
Herriot 

 
EFGL 

 
PHB Unweighted 

0β (0.5) 0.5043 0.5029 0.5029 0.1043 0.0472 0.0450 0.0459 0.0448 

1β (1.0) 1.0014 1.0004 1.0006 0.9999 0.1638 0.0131 0.0121 0.0103 

2
ησ (0.2) 0.1972 0.1977 0.1909 0.1909 0.0319 0.0294 0.0290 0.0290 
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