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1. Introduction 

In survey research, responding sampled units often 
fail to answer some survey items, and values are imputed 
for the missing responses to produce a completed data set. 
When the imputed values are treated as observed values, 
variance estimates understate the true variances of the 
survey estimates. The biases may be substantial, even when 
the rate of missingness is low. Several different methods 
have been proposed for computing variances that account 
for imputation. 

This paper examines two variance estimation 
methods that are appropriate when a single value is 
imputed for each missing item using a hot deck imputation 
scheme. The two methods—a model-assisted method and 
an adjusted jackknife method—are described briefly in the 
next section. The third section describes the design of a 
simulation study that was conducted to evaluate the 
estimated variances and confidence intervals produced by 
the two methods. The imputations were performed using 
both an unweighted and a weighted hot deck scheme. The 

estimates are totals of the form ˆ
i iw yθ = Σ , where wi is the 

weight and yi is the observed value of the characteristic for 
sampled unit i. To evaluate the variance estimation 
methods in a realistic setting, we use a real data set and a 
typical disproportionate stratified simple random sample 
design for that data set. The missing data and imputation 
procedures are simulated using three different structures. 
The imputation procedure is consistent with the missing 
data mechanism for one of the structures, but not for the 
other two. 

The fourth section gives the results of the 
simulations for the two methods and shows how their 
variance estimates differ from those computed ignoring the 
fact that some of the missing values are imputed. The final 
section gives some concluding remarks on the methods and 
their applicability in this type of setting. 

 
2. Description of the Methods 

The first method of variance estimation examined in 
this paper uses the model-assisted approach introduced by 
Särndal (1992). The second method is the adjusted 
jackknife variance estimation procedure proposed by Rao 
and Shao (1992). Below, we briefly describe each of these 
methods and the procedures used to implement them. 

 

2.1 Model-Assisted Variance Estimation 
The model-assisted approach with hot deck 

imputation assumes that the data are missing at random 
(MAR) in the hot deck cells and that a model for the 
distribution of the y’s holds. With hot deck imputation, an 
appropriate model is that the yi’s are independent and 
identically distributed (iid) random variables within the hot 

deck cells, e.g., for cell g, 2( , )iid
gi g gy µ σ� . The difference 

between the imputed estimate, Îθ , and the finite 

population parameter, Nθ , can be decomposed into 

ˆ ˆ ˆ ˆ( ) ( )I N n N I nθ θ θ θ θ θ− = − + − , where n̂θ  is the usual 

inverse probability weighted estimator of Nθ  with 

complete response. Let the subscripts ξ, p, R, and I denote 
operations made with respect to the assumed cell mean 
superpopulation model (ξ), the probability sample design 
(p), the random response mechanism (R), and the 
imputation method (I). Under the cell mean model, both 
unweighted and weighted versions of the hot deck are 
valid, and we examine both versions. With the unweighted 
hot deck, a donor is selected with equal probability from 
responding units in the same cell; with the weighted hot 
deck, a donor is selected with probability proportional to its 
sampling weight. See Brick et al. (2002). 

Särndal (1992) expresses the total variance for the 
imputed estimator as 
 

2ˆ( )

2

TOT p R I I N

SAM IMP MIX

V E E E E

V V V

ξ θ θ= −

= + +
 (1) 

 
where the three components are 

 
2ˆ( )SAM p n NV E Eξ θ θ= − , 

2ˆ ˆ( )IMP p R I I nV E E E Eξ θ θ= − , and 

ˆ ˆ ˆ[( )( )]MIX p R I I n n NV E E E Eξ θ θ θ θ= − − . 

 
In this study the values of the three components are 

evaluated using the conditional method suggested by Brick 
et al. (2002). The estimator for SAMV  is calculated as the 
standard variance estimator using the imputed values as if 
they were reported values. We call this the naïve variance 
estimator. Brick et al. (2002) show that under the cell mean 
model and hot deck imputation, the bias of the naïve 
variance estimator as an estimator for SAMV  is small if no 
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donor is used too often. With stratified simple random 

sampling, 1 2 2ˆ (1 )SAM h h h hV n N f s−= Σ − % , where h h hf n N= , 
2 2 1( ) ( 1)h hi h hs y y n −= Σ − −%% % , h hi hy y n= Σ% % , and hiy%  is 

the observed value if unit i responds or the imputed value if 
the unit does not respond to the item. An unbiased 
estimator (under the model) for IMPV  is 

 

,

2 2

1

ˆ ˆ2 [ ]
M g

i j AM g

G

IMP i i j ij g
g i A i j

V w w w γ σ

∈
= ∈ <

= +∑ ∑ ∑ ∑ , 

 

where g denotes the hot deck cell, 2ˆgσ  denotes an estimate 

of the unit variance in cell g, 
gMA is the set of 

nonrespondents in cell g, and γij = 1 if nonrespondents i and 
j have the same donor and γij = 0 otherwise. By definition, 
γii = 1. An unbiased estimator for MIXV  is 

 

2 2

1

ˆ ˆ[ ]
R M Rg g g

G

MIX i j ij j g
g i A j A j A

V w w d w σ
= ∈ ∈ ∈

= −∑ ∑ ∑ ∑ , 

 
where 

gRA is the set of respondents, and dij =1 if 

respondent i is the donor for nonrespondent j and dij = 0 
otherwise. Putting the components together, the model-
assisted variance estimator is 
 

ˆ ˆ ˆ ˆ2MA SAM IMP MIXV V V V= + + . 

 

Either weighted or unweighted estimates of 2
gσ  

could be used in the model-assisted variance estimate. We 

computed variance estimates with both estimators of 2
gσ  

for the weighted hot deck imputation. The weighted 
estimate is 

 
2 1 2ˆ ( 1) ( ) /

Rg Rg

g Rg Rg i i Rg i
i A i A

n n w y y wσ −

∈ ∈
= − −∑ ∑ , 

 
where Rgy  is the weighted mean for respondents in cell g. 

The unweighted estimate of 2
gσ  used the same formula 

with wi set equal to 1. Since the simulations showed that 
the weighted and unweighted estimates produced nearly 
identical results, we present only the results using the 

weighted estimate of 2
gσ . 

 
2.2 Adjusted Jackknife Variance Estimation 

The adjusted jackknife method was developed using 
a model that makes assumptions about the response 

mechanism without the distributional assumptions of the 
model-assisted method. The adjusted jackknife model 
assumes a uniform response probability model within each 
hot deck cell. Under this model, the theory for the adjusted 
jackknife requires the use of a weighted hot deck to provide 
unbiased estimates. After describing the method we discuss 
an extension to a superpopulation model. 

The standard jackknife variance estimator for a 
complete sample is 
 

 ( ) 2

1

ˆ ˆ ˆˆ( ) ( )
K k

n k n n
k

V cθ θ θ
=

= −∑ , (2) 

 

where ( )ˆ k
nθ  is the estimate of Nθ  based on the 

observations included in the k-th replicate, K is the number 
of replicates and ck is a factor associated with replicate k. In 
a stratified design with L strata, equation (2) can be re-
written as 
 

 ( ) 2

1 1

1ˆ ˆ ˆˆ( ) (1 )( )( )
h

n

nL kh
n h nh

h k h

n
V f

n
θ θ θ

= =

−
= − −∑ ∑ , (3) 

 
where hn  is the number of sample units in variance stratum 

h, /h h hf n N= and ( )ˆ
n

k
hθ  is the estimate for replicate k in 

stratum h when unit k is deleted and the other units are 

given replicate weights of ( ) 1( 1)k
h h iiw n n w−= − . 

The stratified jackknife procedure in (3) requires the 

computation of hnΣ  replicate estimates ( )ˆ
n

k
hθ . A commonly 

used strategy to reduce the number of computations is to 
combine units into computational or variance strata. Let h* 
denote a combined variance stratum and r a group of 
sample units within the combined stratum. Then, the 
grouped jackknife variance estimator is 

 

 
*

* *
* *

( ) ( ) 2ˆ ˆ ˆˆ( ) (1 ) ( )
h r r

n nh hrh h

n
V f

n
θ θ θ= − −∑∑ , (4) 

 
where 

*h
n   = the number of sample units in combined variance 

stratum h*; 

*( )h r
n = the number of units retained in combined variance 

stratum h* when units in group r are deleted; 

*h
f  = /

h h
n N∗ ∗ , where *h

N  is the number of population 

units in h*; and 

*

( )ˆ r
h

θ  = the estimate for the full population when units in 

group r in combined variance stratum h* are 
deleted. 
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The retained units are given replicate weights of 

* *
( ) 1

( )
( )r

ii h h r
w n n w−= . As described later, a grouped 

jackknife variance estimator was used in the simulations. 
We verified that this grouped jackknife variance procedure 
gave essentially the same average estimates as the 
ungrouped jackknife in the case of complete response. 

Rao and Shao (1992) proposed the adjusted 
jackknife variance estimator as a modification of (2) to 
handle the situation in which some of the data have been 
imputed. This adjusted estimator is 
 

( ) 2

1

ˆ ˆˆ ( )
K k

RS k II
k

V c θ θ
=

= −∑ , 

 
where 
 

( ) ( ) ( ) ( ) *

1

ˆ ˆ ˆ[ ( )]
Rg Mg

Gk k k k
i ji j jI

g i A j A
w y w y eθ

= ∈ ∈
= + +∑ ∑ ∑ , 

 

and G is the number of hot deck cells. The residual *ˆ je  is 

described in Kim et al. (2002) and is a result of writing an 
imputed value as a predicted value plus a residual term. 
This variance estimator can easily be computed using 
equation (4) rather than equation (2). 

In developing the theory of the adjusted jackknife, 
Rao and Shao (1992) assume the finite population factor 
(fpc) is ignorable. In the simulations, we modified their 
variance estimator to include the fpc term shown in 
equation (3). 

 
 

3. Sample Design for Simulation Study 
To describe the simulation study, we begin by 

presenting the sampling frame and the design used to select 
the sample of units. The methods for creating missing 
values for the sampled units and imputing for the missing 
values are then described. 

The sampling frame for the simulations is a subset of 
the file of 14,571 public school districts extracted from the 
1999-2000 Common Core of Data (CCD), a file of all the 
school districts in the 50 states and the District of 
Columbia. Districts that had missing data, that were not 
“regular” districts (e.g., administrative districts), and that 
had no enrolled children were excluded from the sampling 
frame. We also excluded 25 districts with the largest 
enrollments because in most studies these districts would 
be sampled with certainty. The final frame consists of 
11,941 districts. 

The sample design used in the simulation is a 
stratified simple random sample of 1,020 school districts. 
Twelve strata were created using number of students 
(district size), and percentage of students at or below the 
poverty level (poverty status) as stratification factors. The 
12 strata were created by the cross classification of four 
district size categories (1 to 4 in increasing size) and three 
poverty status categories (1 to 3 in increasing percentage in 
poverty). The strata and number of districts in the frame are 
given in Table 1. The table also gives the strata sample 
sizes and sampling rates used in the simulation. The 
sampling rates increase as district sizes increase, which is 
typical of many school district sample designs. The 
sampling rates in some strata are over 10 percent, and at 
this rate finite population correction factors begin to be 
important in estimating variances. Table 1 also contains the 
strata means and variances for the number of administrators 
in the district, y, which is the variable of interest in the 
simulations. 

 
Table 1. Strata definitions, sampling rates, and strata population statistics 
 

Number of administrators 
Stratum District size 

Poverty 
status Nh nh 

Sampling 
rate Mean Variance 

1 1 1 615 32 0.0520 1.02 0.46 
2 1 2 1,147 59 0.0514 1.05 0.48 
3 1 3 1,292 66 0.0511 0.99 0.53 
4 2 1 1,720 111 0.0645 2.59 3.10 
5 2 2 2,305 149 0.0646 2.35 2.60 
6 2 3 1,893 122 0.0644 2.63 4.33 
7 3 1 692 75 0.1084 5.34 16.12 
8 3 2 579 63 0.1088 5.54 11.45 
9 3 3 527 57 0.1082 5.93 13.95 
10 4 1 342 83 0.2427 12.05 175.73 
11 4 2 449 110 0.2450 13.27 332.71 
12 4 3 380 93 0.2447 13.64 370.26 

Total   11,941 1,020  3.62 44.78 
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By construction, information on the number of 
administrators is available for all districts in the sampling 
frame. To create missing values, we assigned missing 
values to sampled units within what we term “response 
cells”. In some cases the response cells are the sampling 
strata, termed STR cells, whereas in other cases they are 
what are termed HD cells, as described below. Within a 
given response cell, units were assigned at random to 
missing or nonmissing at a specified rate. For each type of 
response cell, five schemes for assigning rates of 
missingness were chosen. In three of the schemes, the rates 
of missingness varied across the response cells, whereas in 
the other two schemes the rates were constant across the 
cells. 

The HD cells were defined by the cross 
classification of four geographic regions and a fourfold 
categorization of the number of full time equivalent 
teachers in the district. The HD cells are somewhat 
correlated with the sampling strata, but each cell contains 
units from more than one stratum. The 16 HD cells are 
displayed in Table 2, along with the population mean and 
variance of the number of administrators per district in each 
cell. 
 
Table 2. Definition of the HD cells, together with the 

population mean and variance of the number of 
administrators per district for each cell 

 
Number of 

administrators HD 
cell Region 

Categorized 
number of 
teachers Mean Variance 

1 NE 1 1.63 0.62 
2 SE 1 1.82 1.70 
3 C 1 1.36 0.75 
4 W 1 1.05 0.76 
5 NE 2 2.47 1.14 
6 SE 2 4.25 5.62 
7 C 2 2.81 3.45 
8 W 2 2.09 2.15 
9 NE 3 4.33 7.37 

10 SE 3 7.50 16.05 
11 C 3 6.34 20.85 
12 W 3 3.79 6.37 
13 NE 4 14.48 215.73 
14 SE 4 20.99 435.91 
15 C 4 20.90 712.97 
16 W 4 9.92 272.19 

 
The simulations were conducted by first drawing a 

stratified simple random sample as described above. Once 
the sample was selected, response status 
(respondent/nonrespondent) was randomly assigned to each 
sampled unit according to the given response scheme. A 
standard hot deck imputation procedure was then used to 
assign donor values to any missing values (unweighted or 

weighted for the model-assisted approach, and only 
weighted for the adjusted jackknife approach). The 
estimated total number of administrators was computed for 
this simulated sample with imputed values, and variance 
estimates were computed for this estimated total using both 
the model-assisted and the adjusted jackknife variance 
estimation methods. The adjusted jackknife method was 
based on three combined variance strata and 40 groups of 
units per stratum for a total of 120 replicates. This process 
was repeated 10,000 times for each response scheme. 

The cells for the hot deck imputation were defined in 
two alternative ways. One way defined them to be the strata 
(STR) given in Table 1 and the other define them to be the 
HD cells given in Table 2. In the simulation we examined 
three combinations of response mechanism (STR or HD 
cells) and hot deck cell formation (STR or HD cells) We 
refer to these combinations as STR/STR, HD/HD, and 
STR/HD, where the first set of letters identifies the 
response mechanism and the second set identifies the type 
of hot deck cell. The first two columns of Table 3 show the 
three combinations with the five sets of response rates, 
which together generate 15 separate simulation studies. The 
third column of the table gives the empirical mean response 
rate from the 10,000 simulation runs. 

As indicated earlier, the key assumptions of the 
model-assisted method are that the data are MAR and the 
units within a hot deck cell are independent and identically 
distributed. To evaluate the applicability of the model 
assumptions, the estimation strategy must be considered. 
With a stratified sample, the strata means and variances are 
estimated and then aggregated over the strata. Thus, to 
satisfy the model assumptions, the value imputed for a 
missing unit in hot deck cell g in stratum h must have mean 

g hµ µ=  and variance 2 2
g hσ σ= . 

Clearly, the STR/STR combination satisfies that 
condition. On the other hand, the HD/HD combination does 
not satisfy these conditions. The donors may be from a 
different stratum than the missing unit. It is worth noting 
that the HD/HD combination is consistent with a uniform 
response probability model as assessed with the adjusted 
jackknife method. Furthermore, the weighted hot deck 
ensures that the estimated total over all possible 
imputations is unbiased under this response probability 
model. Finally, the STR/HD combination does not satisfy 
the MAR assumption (the response probability depends 
upon the stratum and this is not included in the imputation 
procedure). For this combination, the assumptions for 
neither the cell mean model nor the uniform response 
probability model are satisfied. 

Before presenting the results of the simulations, we 
define the statistics used to evaluate the two variance 
estimation methods, and also the naïve variance estimator. 
The imputed estimate of the total number of administrators 

in the population is Î h hIN yθ = Σ , where 1
hI h hiy n y−= Σ% . 

The bias of Îθ  is estimated by 

ˆ ˆ( ) ( ) /10,000I s Is Nbias θ θ θ= Σ − , where Îsθ  is the estimate 
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from sample s and Nθ  is the known population total from 
the frame. The relative bias, relative to the population total, 

is estimated by ˆ ˆ( ) ( ) /I I Nrelbias biasθ θ θ= . 

The mean square error of Îθ  is estimated by 
2ˆ ˆ( ) ( ) /10,000I s Is NMSE θ θ θ= Σ − . If the cell mean model 

holds, then ˆ( )Irelbias θ  should be close to zero, and the 

ˆ( )IMSE θ  should be nearly equal to the variance of Îθ . 
Since a major use of variance estimates is for producing 
confidence intervals, we also calculated nominal 95 percent 
confidence intervals around the estimated total for each of 
the 10,000 simulations for each response mechanism and 
we evaluated the coverage properties of these intervals. 

 
4. Simulation Results 

Table 3 shows the main simulation results when 
missing values are assigned using the weighted hot deck 
imputation scheme that is assumed in the theory of the 
adjusted jackknife. Based on the 10,000 draws for each 
simulation, the table gives the mean response rate, the 
relative bias of the imputed estimator, the estimated MSE, 

the averages of the three variance estimates (naïve, model-
assisted and adjusted jackknife) as percentages of the MSE, 
and the confidence interval (CI) coverage rates for the 
estimates. The results are given for each response 
mechanism and simulation scheme described above. 

We begin by examining the relative bias of the 
imputed estimates in Table 3. The imputed estimates are 
unbiased estimates under the STR/STR and the HD/HD 
schemes because the response mechanism assignments and 
imputation cell assignments are the same and the 
probability of selecting donors is proportional to their 
weights. The estimates are also unbiased when the response 
rates are constant across strata in the STR/HD scheme for 
the same reason. However, the imputed estimates are 
biased when the response rates vary by stratum and the 
imputation cells are defined by the hot deck cells. The 
relative bias is not large, but biases affect confidence 
interval coverage rates and the relationship between 
variance and MSE. Since all the theories of variance 
estimation with imputed data assume unbiased estimates, 
the properties of the variance estimates in this situation are 
of particular interest. 

 
Table 3. Relative bias, variance estimates and mean square error of imputed estimates, the percent of alternative variance 

estimates of the mean square error and confident interval coverage with weighted hot deck imputed estimates, by 
simulation scheme 

 
Variance estimate as percent 

of MSE 
Confidence interval coverage 

(%) 

Scheme 

Mean 
response 

rate 
Rel-bias 

(%) MSE (×106) ˆ
SAMV  ˆ

MAV  ˆ
RSV  ˆ

SAMV  ˆ
MAV  ˆ

RSV  

STR/STR        
0.2 to 0.6 0.39 0.1 9.03 17.1 96.4 85.3 56.5 90.6 89.2 

0.4 0.40 0.0 5.88 26.6 96.9 86.4 67.0 92.4 91.3 
0.4 to 0.8 0.59 0.0 5.07 30.9 96.0 84.4 70.8 92.6 91.2 

0.7 0.70 0.1 3.06 52.3 99.8 91.5 83.5 94.2 92.8 
0.6 to 0.9 0.74 0.0 3.28 48.4 101.0 91.2 81.8 93.9 92.3 

HD/HD          
0.2 to 0.6 0.40 0.1 8.37 21.1 97.6 89.1 62.1 91.9 90.1 

0.4 0.40 0.1 5.53 31.7 100.1 87.9 72.1 93.4 91.7 
0.4 to 0.8 0.60 0.1 4.69 36.5 100.7 88.3 75.5 93.4 91.3 

0.7 0.70 0.0 2.94 57.0 102.5 92.2 85.0 94.2 93.0 
0.6 to 0.9 0.75 0.0 3.18 52.6 102.6 91.2 83.8 94.1 92.4 

STR/HD          
0.2 to 0.6 0.39 -2.0 8.72 19.1 85.6 81.0 56.2 85.8 84.8 

0.4 0.40 0.1 5.53 31.7 100.1 87.9 72.1 93.4 91.7 
0.4 to 0.8 0.59 -1.3 4.79 34.8 95.1 82.9 71.7 89.6 88.1 

0.7 0.70 0.0 2.94 57.0 102.5 92.2 85.0 94.2 93.0 
0.6 to 0.9 0.74 -0.8 3.23 50.9 98.5 87.3 81.7 91.8 90.1 

 
 
The next columns of the table give the variance 

estimates as percentages of the MSE. The naïve variance 

estimates, ŜAMV , seriously underestimate the MSE in all 

simulation schemes. The naïve variance estimates are 
relatively constant across all schemes, and hence 
underestimate the variance and MSE more seriously the 
larger the nonresponse rate. 
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Now consider the two estimators designed for 
handling imputed data. The variance estimates using the 
model-assisted method are uniformly larger than the 
adjusted jackknife variance estimates and are closer to the 
actual MSEs. In the STR/STR schemes, the model-assisted 
variance estimates are within four percentage points of the 
MSE, whereas the adjusted jackknife variance estimates are 
10 to 15 percent underestimates. As noted earlier, the 
assumptions of both methods are satisfied in these schemes. 
In the HD/HD schemes, the model-assisted variance 
estimators still closely track the MSE, and they are on 
average still closer to the MSE than the adjusted jackknife 
variance estimates. This result is somewhat surprising since 
the superpopulation model needed for the model-assisted 
method does not hold in the HD/HD schemes, while the 
response probability model holds–and the theoretical 
justification for the adjusted jackknife–holds. In the 
STR/HD schemes, the two methods still do reasonably 
well, even when the imputed estimates are biased and the 
response rates are low. Table 3 shows the model-assisted 
variance estimate is 86 percent of the MSE (the adjusted 
jackknife is 81%) due to the biased estimator. If the 
variance estimates were presented as percentages of the 
variance rather than the MSE, the estimates for the 
STR/HD schemes would be very similar to those given for 
the other schemes in which the estimates are essentially 
unbiased. 

One reason for the underestimation of the adjusted 
jackknife variance estimates may be a technical issue 
relating to the fpc. As noted earlier, the theory for the 
adjusted jackknife method was developed assuming that the 
fpc is negligible, but in the simulations the fpc’s were 
sizable in some strata. Stratum sampling rates ranged from 
about 0.05 to 0.24. The variance estimator used in the 
simulations was modified to include stratum-specific fpc’s 
based on the number of initial sampled units (see equation 
4). These fpc’s were thus applied to the overall variance 
estimator. In contrast, the fpc with model-assisted variance 
estimator applies only to the sampling variance component. 

To investigate the effect of the fpc, we ran 10,000 
simulations using the STR/STR/0.2 to 0.6 scheme with 
same sample sizes as in Table 1, but with a population that 
was five times larger than the CCD school district 
population. In those runs, the stratum fpc’s were negligible 

and the average ˆ
MAV  and ˆ

RSV  were 97.4 percent and 101.5 
percent of the empirical MSEs. These results support the 
idea that the fpc’s were an important source of the 
underestimation of the variance using the adjusted 
jackknife method in the main simulation. 

Now we examine the confidence interval (CI) 
coverage rates of the methods shown in the last three 
columns of Table 3. As expected, both the model-assisted 

and adjusted jackknife variance estimators convincingly 
outperform the naïve estimator. With a nominal 95 percent 
coverage, the naïve CI coverage percentages range from 56 
to 85 percent, whereas the model-assisted and adjusted 
jackknife CI coverage percentages range from 86 to 94 
percent and 85 to 93 percent, respectively. The model-
assisted coverage rates are closer to the nominal level than 
the adjusted jackknife estimates, which is a consequence of 
the variance estimates being larger and closer to the MSE. 
Once again, the model-assisted method has slightly better 
properties than the adjusted jackknife even in the HD/HD 
schemes. In the schemes with biased imputed estimates, the 
CI coverages of the methods are about 85 percent when the 
responses rates are lowest and 88 to 92 percent when the 
response rates are somewhat higher. Again, the 
performances of both methods are reasonably good 
considering the misspecification of the model and are far 
better than naïvely assuming that the imputed data are 
actual observations. 

Since the model-assisted variance estimates are 
formed by summing estimates of three components, we 
compared the component estimates to their theoretical 
values computed from the entire population. In all cases we 

found that 2 ˆ
MIXV  accounted for less than one percent of 

ˆ
MAV , an ignorable amount. In line with expectation, as the 

average response rate decreases, ÎMPV  accounts for a 

greater percentage of ˆ
MAV . However, even when the 

average response rate is relatively high, e.g., 70 percent, 

ÎMPV  still accounts for about 50 percent of the total 
variance estimate. This highlights the problem of ignoring 
the component of variance due to imputation, even with 
relatively high response rates. Comparisons of the averages 

of ŜAMV  and ÎMPV  with their simulated theoretical values 
show that they are both nearly unbiased in most cases The 
greatest biases occur in the STR/HD schemes with variable 

response rates across strata, when ÎMPV  underestimates 

IMPV . For the scheme in which response rates vary from 
0.2 to 0.6, the underestimation is nearly 20 percent. 

Since an unweighted hot deck is justified with the 
model-assisted method if the superpopulation model and 
MAR assumption hold, we also simulated the performance 

of ˆ
MAV  with unweighted hot deck imputation. The results 

are displayed in Table 4. The STR/STR schemes are not 
included in the table because in this case the unweighted 
and weighted hot decks are identical (the weights within 
each stratum are constant). 
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Table 4. Relative bias, variance estimates, confidence interval coverage rates and percent of confidence interval misses by 
side for the model-assisted method with unweighted hot deck imputed estimates and confidence interval misses 
by side for the model-assisted method with weighted hot deck imputed estimates, by simulation scheme 

 
Confidence 

interval 
coverage (%) Unweighted hot deck Weighted hot deck 

Scheme 
Rel-bias 

(%) /MAV MSE  ˆ
MAV  Low(%) High(%) Low(%) High(%) 

HD/HD        
0.2 to 0.6 2.7 81.3 94.1 3.0 2.9 7.4 0.7 

0.4 2.7 80.5 94.3 1.8 4.0 5.5 1.1 
0.4 to 0.8 1.9 87.8 95.0 2.7 2.3 5.9 0.7 

0.7 1.4 93.9 95.1 2.2 2.8 4.8 1.0 
0.6 to 0.9 1.2 89.6 94.7 2.9 2.4 5.0 0.9 

STR/HD        
0.2 to 0.6 0.5 92.3 91.8 7.1 1.1 13.8 0.4 

0.4 2.7 80.5 94.3 1.8 4.0 5.5 1.1 
0.4 to 0.8 0.4 98.5 93.8 5.1 1.1 10.1 0.3 

0.7 1.4 93.9 95.1 2.2 2.8 4.8 1.0 
0.6 to 0.9 0.3 99.0 94.0 4.8 1.2 7.7 0.5 

 

 
All of the imputed estimates shown in Table 4 using 

the unweighted hot deck are biased. This situation arises 
often in practice because it is impossible to determine cells 
such that the response probability is constant within the 
imputation cells. Most of the biases for the unweighted hot 
deck in Table 4 are relatively small, with no relative bias 
exceeding three percent of the estimate. Note, however, 
that the biases are often larger than the corresponding 
biases for the weighted hot deck given in Table 3. 

The confidence interval coverages in Table 4 for the 
unweighted hot deck are remarkably close to the nominal 
level, despite the fact that the imputed estimates are biased. 
In fact, the coverage percentages for the unweighted hot 
deck are superior to those of the weighted hot deck, even 
when the weighted hot deck estimates are unbiased and the 
unweighted hot deck estimates are biased. Note that the 
improvement is not the result of increasing the variance 
estimates, since the model-assisted variance estimates for 
the weighted and unweighted hot deck are very similar. 

To investigate the reasons for the improvement of 
the coverage percentages for the unweighted hot deck, we 
decomposed the two tails of the coverage intervals derived 
from the model-assisted variance estimator for both the 
weighted and unweighted hot deck imputation schemes. 
Table 4 shows the percentages of the confidence intervals 
that did not cover the population total divided between 
those that missed on the low side and those that missed on 
the high side. The weighted hot deck model-assisted 
coverages are asymmetric, with much higher likelihood of 
missing on the low side. On the other hand, the unweighted 
hot deck coverages are more symmetric. To investigate 
these findings further, we computed the correlation 
between the imputed estimates and their model-assisted 
standard error estimates. The high correlation (0.66 to 0.73) 
between the estimate and the standard error is largely 

responsible for the asymmetry of the weighted hot deck 
coverage intervals. When the estimate is low, the standard 
error is likely to be underestimated, thus  causing the 
confidence interval to fail to cover the population value. 
The estimates from the unweighted hot deck have 
essentially the same correlations, but the positive bias of 
the imputed estimate re-centers the distribution and gives 
more symmetric coverages. 

We also examined the correlation in the case of 
complete item response and found the estimate and its 
standard error had a correlation of 0.71 which is very 
similar to the correlations when the missing data are 
imputed. We hope to further investigate the positive bias of 
the estimates and the positive correlation of estimates and 
their standard errors to determine if they are a function 
solely of the simulation design or may be a more general 
phenomenon. 

The correlations between the imputed estimates and 
their estimated standard errors were also found to be high 
when the standard errors were computed using the adjusted 
jackknife. Across the 15 schemes these correlations ranged 
from 0.64 to 0.71, values that are similar to the model-
assisted correlations. As in the model assisted case, the 
correlation causes the coverage with the adjusted jackknife 
variance estimates to be asymmetrical. This fact, in 
combination with the underestimation of the variance, leads 
to undercoverage. 

 
5. Conclusions 

We have examined three methods of variance 
estimation when missing items have been imputed using 
hot deck imputation. The simplest of these, and the poorest, 
is to treat the imputed values as if they were reported 
values. As is well-known, this leads to severe 
underestimates of variance and confidence intervals that 
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provide  far less than the nominal coverage levels. In our 
simulations, 95 percent confidence intervals based on this 
naïve approach had empirical coverage rates ranging from 
about 56 percent to 85 percent depending on the amount of 
imputation. 

The two alternative variance estimation methods that 
we examined in the simulations are the model-assisted and 
adjusted jackknife methods. In the former, a 
superpopulation model is used to derive estimates of 
variance components associated with sampling and 
imputation. For hot deck imputation, cells should be 
formed such that units in each cell can be approximately 
modeled as having a common mean and variance and also 
having the same response probability. The adjusted 
jackknife method assumes that units within hot deck cells 
have the same response probability. 

Through simulation we studied the performance of 
the two alternatives under several schemes for response 
mechanisms with weighted hot deck imputation. Both the 
model-assisted and the adjusted jackknife variance 
estimators were substantial improvements over the naïve 
variance estimator. The model-assisted estimator 
performed somewhat better than the adjusted jackknife in 
almost all combinations of simulation parameters. The 
model-assisted variance estimates were more nearly 
unbiased and had consistently better confidence interval 
coverage. This was true even when the response rate was 
constant within cells, a situation that is favorable to the 
adjusted jackknife. The model-assisted method also 
performed better when the model misspecification was 
more severe and unfavorable to both the model-assisted 
and adjusted jackknife estimators. We suspect that the 
poorer performance of the adjusted jackknife method in the 
simulations may be largely due to the relatively large fpc’s 
in some of the strata. The adjusted jackknife estimator was 
developed assuming the fpc is ignorable. We modified the 
estimator for the simulations, but the modification may not 
correctly account for the fpc. An fpc based on the count of 
nonmissing units may be more appropriate, but further 
development is needed here. A limited simulation was 

conducted with a larger population and negligible fpc’s. In 
these simulations the adjusted jackknife variance estimates 
did not underestimate the true variances. 

We also examined the sampling and imputation 
components of the model-assisted variance estimator and 
found that they tracked the theoretical values closely, even 
when the superpopulation model did not hold. Surprisingly, 
when we examined the use of the model-assisted variance 
estimator with the unweighted hot deck in constructing 
confidence intervals we found that it actually led to better 
confidence interval coverage rates with greater symmetry 
than the weighted hot deck variance estimator. The 
explanation for this finding is that the bias of the imputed 
estimates with unweighted hot deck imputation offsets the 
correlation between the estimates and their standard error 
estimates. 

When there was no item nonresponse, the correlation 
between the estimates and their standard errors was equally 
high at 0.71. This high correlation caused coverage rates 
for the estimates with full response to be asymmetric and 
fail to cover the population value at the nominal level. Note 
that the overall sample size was large (1,020 school 
districts). This finding is informative about some of the 
normality assumptions that are routinely made in surveys 
with large sample sizes. 
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