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Abstract

In many consumer surveys, demographic and other
data are used as covariates for predictions of con-
sumer preferences and other decision variables. How-
ever, to protect the confidentiality of the consumers,
the data are only available in marginal frequency dis-
tribution format. This creates a problem in predict-
ing joint frequencies required for further decision-
making. In this paper we consider the dependence
structure in formulating the joint distribution given
in the form of a Dirichlet prior. The computations in
the case of 2× 2 table are extended to multiway con-
tingency tables and shown to provide similar results
as obtained using the Monte Carlo methods.

1 Introduction

In this paper we consider estimating the joint distri-
bution of several demographic variable when only in-
formation about their marginal distributions is avail-
able. Putler, Kalyanam and Hodges (1996) consid-
ered a Bayesian approach using Dirichlet prior for
the cell proportions. They also compared iterative
proprtional fitting (IPF) method (see Bishop, Fein-
berg, and Holland 1975).They presented the case of
2 × 2 table in detail. However, the higher contin-
gency tables have to be analysed using Monte Carlo

∗This research is partially supported by a research grant
from Bell University Labs to Yogendra P. Chaubey and Fassil
Nebebe.

methods, because they require multidimensional nu-
merical integration. However, the Bayesian method
is preferred as it readily presents an estimate of the
standard error derived from the posterior variance.

The proposal in this paper is to reduce the contin-
gency table into several 2×2 contingency tables, esti-
mate the target cell frequency along with its standard
error and combine the results obtained from various
tables in an appropriate manner. We highlight here
that computations in the case of 2 × 2 table can be
easily performed. For example, suppose, we have a
2 × 2 × 2 contingency table, with unknown cell pro-
portions written as xijk; i = 1, 2, j = 1, 2, k = 1, 2.
For, estimating x111, we can consider the following 3,
2× 2 contingency tables:

Table 1: Three 2× 2 Contingency Tables for
Estimating x111 from a 2× 2× 2 Table

k = 1
j = 1 j = 2

i = 1 1 x111 x121

i = 2 2 x211 x221

i = 1
k = 1 k = 2

j = 1 1 x111 x112

j = 2 2 x121 x122

j = 1
k = 1 k = 2

i = 1 1 x111 x112

i = 2 2 x211 x212
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Let, x̂
(l)
111 and se2(l)(x̂111) denote the posterior

mean and posterior variance based on the lth table
comprising of rl observation, the final estimates of
x111 and its proposed estimator of error is given by;

x̂111 =
∑3

l=1 rlx̂
(l)
111∑3

l=1 rl

(1)

se2(x111) =
∑3

l=1 rlse
2(l)(x̂111)∑3

l=1 rl

(2)

In section 2, we present the Bayesian analysis of a
2× 2 contingency table as given in Putler, Kalyanam
and Hodges (1996). Section 3 outlines the com-
putational details along with an example. Section
4 presents computational summary of the examples
considered in Putler, Kalyanam and Hodges (1996)
and some additional examples from a marketing con-
sumer survey data in Montreal.

2 The Bayesian Approach in 2×
2 Case

Consider as if we have the observed data in the form
of a 2× 2 contingency table:

Table 2: A Simple 2× 2 Contingency Table

Column Factor Levels
1 2 Total

Row
Factor 1 nx11 nx12 nx1.

Levels 2 nx21 nx22 nx2.

Total nx.1 nx.2 nx.. = n

where
xij ∈ [0, 1],

∑
ij

xij = 1,

and n is the sample size. The set-up we are con-
cerned with is that xij are unknown, however the
row-marginals and column-marginals are known. Of-
fcourse, under some given assumptions such as inde-
pendence assumption, the known marginals can be
used to estimate the joint probabilities

pij = Pr[X1 = i, X2 = j],

where X1 refers to the row attribute and X2 refers
to the column attribute. Putler, Kalyanam and
Hodges (1996) consider a joint Dirichlet prior on
p = (p11, p12, p21, p22) given by

π(p) ∝
∏
ij

p
mαij−1
ij ,

where αij refer to the prior information about pij ,
often available from some bench-mark data or a larger
survey, so that

αij ∈ [0, 1],
∑
ij

αij = 1,

and m refers to the weight assigned to the prior in-
formation. The prior implicitly assumes that in m
observations of prior data, the total in the (i, j)−cell
is mαij .

With this set-up, because of the constraints on
the cell-proprtions, only one of the cell-totals is in-
dependent. We choose arbitrarily the (2, 2) − cell,
and define the random variable z = nx22. The pos-
terior inference about z may be based on the density
g(z|data), given by

g(z) ∝ Γ(n1. − n.2 + z + mα11)Γ(n.2 − z + mα12)
Γ(n2. − z + mα21)Γ(z + mα22)/
{Γ(n1. − n.2 + z + 1)Γ(n.2 − z + 1)
Γ(n2. − z + 1)Γ(z + 1)} , (3)

where ni. = nxi., n.j = nx.j ; i, j = 1, 2. Putler,
Kalyanam and Hodges (1996) suggest that the poste-
rior mean can be computed in a two step procedure.
The first step consists of computing the constant k
of proportionality, through a trapezoidal rule over a
large number of intervals. The second step consists
of evaluating the integral

ẑ = E(Z|data) =
∫ zmax

zmin

zg(z)dz,

again using the trapezoidal rule, where

zmin = max(0, n.2 − n1.), zmax = min(n.2, n2.).

An estimate of the standard error of the estimate
is obtained from the posterior variance given by

se2(Z) = E[(Z − ẑ)2|data] =
∫ zmax

zmin

(z − ẑ)2g(z)dz

is computed using similar approach

3 Computational Aspects

For the general case, Monte Carlo (MC) methods are
proposed for estimation of proportions pi1i2..., such
as Importance Sampling and Gibbs Sampling. It is
clear that MC methods are very computationally ex-
tensive in this context and therefore, we investigate
the possibility of direct computation as suggested in
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the previous section. In practice, though the compu-
tation of gamma functions arising in Eq. 1 presents
problems. In most of the situations, we may alleviate
this problem by using the following technique. Let
us denote z0, the approximate value of z where g(z)
takes its maxima (it is shown in Putler et al. (1996)
that g(z) is unimodal). We can thus write

E(Z|data) =

∫ zmax

zmin
z exp(h(z)− h(z0))dz∫ zmax

zmin
exp(h(z)− h(z0))dz

,

where, h(z) is defined, so that

g(z) = k exp(h(z)).

The value of z0 can be found by plotting h(z)
against z, which may be computable, where as
exp(h(z)) may not be. We first demonstrate this
on the data used in Putler, Kalyanam and Hodges
(1996), and then we use it on a survey data conducted
by a market research firm. For the computation of the
integral we use the R-codes for area function given
in Figure 1.

This function works pretty well, except for the
cases where the function f may take extremely small
values for a wide range of arguments. For example,
if f(x) < eps for x in an interval (c, b), c < (a + b)/2,
and f(a) = f(b) = 0, the algorithm will produce a
small but wrong value of the integral. To avoid such
situations, we evaluate the integral over two inter-
vals, (a, z0) and (z0, b), where z0 is the approximate
value of the argument where the function peaks.
The approximate peak is obtained by taking the
maximum of h(z) evaluated over a grid of z−values.

Example 1. Consider the data (see Table 5 of
Putler et al. (1996) on Stain-Resistent Carpeting Di-
rect Mail Campaign. We consider a collapsed form of
the contingency table into two factors, Type of Hous-
ing and Marital Status of the Household Head. The
actual proportions are given below:

Table 3: Proportions in a Simple 2× 2 Contingency
Table

Household Status
Not Married Total

Married
Row

Type of Rental .2670 .0874 .3544
(4552)

Housing Owned .1661 .4795 .6456
(8291)

Total .4331 .5669 n =
(5562) (7281) 12843

The numbers in the parentheses are counts. The
prior-probabilities are given in the following table and
the value of the weight m is given by m = 12843 :

Table 4: Prior Proportions in a Simple 2× 2
Contingency Table

Household Status
Not Married Total

Married
Row

Type of Rental .3072 .0955 .3544
Housing Owned .1793 .4180 .6456

Total .4331 .5669

The R-Codes given in Figure 2 is used to compute
the function h and approximate z0.

The value of zmin and zmax are

zmin = 7281− 4552 = 2729, zmax = 7281.

The value of z0 may be obtained by visual inspec-
tion of the graph of z vs. h(z). This is done by using
the codes given below.

rowt<-c(4552, 8291)

colt<-c(5562, 7281)

pprob<-matrix(c(0.2670, 0.0874, 0.1661,
0.4795), nr=2,byrow=T)

pcount<- 12843

zseq<-seq(2729,7281,length=20)

hzseq<-sapply(zseq,h.prior,rowt=rowt,

colt=colt, pprob=pprob, pcount=pcount)

plot(zseq,hzseq)

This gives the value of z0 approximately 6000. So
we compute h(z0) as

>h.prior(6000,rowt,colt,pprob,pcount)
[1] 110799.4

so, h(z0) = 110799.4 and therefore we use the follow-
ing codes for the integrands in the denominator
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Figure 1: R-codes for area Function
area<-function(f,a,b,...,fa=f(a,...),fb=f(b,...),limit=50,eps=1.0e-06)

{
#Program to integrate a function f using recursive simpson’s rule
#eps is the absolute target error #limit is max number of

iterations
h<-b-a
d<-(b+a)/2
fd<-f(d,...)
a1<-((fa+fb)*h)/2
a2<-((fa+4*fd+fb)*h)/6
if ( abs(a1-a2) < eps )

return(a2)
if (limit ==0){

warning(paste("recursion limit reached near x= ",d))
return(a2)

}
Recall(f,a,d,...,fa=fa,fb=fd,limit=limit-1,eps=eps)+
Recall(f,d,b,...,fa=fd,fb=fb,limit=limit-1,eps=eps)

}

g.prior<-function(x, rowt, colt, pprob,
pcount){exp(h.prior(x,rowt, colt,

pprob, pcount) -110799) }

Using the area over subintervals (2729, 6000) and
(6000, 7281) as given below

> area(g.prior,2729,6000,rowt,colt,
pprob, pcount)

[1] 10.02941
> area(g.prior,6000,7281,rowt,colt,

pprob, pcount)
[1] 7382576

the denominator = 7382586.02941. Hence the ex-
pression for the posterior mean can be obtained
through the following codes:

> kernel.mean<-function(x, rowt, colt, pprob,
pcount)x * g.prior(x, rowt, colt, pprob,

pcount)/7382586.03

> area(kernel.mean,2729,6000,rowt, colt,
pprob, pcount)

[1] 0.008141925
> area(kernel.mean,6000,7281,rowt, colt, pprob,

pcount)
[1] 6158.561

This gives the Bayes estimate of x22 =
6158.5691/12843 = .4795. We can complete the
estimate of other cells in the same way. The results

obtained are given below in table 5.

Table 5: Bayes Proportions in a Simple 2× 2
Contingency Table

Household Status
Not Married Total

Married
Row

Type of Rental .2670 .0874 .3544
Housing Owned .1661 .4795 .6456

Total .4331 .5669

We also computed the posterior mean for
n = 15023 and m = 12843, and results were almost
the same.

4 Summary of Numerical Illus-
trations

4.1 Data from Putler et al. (1996)

Here we present the computations for the three exam-
ples considered in Tables 5-7 from Putler, Kalyanam
and Hodges (1996). The subscripts i, j, k refer to var-
ious demographic characteristics as follows:

• Stain-Resistant Carpeting Direct Mail Cam-
pain(Table 5)
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Figure 2: R-codes for h Function and z0

h.prior<-function(x, rowt, colt, pprob, pcount)
{
#log Density-kernel for Estimating Unknown Proportions

#this finds the prior for a cell count, see Eq (6) Putler et al.
# lam is the variable in the (2,2) cell
# pprob is the matrix of prior probabilities
# pcount is the weight in the Dirichlet prior, see Eq (2) of Putler et al.
# rowt is a vector of row totals
# rowc is a vector of column totals
# definition of the probability kernel
x1. <- rowt[1]
x2. <- rowt[2]
x.1 <- colt[1]
x.2 <- colt[2]
n <- x1. + x2.
a11 <- x1. - x.2 + x + pcount * pprob[1,1]
a12 <- x.2 - x + pcount * pprob[1, 2]
b11 <- x2. - x + pcount * pprob[2, 1]
b12 <- x + pcount * pprob[2, 2]
c11 <- x1. - x.2 + x + 1.
c12 <- x.2 - x + 1
d11 <- x2. - x + 1.
d12 <- x + 1.
tnum <- c(a11, a12, b11, b12)
tden <- c(c11, c12, d11, d12)
sum(lgamma(tnum))-sum(lgamma(tden)) }

– Housing: Rent, i = 1.
Own, i = 2.

– Marital Status of Household Head: Mar-
ried, j = 1.
Not Maried, j = 2.

– Household Member Age: < 18, k = 1.
≥ 18, k = 2.

• Discount Home-Improvement Retail Site Loca-
tion (Table 6)

– Housing: Rent, i = 1.
Own, i = 2.

– Household Income: ≥ 40, 000, j = 1.
< 40, 000, j = 2.

– Household Member Age: ≥ 45, k = 1.
< 45, k = 2.

• Custom-made Golf Clubs Direct Mail Campaign
Data (Table 7)

– Annual Household Income: < 50, 0000, i =
1.
≥ 50, 000, i = 2.

– Sex: Male, j = 1.
Female, j = 2.

– Years of Formal College Education: < 4,
k = 1.
≥ 4, k = 2.

The following tables (Tables 6-8) give the values of
the estimates of the cell proportions along with their
standard errors following the method outlined above,
contrasting the values obtained by Putler, Kalyanam
and Hodges (1996) using the Monte Carlo method.
It is striking that our method gives almost the same
estimate as obtained by the Monte Carlo Method.
The estimates of the standard errors seem a bit in-
flated in some cases. At this point, we like to note
that since, there is only one degree of freedom in a
2× 2× 2 table, all the standard errors should be the
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Table 6: Summary for the Results for Table 5 of Putler et al.(1996)

Cell ID 111 112 121 122 211 212 221 222
Actual .2252 .0418 .0413 .0461 .1378 .0283 .2276 .2520
Putler .2219 .0366 .0333 .0622 .1453 .0292 .2315 .2400
et al. (.0053) (.0037) (.0037) (.0044) (.0052) (.0035) (.0054) (.0058)
Our .2293 .0368 .0342 .0546 .1357 .0308 .2324 .2465

Proposal (.0064) (.0070) (.0060) (.0065) (.0057) (.0061) (.0054) (.0058)
Independent .1955 .0315 .0691 .0544 .1476 .0541 .2179 .2292

Prior (.0070) (.0066) (.0066) (.0063) (.0066) (.0063) (.0064) (.0060)

Table 7: Summary for the Results for Table 6 of Putler et al.(1996)

Cell ID 111 112 121 122 211 212 221 222
Actual .0400 .0471 .1055 .1243 .0862 .1015 .2274 .2680
Putler .0109 .0240 .0870 .1951 .1116 .1285 .2495 .1934
et al. (.0024) (.0033) (.0052) (.0056) (.0058) (.0060) (.0060) (.0061)
Our .0106 .0151 .0919 .1912 .1096 .1372 .2471 .1911

Proposal (.0058) (.0062) (.0060) (.0063) (.0064) (.0067) (.0064) (.0067)
Independent .0180 .0328 .1089 .1575 .1167 .1163 .2275 .2242

Prior (.0063) (.0068) (.0065) (.0069) (.0068) (.0072) (.0069) (.0071)

same. In such cases, we can average out the standard
errors in an appropriate way (such as waiting by the
total sample size in each partition of sub-tables). In
the above examples, we can combine the posterior
variances obtained from the two sub-tables and then
average them. However, in more complicated set up
this type of combination may not be possible. We
also investigated using the estimates under indepen-
dence as priors. The resulting estimates are not far
from the original prior, which seem to be much closer
to the actual proportions. We like to think the in-
dependence estimates as non-informative prior which
get adjusted by the data through the posterior mean.

4.2 Survey Data

Here we present the computations for survey data.
The subscripts i, j, k refer to various demographic
characteristics as follows:

• Gender: Male, i = 1.
Female, i = 2.

• Age between 1 to 44 : j = 1.
between 45 and above , j = 2.

• Education: less than Graduate, k = 1.
Graduate and above, k = 2.

We investigated using the estimates under indepen-
dence as priors. The resulting estimates are not far
from the actual proportions. We like to think the in-
dependence estimates as non-informative prior which
get adjusted by the data through the posterior mean.

5 Summary

This paper has put forward for simplifying Bayesian
calculations for multiway contingency tables for es-
timating the unknown cell proportions for given
marginals. Knowledge of prior for cell proportions in
the form of a Dirichlet distribution is assumed. How-
ever, in the absence of such prior, it is illustrated
that the probabilities obtained using the indepen-
dence assumption of the factors may be used as non-
informative prior. The resulting estimates are often
quite close to the actual observed cell proportions.
The technique is illustrated on several real data.
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Table 8: Summary for the Results for Table 7 of Putler et al.(1996)

Cell ID 111 112 121 122 211 212 221 222
Actual .3379 .3742 .0464 .0513 .0793 .0879 .0109 .0121
Putler .3426 .3921 .0356 .0397 .0709 , .0734 .0259 .0198
et al. (.0034) (.0036) (.0025) (.0024) (.0030) (.0030) (.0021) (.0018)
Our .3418 .3919 .0367 .0393 .0703 .0751 .0257 .0195

Proposal (.0033) (.0032) (.0039) (.0038) (.0043) (.0041) (.0064) (.0059)
Independent .3401 .3885 .0411 .0427 .0733 .0794 .0167 .0145

Prior (.0030) (.0029) (.0037) (.0035) (.0040) (.0038) (.0062) (.0057)

Table 9: Summary for the Results for Survey Data

Cell ID 111 112 121 122 211 212 221 222
Actual .1188 .1749 .0924 .1287 .1155 .1882 .0957 .0858

Independent .1205 .1732 .0907 .1304 .1322 .1714 .0790 .1025
Our .1119 .1219 .1856 .1778 .0904 .0896 .1178 .0963

Proposal (.0277) (.0270) (.0275) (.0269) (.0292) (.0285) (.0288) (.0295)
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