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1 Introduction

A problem that arises in geographical and geological surveys, the physical and
biological sciences, computer graphics, and quality control is how to select a ran-
dom sample from a constrained set such as a curve in two- or three-dimensional
space or a surface or body in three-dimensional space. We show here how to solve
this problem provided the set can be coordinatized in a reasonably regular way.
We discuss how to choose points on curves, surfaces, and higher-dimensional
manifolds. We provide examples and note some related issues.

First of all, a caveat is in order. Here we identify a random sample as one
chosen on the basis of equiprobability (and independence). However, selecting a
finite sample from an infinite population so that each element of the population
is equally likely to be chosen is not a meaningful task. The only way the elements
can have equal probability is if each has probability zero. To avoid this difficulty,
we divide the population into finitely many nonoverlapping regions of equal
measure (say equal length, area, or volume) so that all of the points in a given
region are indistinguishable for practical purposes. Then we pick one of the
regions at random and any point in that region.

If the total measure of the population is infinite, we face another difficulty,
though, namely, that the individual regions also have infinite measure. Usually
points in a region of infinite measure are quite distinguishable from one another.
In addition, the reason for requiring that the regions be of equal measure is that
our notion of randomness is based on the measure: regions of equal measure are
presumed to be equiprobable. But this criterion is inadequate when applied to
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sets of infinite measure because such sets typically can be decomposed into two
or more disjoint subsets also of infinite measure. If a set and two of its disjoint
subsets are assumed to have the same probability p, then p + p ≤ p and p = 0.
To choose a random sample from a population, not only should we partition the
population into finitely many regions of practically indistinguishable points, each
region of equal measure, but also we should require that the total measure be
finite so that the regions may plausibly be treated as equiprobable. Furthermore,
points within regions of small measure may be quite dispersed and thus quite
distinguishable from one another. For example, the rational numbers are dense
in the reals or in any finite interval of reals, and they form a set of measure zero.
However, rational numbers, for example, integers, may be quite distinguishable
from one another

The issues can be illustrated by the problem of selecting a number randomly
from an interval of finite length, say the unit interval [0, 1]. The usual solu-
tion to this problem is to consult a random number table, i.e., choose k digits
x1, x2, ..., xk randomly and independently from 0, 1, ..., 9 to obtain the number
x1
10 + x2

102 + ... + xk

10k . This selection is actually made from the finite set of frac-
tions with denominator 10k rather than from the set [0, 1]. Alternatively, the
selection can be viewed as the choice of a subinterval from the interval [0, 1],
with the understanding that it is immaterial which point is actually chosen from
within the selected subinterval, each of the 10k possible subintervals having the
same length 1

10k .
In the following we propose to consider only cases where the curve, surface,

etc. has finite total measure, subsets of equal measure are equiprobable, and the
decomposition is into finitely many regions of equal measure such that points
within a region are indistinguishable for practical purposes. The last condition,
we will assume, is realized when the parameters of points within a given region
are close to each other under a regular 1 parametrization of the curve, surface,
etc.

2 Sampling on curves

Consider a plane curve {(x(t), y(t)) : a ≤ t ≤ b}, where t → x(t) and t → y(t)
are continuously differentiable functions (with one-sided derivatives at the two
endpoints) and such that t → (x(t), y(t)) is one-to-one for a ≤ t < b. To
select a random sample on such a curve, we decompose the t-interval [a, b] into
subintervals so that t-subintervals have weights proportional to the arc length
they sweep out along the curve. The measure of arc length is ds = ds

dt =√
(dx

dt )2 + (dy
dt )2.

Lahiri’s method (see [Cochran, 1977, p. 251]) can be used to perform the
selection. Let M = max { ds

dt (t) : a ≤ t ≤ b}. Choose pairs of points (t, u) ran-
domly from the rectangle [a, b] × [0, M ], i.e., choose t randomly from the in-

1A regular parametrization is one in which the Jacobian has maximal rank except on a set
of measure zero in the parameter set.
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terval [a,b], and u randomly and independently from the interval [0,M]. Then
omit points (t,u) for which u exceeds ds

dt (t). Then calculate (x(t), y(t)) for the
t-values that remain, and these are the desired points. More accurately we
choose a t-subinterval and a u-subinterval, and thus a small coordinate rectan-
gle in [a, b] × [0, M ], pick a point (t,u) arbitrarily in this rectangle (all points
in the rectangle judged to be practically equivalent), and determine whether
ds
dt (t) is less than u. Even this final determination is only approximate since the
computation of ds

dt (t) will involve some rounding.
A piecewise continuously differentiable curve or a curve with isolated self-

intersections assumed to have finite total length can be decomposed into a finite
number of curves of the type in the previous paragraph. If these curves have
lengths L1, L2, ..., Lk with total length L =

∑k
i=1 Li, we pick a number z ran-

domly from the interval [0,L] and if z ≤ L1, we apply Lahiri’s method to the
first curve, or if L1 < z ≤ L1 + L2 we apply the method to the second curve,
and so on 2.

Consider for example random selection from the ellipse x2

a2 + y2

b2 = 1 with
a ≥ b > 0. A standard parametrization for this curve is t → (x(t), y(t)) =
(a cos t, b sin t) for 0 ≤ t ≤ 2π. Then ds

dt (t) =
√

(−a sin t)2 + (b cos t)2, and the
latter has maximum value a. So choose a pair of numbers (t,u) uniformly in
the rectangle [0, 2π]× [0, a] and let the sample point be (a cos t, b sin t) provided
u ≤

√
a2 sin2 t + b2 cos2 t. (Choosing ”uniformly” is a misnomer because, as we

mentioned above, the method of selection is ultimately finitary ands depends on
a particular discretization, but we shall continue to use the traditional language.)

To show even more detail, suppose our ellipse is x2

4 + y2 = 1. Then we
pick a random pair of numbers in [0, 2π] × [0, 2], say, (1.774, 1.291). When we
compute ds

dt (t) =
√

4 sin2 t + cos2 t =
√

3 sin2 t + 1 at t = 1.774, we get: ds
dt ≈

1.969 > u = 1.291. Thus we choose the point (x, y) = (2 cos 1.774, sin 1.774) ≈
(−.404, 0.979).

t u ds
dt (t) (x(t),y(t))

1.774 1.291 ≈ 1.969 ≈ (−.404, 0.979)

We repeat this a total of thirty-one times, generating a total of twenty-five
points and rejecting seven points. As can be seen from the figure, the points
obtained are not evenly distributed around the ellipse. However, this is the
nature of simple random sampling.

2Lahiri’s method can be used to select the curve: choose i equiprobably from 1, 2, ..., k
and v randomly from the interval [0, max {L1, L2, ..., Lk}, and keep i provided v ≤ Li.
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The same method, mutatis mutandis, can be applied to curves in any di-
mension with t → (x1, ..., xn) replacing t → (x, y).

Consider, for example, the helix (x, y, z) = (cos t, sin t, 2
π t) for 0 ≤ t ≤

4π. We choose t randomly from the interval [0, 4π]. Since ‖ (dx
dt , dy

dt , dz
dt ) ‖=√

sin t2 + cos t2 + 4
π ≡

√
1 + 4

π = M , we choose the second variable u randomly
in [0,M] and keep the point with parameter value t provide u ≤ M . But this is
always true. So we do not need u. In the Figure below we show twenty points
so obtained (because of the publication requirement of embedded graphics, our
helix has been approximated by a series of ovals in LaTeX.)
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3 Sampling on surfaces

In the case of a surface, we consider a parametrization of the form {X(u, v) :
(u, v) ∈ D} where D is an open bounded subset of R2 and X(u, v) =
(x(u, v), y(u, v), z(u, v) is a continuously differentiable function. The surface
area element is:

dA = ‖∂X

∂u
× ∂X

∂v
‖ dudv =

√
(
∂(x, y)
∂(u, v)

)2 + (
∂(y, z)
∂(u, v)

)2 + (
∂(z, x)
∂(u, v)

)2 dudv.

The squared terms are two by two determinants obtained from the partial deriva-
tives of x, y, and z with respect to u and v. Cf. [Marsden et al., 1993, Chap-
ter 6]. If we wish to choose a point randomly from this surface, we choose a
point (u, v, w) uniformly from a rectangular solid (a, b) × (c, d) × (0, M) where
(a, b)× (c, d) contains D and M = sup {‖ ∂X

∂u × ∂X
∂v ‖ : (u, v) ∈ D}, the latter as-

sumed to be finite. Then start over if (u, v) is not in D or if w > ‖ ∂X
∂u × ∂X

∂v ‖.
Otherwise the point X(u, v) is selected for the sample.

The simplest example of this kind of sampling is on the unit sphere
{(sinφ cos θ, sin φ sin θ, cosφ) : 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π}. Then ‖ ∂X

∂φ × ∂X
∂θ ‖ =

‖(sinφ)X‖ = sin φ, and hence M can be taken to equal 1. Now we pick points
(φ, θ, w) uniformly in (0, π) × (0, 2π) × (0, 1), discard the points if w > sinφ,
and retain the points (sin φ cos θ, sin φ sin θ, cosφ) otherwise.
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φ θ w sin φ x y z

0.132 3.007 0.215 0.132 - - -
2.416 5.648 0.547 0.663 0.534 -0.394 -0.748
2.707 2.905 0.594 0.421 - - -
1.440 0.501 0.201 0.992 0.870 0.476 0.130
1.007 0.971 0.053 0.845 0.477 0.698 0.534
0.567 3.472 0.274 0.537 -0.508 -0.174 0.844
2.564 2.145 0.225 0. 546 -0.296 0.459 -0.838
2.236 4.457 0.302 0.787 -0.200 -0.761 -0.617
1.616 2.365 0.640 0. 999 -0.713 0.700 -0.045
2.304 0.162 0.740 0.743 0.733 0.120 -0.669
1.577 0.935 0.704 1.000 0.594 0.804 -0.006
1.070 3.159 0.163 0.877 -0.815 -0.323 0.480
3.077 2.552 0.909 0.065 - - -
0.771 3.255 0.346 0.697 -0.692 -0.079 0.717
0.771 3.997 0.073 0.697 -0.457 -0.526 0.717
2.427 4.775 0.399 0.655 0.041 -0.654 -0.755
2.839 4.707 0.729 0.298 - - -
2.986 1.145 0.987 0.155 - - -
1.904 2.862 0.307 0.945 -0.908 0.261 -0.327
2.887 3.501 0.733 0.252 - - -

Below we see a rough depiction of where the points are on the sphere, with
points in the front hemisphere labeled ”f” and points in the back labeled ”b”.

�
�

�
�

f ff b b
ffbbb b

f f f

Another way to sample points randomly from the unit sphere is to choose
points (x, y, z) randomly from a cube, say. [−1, 1] × [−1, 1] × [−1, 1], centered
on the origin (0, 0, 0), retain those points for which x2 + y2 + z2 ≤ 1, and
project to the unit sphere by dividing the coordinates by

√
x2 + y2 + z2. This

method only works in special cases (for example, circles and regular polygons
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in two dimensions; and spheres and the five Platonic solids and some semi-
regular polyhedra in three dimensions; with projection from the center). For an
ellipsoid such as x2

a2 + y2

b2 + z2

c2 = 1, where a ≤ b ≤ c and not all three are equal,
this method will not work, but our method does, with elliptical coordinates
{(a sinφ cos θ, b sin φ sin θ, c cosφ) : 0 ≤ φ ≤ π, 0 ≤ θ ≤ 2π} and M = bc.

For our next example we consider a torus. A standard parametrization is
{((R+r cosφ) cos θ, (R+r cosφ) sin θ, r sin φ) : 0 ≤ φ, θ ≤ 2π}, where R > r > 0.
Then ‖∂X

∂θ × ∂X
∂φ ‖ = ‖((R + r cosφ)r cos θ cosφ, (R + r cosφ)r sin θ cosφ, (R +

r cosφ)r sinφ)‖ = (R + r cosφ)r, and this quantity lies between 0 and (R + r)r.
We select points (θ, φ, w) with θ, φ, and w uniform and independent on [0, 2π],
[0, 2π], and [0, (R + r)r]. Our sample points are those points X(θ, φ) for which
w ≤ (R+r cosφ)r. Using Quattro Pro and MSPaint, we have depicted a sample
of fifty points on the torus. Unfortunately the graphics cannot be embedded in
our LaTeX file, and thus are omitted here.

4 Sampling on coordinatized regions

In higher dimensional cases we suppose that the region is a k-dimensional
manifold in Rn parametrized by the mapping u = (u1, ..., uk) �−→ X(u) =
(x1(u), ..., xn(u)) for u in an open bounded subset U of Rk and X(u) a continu-
ously differentiable function with bounded first derivatives. The volume element
in the manifold is:

dVk =

√√√√ ∑
{(i1,...,ik):1≤i1<i2...<ik≤n}

(
∂(xi1 , ..., xik

)
∂(u1, ..., uk)

)2du1...duk = ρ(u)du1...duk,

where the squared terms are k by k subdeterminants of the matrix of partial
derivatives { ∂xi

∂uj
} [Schreiber, 1977, Appendix]. To select random points in this

manifold, first pick u uniformly in U (or in a k-dimensional rectangular region
that encloses U, retaining u only if it is in U) and then pick w uniformly and
independently in [0, M ] where M = sup {ρ(u) : u ∈ U}. Finally our random
point is X(u) provided w ≤ ρ(u).

The k-dimensional volume of the above manifold is finite (since ρ(u) is
bounded) and is obtained by integrating dVk over the parameter set U.

Sampling can also be done on a manifold that is a finite union of such
k-dimensional manifolds (k fixed) with no intersections except in sets of lower
dimension. If these manifolds have k-volumes V1, ..., Vm, we pick an index i with
probability Vi/

∑m
j=1 Vj and then pick a point in the i-th manifold according to

the scheme above.
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5 Final remarks

The above methodology tells us how to pick a point randomly from a surface
using a coordinatization of the surface and the natural length, area, or volume
function, which plays the role of a probability density. Obviously this density
could be replaced by another if we wished to choose points according to a
different principle (e.g., picking more points where the curvature is greater).

Moreover, as our examples illustrate, randomly chosen points may be dis-
tributed far from evenly - with striking patterns and clusters visible in most
samples. A variety of methods are available for improving the situation such as
stratification and systematic sampling. Appropriate strata or systematics are
easy to devise for curves. Generalizations for higher dimensions, though not
always straightforward, have been obtained by the authors.
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