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1. Introduction 
 
Different programs use different formulas for estimating 
percentiles for data from a random sample (for examples, see 
Hyndman and Fan, 1996).  Estimating percentiles for survey 
data based on a complex probability sample design requires 
selection of a formula for calculating the percentiles.  The 
choice can affect the bias of the percentile estimate.  Variances 
for survey statistics can be calculated using several different 
approaches.  The most common approaches use replicate 
weights and Taylor series linearization.   
 
When using replicate weights, there are several alternative 
approaches for estimating the variance of percentiles but no 
generally accepted method (Wolter, 1985).  The replicate 
weight approach calculates the variance of a percentile from 
percentile estimates using the full sample weight and each 
replicate weight.  An approach proposed by Woodruff, 
calculates the confidence interval (CI) and variance from the 
sample cumulative distribution function (CDF) and the 
variance of p, the proportion of the population less than the 
full sample percentile estimate.   
 
The sample weights can often be constructed in different 
ways, however, they must be consistent with the sample 
design and analysis needs.  Jackknife replicate weights are 
often used and are the only replicate weights considered in this 
paper. 

 
This research was initiated to test the hypothesis that rounding 
or binning the data can, at least in some circumstances, 
improve the performance of confidence intervals when using 
jackknife replicate weights.  This paper reports on simulations 
to evaluate alternate approaches for calculating percentiles and 
the variance and confidence intervals (CIs) for the percentile 
estimates using jackknife replicate weights.  One unexpected 
result of the research was quantification of estimation bias 
associated with rounding or binning the data. 
 
The formulas used in this paper for calculating a percentile of 
a variable assume the variable: 

1) Is continuous and real valued such that interpolated 
values could be possible population values, and 

2) Has a distribution that is reasonably smooth, such 
that interpolation between observed values provides a 
reasonable estimate of intermediate percentiles.   

The simulations assume a stratified sample of clusters.  Within 
clusters the population values are assumed to be random 
around means that vary among strata and clusters.  
 

Section 2 discusses the hypothesis to be tested.  Before testing 
the hypothesis it was necessary to select a formula for 
calculating percentiles.  Section 3 discusses simulations to 
evaluate different formulas. Section 4 discusses the 
simulations to test the hypothesis.  Finally, Section 5 provides 
a discussion of the results. 
 
2. Hypothesis 
 
For a simple random sample with n observations, jackknife 
variance estimates of a statistic can be calculated by: 

1) Estimating the statistic of interest, θ̂ ,  
2) Sequentially deleting each observation i and 

calculating the statistic of interest iθ̂ , and  

3) Estimating the variance of ˆ θ  by:  
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This estimate of variance is generally considered to have n-1 
degrees of freedom.  
 
However, unweighted Jackknife estimates for percentiles are 
known to be inconsistent (Efron, 1982). Using generally 
accepted methods for calculating medians, when the sample 
size is even, the median estimate is the average of the middle 
two observations.  Each jackknife estimate differs from the 
full sample estimate by half the difference between the 
observations closest to the full sample estimate.  As a result, 
the jackknife estimate of the variance is a function of the local 
behavior of the sample CDF at the median.  Similar 
conclusions apply for other percentiles and when the sample 
size is odd.  
 
The simulations reported here were initiated to test the general 
hypotheses that smoothing the sample CDF will make the 
variance less dependent on the local behavior of the CDF and 
improve CI coverage.  One approach to smoothing the sample 
CDF is to bin the data and use the count and mean (or mid-
point) within each bin to define the sample CDF.  For this 
research, bin boundaries were equally spaced along the 
measurement scale.   
 
Rounding of the data is a special type of binning that 
corresponds to using equal length bins and using the midpoint 
of the bin as the value for each observation in the bin.  
Rounding or binning of survey data may occur because the 
data collection process only records a fixed number of 
significant digits or because the data are coded into ranges.  If 
the data are binned as part of the analysis procedure, the bins 
and the binned data value can be specified by the analyst. 
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3. Estimating Percentiles 
 
Hyndman and Fan (1996) provide a summary of commonly 
used formulas used for calculating percentiles.  The various 
formulas fall into two general categories, discontinuous and 
piecewise continuous functions to approximate the population 
quantile function.  The usual sample quantile function is a 
discontinuous step function.  Use of a discontinuous quantile 
function has disadvantages when using jackknife replicate 
weights.   In particular, the estimated variance of a percentile 
may be zero, particularly if there are tied values in the data. 
The performance of the jackknife percentile variance is 
improved by interpolating between the steps of the sample 
quantile function. For this paper, only piecewise continuous 
functions with linear interpolation are considered.   
 
The following formula (presented by Hyndman and Fan) 
defines plotting points.  Linear interpolation between the 
plotting points is used to define the piecewise continuous 
sample quantile function.  The location of the plotting points 
depends on two parameters, α and β. Assume a continuous 
underlying variable and a piecewise-linear sample quantile 
function p = f(x) defined by plotting points (xk, pk), where xk is 
the kth ordered observation, 

 
βα

α
−−+

−=
1n

k
pk , and (2) 

α and β are constants between 0 and 1.  The percentile 
corresponding to the desired percentage P is obtained by 
interpolation between neighboring plotting points.   
 
Different software programs use different α and β values.  For 
symmetric distributions, Hyndman and Fan argue that α and β 
should be equal.  For random samples they recommended 
setting α and β between 1/3 and 3/8. Unless α and β equal 1.0, 
there will be percentages less than p1 and greater than pn for 
which percentiles cannot be calculated.  Some software uses 
the maximum or minimum for these values.  Here these 
percentiles were set to missing.   
 
Hyndman and Fan implicitly assume that there are no ties and 
do not discuss weighted data.  Equation (3) is proposed here as 
a reasonable analog of equation (2) for weighted data and data 
with tied values. 
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The simulations for this paper use formula (3) to estimate 
percentiles.  As with formula (2), there may be upper and 
lower percentages for which the percentiles cannot be 
calculated.  Binning the data tends to increase the sum of 

weights for the lowest and highest bins and therefore increase 
the range of percentages for which percentiles cannot be 
calculated. 
 
This paper makes a distinction between using interpolation 
between plotting points to provide to obtain a piecewise 
continuous sample quantile function and rounding or binning 
to smooth the quantile function by reducing the number of 
unique values from which the quantile function is calculated.   
 
3.1 Simulations for Selecting α and β 
 
Simulations using different values of α and β were used to 
determine how these values affect the bias of the percentile 
estimates.  These simulations used the following parameters: 

• Sample design: random sample from an infinite 
population (i.e., no differences between cluster and 
strata means). 

• Data distribution: standard normal (N(0,1)) or a 
uniform (U(0,1)).   

• Sample sizes:16, 64, 256, 1024 
• Bins based on rounding, rounding unit: .4, 0.2, 0.1, 

0.05, 0.025, 0.01, and 0.0001 for N(0,1) and 0.2, 0.1, 
0.05, 0.025, 0.01, and 0.0001 for U(0,1).  Note, for 
the uniform distribution the bins were defined as 
even divisions between 0 and 1, 

• Alpha: 0.1, 0.3, 0.5, 0.7 for N(0,1) and 0.0, 0.2, 0.4, 
0.6 for U(0,1). 

• Beta = Alpha. 
• Simulations: 14,400 for the three smallest rounding 

units and 1600 for other simulations 
For each simulation, the bias was calculated for all 
percentages from 1 to 99. 
 
Figure 1 shows example results for a random sample 64, 256, 
or 1024 normally distributed observations rounded to units of 
0.2 or 0.0001.  Except for extreme percentages, the bias 
appears to be a linear function of the percentage. Similar 
patterns were found using both normal and uniform 
distributions.  
 
3.2 Choosing α, β to minimize Bias  
 
For most plots in Figure 1, for alpha equal to 0.2 or 0.4 
estimates of upper percentiles are greater than the true value 
and estimates of lower percentiles are less than the true value, 
on average.  The reverse is true for alpha of 0.6 and 0.8.  
Interpolating between the curves suggests that an alpha around 
0.5 will minimize the bias for most percentages (i.e., the slope 
versus percentage will be zero).  The alpha for which the slope 
of bias versus percentage (for percentages between 20 and 80) 
is zero was calculated (using interpolation) for all simulated 
conditions and will be referred to as the optimal alpha. 
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Figure 1  Bias versus α and β, Random Sample from a Normal Distribution 
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Rounded to 0.2, 
Sample Size = 256
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Rounded to 0.0001, 
Sample Size = 256
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Rounded to 0.2, 
Sample Size = 64
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The optimal alpha depends on the distribution.  Figure 2 
shows the optimal alpha for a uniform distribution versus 
rounding unit and sample size.  The optimal alpha for rounded 
data increases from near zero to an asymptote at about 0.5 as 
the rounding unit increases and increases as the sample size 
increases.   
 
Figure 2  Optimal alpha for a uniform distribution 
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Figure 3 shows the optimal alpha for a normal distribution 
versus rounding unit and sample size.  The optimal alpha for 
rounded data increases from near 0.4 to about 0.6 as the 
rounding unit increases from essentially no rounding to a 
rounding unit of 0.4.  The optimal alpha increases slightly 
with increasing sample size.   
 
Figure 3  Optimal alpha for a normal distribution 
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The bias is more sensitive to the choice of alpha for larger 
rounding units.  Based on an empirical fit to the data, the bias 
for percentages between 20% and 80% is approximately: 
 

( )( )ROptimalPctBias αα −−−= 50020.  (4) 
 
where Pct = the percentage for the desired percentile, α is the 
alpha value use to estimate the percentile, Optimalα is the 
optimal alpha for minimizing bias and R is the rounding unit.  
The constant (.020) is the essentially the same for both the 
standard normal and standard uniform distribution.  The 
constant is essentially the same for larger sample sizes (256 or 

greater in these simulations) but differs somewhat for smaller 
sample sizes.  For uniform and normal distributions with other 
standard deviations, the constant in equation (4) would need to 
be scaled appropriately. 
 
If one value of alpha is to be used to all calculations, I 
recommend choosing alpha for data with significant rounding, 
for which the potential bias can be largest.  For data from a 
uniform or normal distribution, setting alpha between 0.5 and 
0.6 will perform relatively well for all but small sample sizes.  
For small sample sizes, the bias will be small relative to the 
standard error.  
 
The calculation of percentiles uses linear interpolation 
between plotting points.  The CDF for the normal distribution 
is non-linear.  Therefore linear interpolation provides only an 
approximation to the CDF.  For the larger rounding units, the 
error due to using linear interpolation to approximate a non-
linear function can be seen in the simulation results.  Since 
sample CDFs can be transformed to be linear, at least 
approximately, I recommend using alpha equal to 0.5 unless 
there is significant rounding and adequate information for 
specifying another value for alpha.  Using 0.5, users would get 
better estimates if data were transformed to have an 
approximately uniform distribution.  For the subsequent 
simulations, alpha and beta are set to 0.5. 
 
4. Estimating Variance and Confidence Intervals 
 
This research used two methods for estimating the variance 
and confidence intervals for percentiles, Woodruff (see 
Sarndal, Swensson, and Wretman, 1992), and replicate 
weights.  The replicate weight approach calculates the 
percentile estimate for weighted subsets of the data 
represented by the replicate weights.  The variance and 
confidence intervals are calculated from the variance of the 
replicate estimates.  The Woodruff method calculates a 
confidence interval for the percentage of the sample below the 
estimated percentile.  That confidence interval is then 
transformed to the to the measurement scale using the inverse 
of the sample quantile function.  These two methods are 
described below in mathematical terms.  The following 
sections describe the simulations to evaluate the hypothesis 
that rounding or binning the data can improve the performance 
of the confidence intervals for percentiles. 
 
The steps for calculating the Woodruff CI are: 
 

1. For desired percentage P, Calculate xP = f -1(P) 
2. Calculate p, the population percentage less than  xP, 

and its confidence interval, [pL,pU] (using replicate 
weights and normal assumptions) 

3. The CI around xP is: 
 
 

4. Woodruff CI cannot be calculated if CI limits are 
beyond the range of the quantile function 

 

( )( ) ( )( )[ ]ppPfppPf UL −+−− −− 11 ,
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The steps for calculating the replicate weight CI are: 
 

1. For desired percentage P, Calculate xP = f -1(P) 
2. For each replicate weight, r = 1…k, calculate the 

estimated quantile function fr and  
3.  ( )Pfx r

1
Pr

−=   
4. Calculate the confidence interval on xP using the 

replicate estimates and normal assumptions, see 
equation (1) 

5. The replicate weight CI cannot be calculated if any of 
the full sample or replicate weight estimates are 
beyond the range of the quantile function 

 
4.1 Simulations Using Clusters of Random Data 
 
Simulations were performed to assess the effect of rounding 
and clustering on the coverage of percentile CIs.  For these 
simulations there were no differences between cluster means.  
The simulations used the following parameters: 

• Sample design: clustered samples of random data 
• Sample size of 64 or 1024 
• Cluster sizes of 4, 8, and 16 with a sample size of 64 

and 4, 16, 64, and 256 with a sample size of 1024 
• Normal and uniform data distributions 
• Rounding units of 0.2, 0.1, 0.05, 0.01, and 0.000001 

For each simulation the CI coverage was calculated for all 
percentages from 1 to 99. 
 
Overall, rounding increases CI coverage.  The simulation 
results suggest that, for a fixed sample size, larger clusters are 
associated with closer-to-nominal CI coverage, particularly for 
smaller sample sizes.  However, additional simulations using 
other sample and cluster sizes would be needed to be 
confident of those conclusions.  Rounding had more effect on 
coverage than cluster size.  Figure 4 shows example results for 
rounding units of 0.1 and 0.000001 and two sample/cluster 
size combinations.  
 
The percentage of confidence intervals that could be 
calculated drops off as the percentage for the percentile 
approaches 0% or 100%.  For these extreme percentages the 
plots show the coverage for those confidence intervals that 
could be calculated.  If no confidence intervals could be 
calculated, the plots show the coverage for the nearest 
percentage for which the confidence interval coverage could 
be calculated.  
 
With essentially no rounding, the coverage of the Woodruff 
confidence intervals is close to the nominal level of 95%.  

With rounding the Woodruff coverage is greater than 95% and 
the confidence intervals are conservative.   
 
The jackknife replicate weight CI coverage is generally less 
than the nominal level without rounding and close to the 
nominal level with rounding and/or larger clusters  
 
Additional CI coverage results include: 

• The replicate weight CI can be calculated for a wider 
range of percentages than the Woodruff CI.  The 
range decreases with fewer/wider bins. 

• For variance estimates, the effective Df using 
jackknife replicate weights is less than using the 
Woodruff method, which is less than the number of 
clusters.   

• Estimation of extreme percentiles is problematic 
because: 

• Calculation of estimates may not be possible 
• Bias is often larger for extreme percentiles 

• The optimal α may be different for 
extreme percentiles than for inter-
mediate percentiles 

• CI coverage can diverge from the nominal 
coverage 

 
Figure 5 shows the average CI coverage versus sample size 
and rounding unit for a uniform distribution using Woodruff 
and replicate weights methods.  CI coverage is the average of 
all CIs that could be calculated.   
 
4.2 Simulations with Complex Samples 
 
Limited simulations were performed using complex sample 
designs with stratified samples of clustered data.  These 
simulations used the following parameters: 

• Distribution: Normal distribution (N(µ,1)) 
• 2 strata, 8 clusters of 16 observations per strata 

(sample size of 256) 
• Mean (µ) differed among clusters within strata and 

between strata : 
– Std. of cluster means: 0.0 or 1.0 
– Difference between strata means, 0 or 1.0 

• Number of bins, 20, 100, infinite (i.e., no binning).  
The mean within each bin was used for the data 
value. 

As before, for each simulation the CI coverage was calculated 
for all percentages from 1 to 99. 
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Figure 4  CI Coverage, Random Sample from a Uniform Distribution, α = 0.5 
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Rounded to 0.000001,
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Rounded to 0.1,

64 Clusters of 16 Observations
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Rounded to 0.000001,
64 Clusters of 16 Observations
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Figure 5  Average CI Coverage versus rounding unit, Replicate and Woodruff methods, Uniform Distribution, α = 0.5 
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Woodruff 95% CI Coverage, 
Sample size = 1024
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Based on the limited set of complex sample simulations, the 
results are similar to those reported earlier (binning increases 
CI coverage) except that binning the data is less effective at 
increasing coverage when there are differences between 
clusters. 
 
Figure 6 shows the simulation results for no binning or 20 bins 
for simulations with differences between strata, between 
clusters, and differences between both strata and clusters. 
 
5. Discussion 
 
Perhaps the most important result from this research is the 
extent to which the bias of the estimated percentile depends on 
the choice of the formula for estimating the percentile, 
represented here by the choice of alpha and beta.  Based on the 
simulations I recommend setting α = β = 0.5, unless adequate 
data are available for selecting other values. 
  
This research looks at the effect of binning or rounding of data 
on the bias and coverage of 95% confidence intervals.  
Overall, binning increases coverage of the CIs.  Without 
binning Woodruff CIs have coverage close to the nominal 
level.  With binning, coverage of Woodruff confidence 
intervals is generally higher (more conservative) than the 
nominal level.  When using Woodruff confidence intervals, 
binning is not recommended.  If the data have already been 
binned or rounded as part of the data collection/processing 
process, Woodruff CIs appear to be conservative.  Binning 
decreases the range of percentages for which CIs can be 
calculated.  For the Woodruff method, this limitation may  be 
unacceptable. 
 
Binning can improve the coverage of replicate weight 
confidence intervals.  Most of the improvement appears to be 
achieved with only slight rounding or use of many bins.  
However, further improvement is associated with more 
rounding or use of fewer bins.  Rounding the data reduces the 
range of percentages for which CIs can be calculated while 
improving the coverage.  Even with rounding, percentile CIs 
can be calculated for most percentages when using replicate 
jackknife weights.   
 
Without rounding, the Woodruff method is preferred for 
calculating confidence intervals.  For more extreme 
percentiles, if the Woodruff CI cannot be calculated, the 
replicate weight interval is a reasonable choice.  Some 
rounding or binning may improve the estimate.  However, 

both of the tested approaches perform poorly for estimating 
the most extreme percentiles.   
 
Limited simulations suggest that binning has relatively little 
effect when there are differences between clusters.  Many 
surveys collect binned data by dividing the response range into 
bins and asking the respondent to pick the relevant bin.  Also, 
many survey designs randomly select clusters for which 
differences among clusters are expected.  In this situation, the 
replicate jackknife CIs are expected to have CI coverage that 
is lower than but close to the nominal level.  Woodruff CIs are 
expected to be conservative. 
 
Prior research has shown that jackknife replicate CIs have 
coverage closer to the nominal level with designs with larger 
clusters. (Kovar, Rao, and Wu, 1988)  Although this research 
is consistent with those findings, the effect of cluster size was 
found to be small in the limited number of simulations with 
complex sample designs. 
 
The following are limitations of this research: 

• Binning the data, in effect, smoothes the quantile 
function.  Other smoothers may have more desirable 
results. 

• Coverage of the jackknife replicate weight CI might 
be improved by using fewer degrees of freedom 
when calculating the CI 

• Although the results for complex samples are 
consistent with other simulations, additional work is 
needed. 

• Simulations of functions of percentiles (such as inter-
quartile range) have not been performed. 
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Figure 6  Complex Samples, Normal Distribution, Sample Size = 256, α = 0.5 
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Cluster Differences, 20 Bins
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