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I.  Introduction 
Suppose one wanted to estimate totals for a number of
target variables based on data from a probability sample.
 If we knew the selection probability, Bk, for each
sample element k in the sample S, then we could
estimate any population total, Ty = 3U yk, where U
denotes the population, with the expansion estimator ty_E

=3S yk /Bk = 3U yk Ik /Bk, where Ik = 1 when k 0 S and 0
otherwise.  Treating the Ik as random variables, it is easy
to see that ty_E is an unbiased estimator for Ty.  We call
properties arising when the Ik are treated as random
variables randomization-based.   

We can also write ty_E = 3U ak yk = 3S ak yk,
where ak =  Ik /Bk is called the sampling weight of
element k.  This same formula applies for any variable
yk about which we can collect data whenever k is in the
sample.

Deville and Särndal (1992) coined the term
“calibration estimator” to describe an estimator of the
form ty_CAL  = 3S wk yk, where 3S wk xk = 3U xk = Tx for
some row vector of auxiliary variables, xk = (x1k, ...,
xPk), about which Tx is known.  Since there is generally
a continuum of sets  {wk * k0S} that satisfy the
calibration equation: 

    3  wk xk = Tx ,                                                           (1)
 k0S  
        
Deville and Särndal required that the difference between
{wk * k0S} and {ak * k0S} minimize some loss function.
 

The univariate components of equation (1):

  3 wk xpk =  3  xpk  for p = 1, ...., P, 
 k0S           k0U

are sometimes called the “calibration equations.” 
Chambers (1996) referred to a set of weights that
satisfies the calibration equation(s), whether or not they
minimize a loss function,  as “case-based.”   

As with the expansion estimator, the same set
of calibration weights can be used no matter what the
variable of interest, yk.   When the particular yk is a
linear combination  of the  components  of  xk  for  all 
k 0 U, say  xk$, then ty_CAL equals Ty exactly.  This is a
great strength of calibration weighting and the reason

behind why the calibration estimator is often much more
efficient (has a smaller mean squared error) than the
expansion estimator.

Another strength of calibration weighting is
that {wk * k0S} and {ak * k0S} must be close since their
difference is in some sense minimized.  As a result, with
a sufficiently large sample, ty_CAL is close to
randomization unbiased no matter what the y-variable is
as long as it obeys reasonable regularity conditions to be
described in the next section.

Since  ty_CAL estimates Ty perfectly when yk =
xk$ exactly, it is reasonable to expect ty_CAL to be a good
estimator when yk and xk$ are close.  This can be
formalized by assuming the yk are random variables
satisfying the linear prediction model:

yk = xk$ + ,k,                                                             
(2)

where E(,k *{xg * g0S}, {Ig * g0U}) = 0 for all k 0 U.
Under this model, it is easy to see that ty_CAL is an
unbiased estimator for Ty in the sense that E,(ty_CAL ! Ty)
= 0 (suppressing the conditioning for notational
convenience); the subscript , refers to treating the ,k as
random variables (and the Ik as fixed constants).  

One problem with model-based analysis in
practice is that we are usually  interested in estimating
totals for variety of target variables at the same time.  It
is often unreasonable to assume that different variables
satisfy the same linear model.  

This problem can be made to all but disappear.
Suppose we had postulated separate models for J
different target variables, y1k, ..., yJk: 

yjk = xjk$j + ,jk,  

where xjk is a pj-component row vector, and E(,jk *{x1g,
..., xJg * g0S}, {Ig * g0U}) = 0 for all k 0 U.  It is
obvious that the model in equation (2) still holds with xk

now equal to (x1k, ..., xJk).  Duplicated and singular
components of xk can be pruned with no practical effect
on the model (a singular component is a linear
combination of other components).

A simple example is the following.  Suppose
y1k is the current planted corn acres for farm k, and y2k

the farm’s current planted wheat acres.  Several years
ago, all the farms in the population provided their annual
corn and wheat acres to the Census of Agriculture. 
Denoting these previous values for farm k as x1k and x2k,
respectively, the combined linear model inherent in
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calibration takes the form: 

yjk = (1  x1k  x2k)($0j  $1j  $2j)'  + ,jk      
                        
for j = 1 or 2.  Notice that the xk-vector is common to
both the model for corn and wheat.  The $-vector is not.
The common xk-vector allows the creation of a common
set of calibration weights for each target variable.

Calibration has its drawbacks.  In the simple
farm example, it may be reasonable to assume that $12

and $21 are zero, that corn in the census year has no
effect on the current amount of planted wheat, and that
census-year wheat has no effect on current-year corn. 
By explicitly assuming these equalities in estimation,
efficiency is likely to increase.  Unfortunately,
calibration does not allow us to do that.  It is the price
we pay for developing a single set of weights for all
target variables.    

Although they coined the term, Deville and
Särndal were not the first to note that a single set of
weights, {wk * k0S}, could be constructed so that the
resulting estimator, ty_CAL, is
 1)   model unbiased under equation (2) as long as the x-
vector has the same set of components for every target
variable of interest. and,
2) nearly randomization unbiased.   

Huang and Fuller (1976) developed software to
produce what are now called “calibration weights.”
Their approach usually returns the randomization-
consistent regression estimator with the added constraint
that each wk be bounded by (1! M)ak # wk  # 
(1 + M)ak for a specified M.

Poststratification is a form of calibration that
preceded Huang and Fuller by decades.  It is most often
used to adjust for unit nonresponse in the sample or
coverage errors in the sampling frame, but in the
discussion below we assume a perfect frame and
complete response.  We will return to postratification as
a method for handling unit nonresponse briefly in
Section 8.

Suppose the components of xk are binary
classification variables such that xpk = 1 when k is in
Class p and 0 otherwise.  In  a  human  population,  for
example,  we  can have 
x1k = 1 and  x2k = 0  when  k is male,  and  x1k = 0  and
x2k = 1 when k is female.    When each k is in one and
only one of the P classes, as in the example, a
poststratified estimator performs a simple ratio
adjustment, setting each wk = (Np / 3S ajxpj)ak, when  k
is in both the sample and in class p, and Np is the
population size of the class.   It is easy to see that the
calibration equation 3S wkxpk = NP holds for all p.
Moreover, EI(Np / 3S ajxpj) . 1 for a sufficiently large
sample  because EI(3S ajxpj) = Np.  Thus, wk . ak.  The
subscript I denotes expectation treating the Ik as random
variables. 

Deming and Stephan (1940) extended the
notion of poststratification to classes that are not
mutually exclusive.   Building on the example above,
suppose x3k = 1 when individual k is of African origin,
and x3k = 0 otherwise.   Their article describes a
procedure called iterative proportional fitting or raking
that essentially performs a ratio adjustment for one class
at a time, treating the results of the last ratio adjustment
as the {ak}.  The method  recycles through the classes as
necessary (in practice four or fewer times) until a set of
calibration weights is effectively found; that is, the final
weights satisfy the calibration equation within roundoff
error.  It is possible for raking to fail to find a set of final
calibration weights, however. 

Deming and Stephan called their method “a
least squares adjustment,” but it is not.  Nevertheless,
most of the calibration weighting in practice involve a
variant of least squares, where the calibration weights
have linear the form: wk = ak(1 + ckxkg) for some vector,
g, and set of constants, {ck * k 0S}.   Deville and
Särndal (1992) observed that raking weights have the
form: 

wk = akexp(xkg). 

When xkg is small, these weights are asymp-
totically close to linear calibration weights with all the ck

equal.  The authors build on this observation showing
how to estimate the model variance and randomization
mean squared error simultaneously for an estimator
based on calibration weights of the  form: wk =
akf(ckxkg), where f(0) = f'(0) = 1. 

Section 2 develops the needed asymptotics for
this overview.  The general framework follows Isaki and
Fuller (1982), but with a stronger focus on the relative
mean squared of a calibration estimator.  Section 3
discusses the randomization and model-based properties
of Särndal, Swensson, and Wretman’s (1989) general
regression (GREG) estimator, which translates into a
calibration estimator with calibration weights in linear
form.  

Section 4 addresses simultaneous
randomization and model-based variance estimation for
such estimators.  In this, it follows Särndal et al. (1989),
Kott (1990), and Valliant (2002). When the first-stage
sampling fractions of a multi-stage sample can be
ignored, a jackknife procedure is proposed.  Its
nonstandard replicate weights have convenient
generalizations in later sections. 

Section 5 proposes a change the definition of
calibration weighting.  This allows calibration weights to
have the form: wk =  ak(1 + hkg), where hk is a row
vector with the same dimension as xk, as suggested by
Estevao and Särndal (2000). 

Section 6 reviews nonlinear calibration.  With
our asymptotic framework, Deville and Särndal’s
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penetrating insight into variance estimation follows
immediately.  A generalization of the jackknife
procedure from Section 4, although inspired by Deville
and Särndal, is new. 

 Section 7 shows how calibration weighting
ideas have been be applied by Fuller, Loughin, and
Baker (1994) and Folsom and Singh (2000) for handling
unit nonresponse and/or coverage adjustments.  In those
papers, a quasi-randomization model was assumed,
where 1/f(ckxk() was the probability of element k being
covered by the frame or responding to the sample.  By
finding a set of calibration weights such that wk =
akf(ckxkg), g estimates ( implicitly.   Here, ckxk will be
replaced by the more general hk.  This modest extension
allows nonresponse to be a function of some variable(s)
of interest (the yjk) while remaining within the
calibration framework.  Prediction-model unbiasedness
is lost.  Quasi-randomization consistency is not.   

Section 8 offers some concluding remarks
ranging from alternative methods for handling unit
nonresponse to unresolved issues surrounding sample
size.   

2. Randomization Consistency and Other
Asymptotic Properties 

The estimator, t based on a sample of n elements is said
to be a consistent estimator for a finite value, T, when
plimn64 (t) = T.    Fuller (1976, Chapter 5) showed that
a sufficient condition for consistency is 
limn64 E[(t !T)2]  = 0.   This means that both the bias
and the mean squared error of t vanishes as the sample
size grows arbitrarily large.    

For convenience, we focus on a single target
variable and assume that all yk $ 0 and zak $ 0,  where 
zk = (z1k, ..., zQk} is a vector of values associated with
element k, and Q $ P.    Moreover, we will assume that
as the population size, N, and expected sample size, n,
grow  arbitrarily large,  

0  <  Ly   #   3  yk
*/N   #  By   < 4,     *= 1, ..., 4;       

(3)
                  k0U

0  <  Lza #   3  zak
* /N   #  Bza < 4,    * = 1, ..., 4;      (4)

                  k0U

for all a,  where (n /N)Bk
-1 is one of the components of

zk.  Unlike Isaki and Fuller,  we are allowing the
possibility that N grows at an asymptotically faster rate
than n.     

Under the regularity conditions, it is not hard to
show that when E(IjIk) = Bjk # BjBk for j … k,   

Ty = O(N), and 

VarI(ty_E) =   3        3  [(Bjk !BjBk)/(BjBk)]yjyk  

                    j0U  k0U                                           
                #   3   [(1/Bk) !1] yk

2 = O(N2/n),  
                   k0U

where the last step makes use of Schwartz’s inequality
(i.e.,  3 yk

2 /Bk # [3 yk
4 3 1/Bk

2]½ ).  Since the
expansion estimator is randomization unbiased, its
relative randomization mean squared error is the same as
its relative randomization variance, which is O(1/n).
Thus, ty_E is randomization consistent with a relative
error of OP(1/¾n).

The joint selection probabilities in many
element sampling plans satisfy Bjk # BjBk whenever j …
k.   Simple random sampling, stratified simple random
sampling, and Poisson sampling are among them.  Asok
and Sukhatme (1976) showed that  Bjk = [(n!1)/n]BjBk

[1 + O(n/N)] under Sampford sampling and Goodman-
Kish sampling.  Consequently, both sampling plans are
in  this  class  as  well  for  sufficiently large  N  when 
O(N) $O(n3/2),

 In many multi-stage sampling plans, when j
and k are in the same primary sampling unit (PSU), Bjk

will usually exceed BjBk.  To extend asymptotic
properties to multi-stage samples where Bjk # BjBk need
hold only when j and k are in different PSUs, we first
divide the population into PSUs, and assume that the
number of these PSUs, N1, grows proportionally with N.
We similarly assume that the expected number of PSUs
in the first-stage sample, n1,  grows proportionally with
n.   We add the assumption that the individual
population size for each PSU i is bounded.  Finally, we
replace equations (3) and (4) with PSU-level analogues,
letting, for example, ty(i) be the sum of the y-values
across all then elements in i.  Equation (3) can be
replaced by 0 < Ly'  # 3  ty(i)

*/N1 # By'  < 4, where the
summation is over the N1 PSUs.  The proof is left to the
reader who should note that Bjk # max{Bj, Bk}, which
implies (Bjk !BjBk)/(BjBk) # max{1/Bj , 1/Bk} ! 1.    

One common sampling plan that does not lead
to randomization consistent estimation is systematic
sampling from an ordered list.   The problem is that
given any element k, the number of other elements j
such that Bjk > BjBk grows at the same rate as the
(expected) sample size. 

3. The General Regression Estimator 
Due to the popularity of the book, Model-Assisted
Survey Sampling (Särndal, Swensson, and Wretman,
1992), it is common to call the randomization-consistent
regression estimator the  “general regression” or “GREG
estimator.”  For our purposes, it has the form: 

ty_GREG  = 

  ty_E + ( Tx ! 3 akxk)( 3  ckakxk'xk)
 -1  3  ckakxk'yk,      

(5)
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                  k0S       k0S                k0S                         
        
where xk is a row vector composed of components of zk

in equation (4), ak = 1/Bk for k 0 S (as before), ck is also
a component of zk, which may or may not be a function
of xk, and limN64 3U ckxk'xk /N = M is positive definite
matrix.   This last condition means that 3S ckakxk'xk will
usually be invertible in practice.  We will assume that it
is always invertible for convenience.  

Sometimes the ck within equation (5) are
assumed to be proportional to the inverses of E(,k

2).
We do not make that assumption here.  

Let b = ( 3S ckakxk'xk)
 - 1 3S ckBk

-1xk'yk, and B =
(3U ckxk'xk)

 -1  3U ck
-1xk'yk.   The GREG estimator can be

written as ty_GREG  = ty_E + (Tx !3k0S akxk)b, which is
close to the pseudo-difference estimator: 

ty_PDIF  = ty_E + ( 3 xkB  ! 3 akxkB),                            (6)
                       k0U        k0S

where xkB plays the role of xk in the standard difference
estimator.   The pseudo-difference estimator is random-
ization unbiased.
   The GREG estimator in equation (5) can be
rewritten in calibration form as  ty_GREG = 3S wkyk, where

wk =   ak + ( Tx !3 ajxj)( 3  cjajxj'xj)
 -1 ckakxk'.            

(7)
                         j0S       j0S

Strictly speaking, the wk are functions of the realized
sample, S, and the ckak, but we suppress that in the
notation for convenience.

3.1 The Randomization-Based Properties of the
GREG Estimator

Let us assume that the regularity conditions and sample
plan are such that ty_E !Ty = OP(N/¾n),  3S akxk !Tx =
OP(N/¾n), and  3k ckakxk'fk !3U ckxk'fk =  OP(N/¾n),
where fk can be xk or yk.  Letting  ek = yk ! xkB, so that
3U cixi'ei = 0, and  3S ckakxk'ek = OP(N/¾n).  We can
express the error of ty_GREG as

ty_GREG  !  Ty    =   3 wkyk ! 3  yk  =   3 wkek ! 3  ek 
                           k0S         k0U        k0S     

     k0U

                    =   3 akek +   ( Tx !3 akxk)( 3 ckakxk'xk)
-

1              k0S                   k0S        k0S           
  

                                                    3 ckakxk'ek     ! 3 ek 
                                                  k0S                   k0U

                    =  3 akek ! 3 ek   +  Op(N/n).            (8)
                          k0S        k0U

Since ek #yk + *xkB*, it is not hard to see the GREG
estimator is randomization consistent with a relative
randomization bias and mean squared error of
asymptotic order 1/n.  The randomization bias is an
asymptotically insignificant contributor to the mean
squared error, mse,  when plimn64(n mse /N

2) > 0, a mild
condition violated when nearly all the ek in the
population are zero, which we assume not to be the case.

3.2 Model-based Properties of the GREG
Estimator

Suppose the yk are random variables that satisfy the
linear model in equation (2).  In addition, assume
E(,k*{xg * g0S}, {Ig * g0U}) = E(,k,j*{xg * g0S}, {Ig *
g0U}) = 0 for k … j, and E(,k

2*xk, Ik) = Fk
2.  The Fk

2

need not be known.  Moreover, there is no reason that Ik

cannot be a function of the components of zk.
It is easy to see that as long as the regression

weights satisfy the calibration equation, 3S wkxk = Tx ,
ty_GREG will be model unbiased.  Its model variance, as
well as the model variance of any calibration estimator,
is

 E,[(ty_GREG !Ty)
2] 

              =  E,[( 3 wkyk ! 3 yk)
2]

                         k0S        k0U

              =  E,[( 3 wk,k !3 ,k)
2]

                        k0S        k0U

              =  3 wk
2Fk

2 ! 2 3 wkFk
2 + 3 Fk

2

                 k0S              k0S          k0U

              =  3 wk
2Fk

2 ! 3 wkFk
2 ! ( 3 wkFk

2 ! 3 Fk
2)

                     k0S            k0S             k0S           k0U

               =  3 wk
2Fk

2 ! 3 wkFk
2 + OP(N/¾n),           (9)

                 k0S            k0S        

under mild condition, in particular, those where wk =
ak[1 + Op(1/¾n)], and 3S akFk

2 ! 3 Fk
2 =  OP(N/¾n).

Notice that we are using randomization-based
asymptotic results in a purely model-based context.   We
are not, however, averaging over all possible samples,
which is what randomization-based theory routinely
does. 

When Fk
2 has the form xk., for some not-

necessarily-specified vector ., then 3S wkFk
2 = 3U Fk

2,
and the model varianceof ty_GREG collapses to 
Var,( ty_GREG ) =  3S (wk

2 !wk)Fk
2 exactly. 

Alternatively, when N $ O(n3/2), the model variance is
dominated by  3S wk

2Fk
2 if Bk = O(n/N).

For a multi-stage sample it makes sense to
allow the possibility that  ,k and ,j are correlated when
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k and j are in the same PSU, but not otherwise.   Under
the regularity conditions discussed previously for a
multi-stage sample, if Bjk # BjBk for j and k from
different PSUs and  N $ O(n2), it is not hard to show
that the model variance of the GREG estimator is
dominating by 3i0S' E, [ ( 3k0S(i) wk,k)

2] , where S(i) is
the set of sampled elements in PSU i and S' is the set of
PSUs selected for the sample. 

Let us return to the model with no correlation
among the elements.  The model variance of ty_GREG is
OP(N

2/n) under mild conditions we assume to hold.  If
we are willing to drop OP(N

2/nE
3/2) terms (so that wk .

1/Bk, and  3k0S akFk
2 !3k0U Fk

2 . 0), the model variance
of ty_GREG can be approximated by E,[(ty_GREG !T)2] .
3k0S (Fk

2/Bk
2)(1 !Bk). 

The randomization expectation of the model
variance of tR is then 

Ep{E,[(ty_GREG !T)2]} .  3 (Fk
2/Bk)(1 !Bk).              

(10)
                                    k0U                
              

The right hand side of equation (10) was called
anticipated variance of the GREG by Isaki and Fuller
(1982), although the equation goes back considerably
further in the literature and “anticipated mean squared
error” would have been better.  They used it to mean
E,{Ep[(ty_GREG !Ty)

2]},  what that model anticipates the
randomization mean squared error to be.  The
expectation operators can be switched when ,k and ,k

2

are uncorrelated with Ik given zk.
Notice that the joint selection probabilities have

no effect on the asymptotic anticipated variance
expressed by the right hand side of equation (10). 
Similarly, the choice for ck does not matter in this
context.

3.3 Some Choices for the ck

If the choice for ck has no effect on the
anticipated variance of a GREG estimator, then how
should one choose the c-values in practice?  One popular
choice is to set all the ck = 1 when some component or
linear combination of components of xk is 1.
Alternatively, when xk is a scalar or only one component
of xk is positive while the rest are zero, it is popular to
set ck = 1 / max{x1k, ..., xPk}.   Under either of these two
strategies, there is a vector 8 such that ckxk8 = 1 for all
k 0 S.  As a consequence, the GREG can be put  into
projection form:  ty_GREG = Txb, where 
b = ( 3S ckakxk'xk)

 - 1  3S ckakxk'yk.  This is because  

3S akxkb = 3S ckak8'xk'xkb 
              = 8'( 3S ckakxk'xk)b 
              = 8'( 3S ckakxk'xk)(3S ckakxk'xk)

 - 1 3S ckakxk'yk 
              = 8' 3S ckakxk'yk = 3S akyk, 

so ty_GREG = 3S akyk + (Tx ! 3S akxk)b = Txb . 
Using similar reasoning, Brewer (1994)

showed that when one sets ckxk8 = (1 ! Bk) for all k 0
S instead of ckxk8 = 1, ty_GREG can be put in prediction
form:  ty_GREG =  3S yk + (Tx ! 3S akxk)b.  More
importantly, perhaps, this alternative choice for the ck

results in a set of cosmetically calibrated weights that
are empirically less likely to have a member smaller than
1.  Brewer advised bounding calibration weights from
below by 1, so that each element at least represents itself
in the estimate ty_CAL = 3S wkyk.
   The key to cosmetic calibration’s empirical
success in this regard !which is not absolute ! appears
to be that when the sampling weight, ak, is close to 1,
cosmetic calibration will not allow it to change by very
much.  Indeed, when ak = 1, then ck = 0, and wk = 1.   

4. Variance Estimation 
If model in equation (2) holds, and the element errors
are uncorrelated with E(,k

2) = Fk
2,  then equation (9)

tells us that under certain conditions, the model variance
of an estimator in calibration form is (approximately)
Vm = 3S (wk

2 !wk)Fk
2.   This suggests the following

estimator for model variance:  

vm =  3   (wk
2 !wk)rk

2,                                               
(11) 
       k0S

where rk = yk ! xkb is a sample residual, and b is any
model-unbiased estimator for the model parameter, $.
Under mild assumptions similar to the regularity
conditions in equation (4), E,(rk

2) = Fk
2 + OP(1/n), and

E,(vm) = Vm [1 + Op(1/n)]. 
From equation (8), we can conclude that

randomization mean squared error of the estimator
under Poisson sampling is approximately 
V = 3k0U [ak !1]ek

2.   If wk = ak[1 + OP(1/¾nE)], then vm

is a  reasonable  mean-squared-error  estimator   when 
rk

2 . ek
2.  Let rk = yk !xkb and ek = yk !xkB, where 

b = ( 3k0S ckakxk'xk)
 - 1 3k0S ckakxk'yk, and 

B = (3k0U ckxk'xk)
 -1 3k0U ck

-1xk'yk.  

Since b =  B[1 + OP(1/¾n)] under the regularity
conditions in equation (4), rk

2 =  ek
2  + OP(1/¾n). 

Särndal et al. (1989) proposed this
variance/mean-squared-error estimator for the GREG
under an arbitrary sampling plan

vSSW =    3     3   [(Bkj !BkBj)/Bkj](wkrk)(wjrj).          
(12)
            k0S  j0S   

Developing asymptotic properties for vSSW can be
elusive when it contains n(n!1)/2 distinct terms.  That is
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not a problem under stratified simple random sampling,
where   

            A
vST1  =  3  (n" /[n" !1]) 3 (1! n" /N") (wk rk !3 wj rj

/n")2,            "=1      k0S"                            j0S"     (13)
 
S" denotes the sample of n" units in stratum " (" = 1,
..., A), and U" the stratum population containing N"

elements.   
Let us assume the same model assumptions and

regularity conditions for a multi-stage sample as before
and that N $ O(n2).  The model variance of a calibration
estimator is then approximately 
Vm = 3i0S' E, [ ( 3k0S(i) wk,k)

2] , where S(i) is the set of
sampled elements in PSU i, and S' is the set of PSUs
selected in the first stage of sampling.

Consider a GREG estimator under stratified
multi-stage sampling, where  Bkj # BkBj for k and j from
different PSUs, and the first-stage selection probabilities
are ignorably small.  The following variance estimator
has good randomization and model-based properties
under mild conditions:

             A
vST2   =  3  (n1" /[n1" !1])
            "=1
{  3    (  3   wk rk )

2 ! ( 3       3    wk rk)
2 /n" },        

(14)
   j0S1"  k0S"j               j0S1" k0S"j 

where " denotes a first-stage stratum of PSU’s, n1" the
number of sampled PSU’s in stratum ", S1" the set of
sampled PSU’s in ", and S"j the set of subsampled
elements from PSU j of stratum ".  There can be many
stages of sampling involved.

It is not hard to show that vST2 is asymptotically
indistinguishable from the jackknife variance estimator:
        
        A
vJ =  3 ([n" !1]/n" ){  3  (ty_CAL("j) ! ty_CAL)2 },         (15)
      "=1                    j0S1" 
 
where ty_CAL("j) = 3k0S wk("j)yk, and the jackknife replicate
calibration weights are 

wk("j) =  wk ak("j) /ak + ( 3m0U xm !3m0S wm[am("j) /am ]xm)
                                       ( 3m0S am("j)cmxm'xm) -1 ak("j)ckxk',

where 
ak("j)    =  0 when k is in PSU j of stratum h, 
ak("j)    =  ak when k is not in stratum " at all, and 
ak("j)  = (n" /[n" !1])ak otherwise.  
The wk("j) are constrained so that 3k0S wk("j)xk = 3k0U xk

for all "j.  Now, under our assumptions, 

3m0U xm ! 3m0S wm[am("j) /am ]xm = 

(n" /[n" !1])(3k0S("j) wkxk !3k0S(") wkxk /n") = OP(N/n),

                                     3m0S cmam("j) xm'xm) = OP(N), 

and                                 3m0S cmam("j) xm'em = OP(N/¾n),

where S(") is the set of elements in stratum ", and S("j)
is the set of elements in PSU j of stratum ".  As a result,

ty_CAL("j) ! ty_CAL =  3k0S wk("j)ek  ! 3k0S wkek = 
(n" /[n" !1])( 3k0S(") wkek /n" ! 3k0S("j) wkek ) +
OP(N/n3/2), 

and 

vJ  = vST2 [1 + OP(1/¾n)] when plimn64(nvST2 /N
2) > 0. 

The replicate weights described above are
nonstandard.   More common is 

wk("j) =  ak("j) + 
( 3m0U xm !3m0S am("j)xm)( 3m0S cmam("j) xm'xm) -1 ckak("j)

xk', 

which “look like” the original calibration weights.  Our
version generates a vJ with a model expectation closer to
3i0S' E, [ ( 3k0S(i) wk,k)

2].  Replacing ek in the arguments
above  by ,k,  it is  not  hard  to show  that 
E,(vJ)  = Vm [1 + OP(1/n)] under mild conditions. 

5.  Redefining Calibration Weights
In their original definition of calibration weights, Deville
and Särndal (1992) required that the set of calibration
weights, {wk * k0S} minimize some distance function
between the members of the set and the original
sampling weights, the ak, subject to satisfying the
calibration equation.   As a result, the calibration
estimator, ty_CAL = 3S wkyk, was both unbiased under the
model in equation (2) and usually randomization
consistent.   

Estevao and Särndal (2002) suggested
removing the requirement that the calibration weights
minimize a distance function.  Instead, they essentially
proposed that the wk need only satisfy the calibration
equation and be of the “functional form:” 

wk = ak(1 + hkg),                                                      (16)

where hk is a row vector with the same dimension as xk

such that 3S akhk'xk is invertible, and g is a column
vector of that same dimension.  It is a generalization of
the GREG where hk effectively replaces ckxk 

It is not hard to see that 
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g = ( 3S ajhj'xj)
 -1 ( Tx !3S ajxj)'.   

 
Moreover, if the components of hk are components of zk

in equation (4), the regularity conditions hold, and  3S

ajhj'xj /N is invertible both for the realized N and in the
probability limit, then 

ty_CAL =  3S wkyk 
         =  3S akyk + ( Tx !3S ajxj)( 3S ajhj'xj)

 -1 3S akhk'yk

is randomization consistent whenever  ty_E is.   It is
unbiased under the linear prediction model in equation
(2) when   E(,k *{xg, hg * g0S}, {Ig * g0U}) = 0  for all
k 0 U.

 This suggest another alternative definition of
calibration weights: a set of weights, {wk *k0S}, such
that, 
1) the  wk satisfy the calibration equation for {xk *
k0U}, and
2), ty_CALC = 3S wkyk is randomization consistent
whenever ty_E is under mild conditions.   
That is the definition we will use.  

It follows that Estevao and Särdnal’s
functional-form calibration is indeed a form a
calibration weighting.   Borrowing from econometric
theory, Kott (2003) called the components of hk that
were not linear combinations of components of xk

“instrumental variables.”  Both Kott and Estevao and
Särdnal discussed choices for the hk that may decrease
the likelihood of some calibration weights being less
than unity. 

Space limitations prevent us from seeing how
Rao’s randomization-optimal estimator (1994), a
regression estimator that asymptotically minimizes
randomization mean squared error, can be put into
calibration form.  Breidt and Opsomer (2000) show how
a randomization-consistent estimator  incor-porating
local polynomial regression can also be put into
calibration form.   

6. Nonlinear Calibration
Building on ideas in Deville and Särndal (1992), we can
generalize the linear form for the calibration weights in
equation (15)  to 

wk_GEN = ak[1 + f(hkg*)],                                            (19)

where f is a monotonic, twice-differentiable function
with f(0) = 0,  f'(0) = 1 (f'(0) is the first derivative of f
evaluated at 0), and g* is chosen so that the calibration
equation holds.  This formulation of f(.)  is different
than that in the literature and the introduction for
convenience.   An extension of equation (19) with
potentially different f(.) across the sampled elements is
straightforward and left to the reader.  

A solution, g*, to equation (19) can be
approached iteratively.  One can start with g(0) = 0; that
is,  3S wk

(0)yk, where wk
(0) = ak[1 + f(0)] = ak .  For r = 1,

2, ..., one then sets 

g(r) =  g(r-1) + [ 3S f'(hkg
(r-1)) akhk'xk]

-1 (Tx !3S wk
(r-1)

 xk)' .

Note that g(1) equals the g  in wk_LIN =  ak(1 + hkg).  A
Taylor expansion around zero reveals f(hkg

(1)) = hkg
(1) +

Op(1/nE)  under  our usual  regularity conditions,  so  3S

wk
(1)yk = 3S wk_LIN yk + OP(N/n) = Ty[1 + OP(1/n)]. 

Furthermore, it is not difficult to see that wk_GEN =
wk_LIN[1 + OP(1/n)], an equality that proves helpful in
variance estimation.  One should be aware, however,
that there may not be a set of weights that both can be
expressed in the form of equation (19) and satisfy
calibration equation.    

The most common example in practice of a
nonlinear f is f(hkg) = exp(xkg) !1, where the values of
each of the components of xk, denoted x1k, ..., xPk, are
either 0 or 1.   That is effectively the form of Deming
and Stephan’s calibration weights computed via iterative
proportional fitting.  Many have observed that the
iterative routine described above can be used even when
the components of xk are not binary.   Moreover, the
calibration weights produced (when a set is produced)
are always nonnegative. 

Returning to the general case, since wk_GEN =
wk_LIN[1 + OP(1/n)] under conditions we assume to hold,
it is not hard to show that the variance estimators in
Section 4 apply equally well to the calibration estimator
based on the wk_GEN when rk = yk !xkbINST, and  bINST =
( 3akhk'xk)

 - 1 3S akhk'yk.   This is a mild generalization of
Deville and Särndal’s insight replacing their ckxk by hk.
Following the logic of their article, one would also
replace the ak in our bINST by wk_LIN.  That isn’t wrong !
the two versions of rk are within Op(1/¾n) of each other,
but there is little reason for doing what the authors
suggest.  

Deville and Särndal’s  insight extends further.
For the jackknife variance estimator in equation (15), the
jackknife replicate calibration weights, the wk("j), can be
computed like they were in Section 4 with hk' replacing
ckxk'; that is, 

wk("j) =  wk ak("j) /ak + (3m0U xm !3m0S wm[am("j) /am ]xm)
                                              (3m0S am("j)hm'xm)-1 ak("j)hk'.

This simplifies their computation in practice since
iteration is not required. 

7. Using Calibration to Adjust for
Nonresponse (or Undercoverage)

One popular way of handling unit (whole-element)
nonresponse is to treat response as an additional phase
of Poisson sampling.  This is the essence of  a quasi-
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randomization model.    Each element k in the original
sample, now denoted S’,  is assumed to have a
probability of response pk, and the probability of jointly
“choosing” elements k and j is pkpj.  Furthermore, the
value of pk is independent of whether k is chosen for the
original sample.   It is often possible to construct a set of
weights such that are randomization consistent under the
quasi-randomization model.

We are interested here in a particular way of
constructing those weights.  To this end, we assume that
the quasi-randomization model is correct.   Each
element has attached to it a row vector of auxiliary
variables, xk, for which Tx = 3U xj is known. Finally,
each pk is assumed to have the form: 

pk = 1/[1 + f(hk ()],                                                   (20)

where ( is unknown, hk is a row vector with the same
dimension as xk, and 3S akhk'xk /N, where S now denotes
the “subsample” of respondents,  is invertible both for
the realized N and in the probability limit.  The function
f is assumed to be monotonic and twice differentiable.
Its functional form is known, but the value of the
governing parameter, (, is not. 

The most obvious choice for hk when
postulating the response model in equation (20)  is xk

itself.  In some applications, however, some
component(s) of xk may have been chosen because it
was the best measures we had for a variable before
sampling.  An example of such a variable in a survey of
farms is the total land area of an operation.  After
collecting survey values, it may be possible to replace a
component of xk (in hk) with a better measure of the
variable in question.   In our example, response is more
likely a function of the actual land area of a farm than a
predetermined proxy for that value.  As a result,
replacing the corresponding proxy value with the survey
value is tempting.   A theoretical problem with this
procedure is discussed below. 

Using the iterative method described in the last
section to find g*, we will often be able to uncover a
row vector, g, such that Tx =  3S ak[1 + f(hk g)]xi.  As a
result, estimating Ty with ty_CAL = 3S wkyk, where the
adjusted calibration weights have the form, 

wk = ak[1 + f(hk g)], 

may have good properties under the linear prediction
model: 

yk = xk$ + ,k,  

where  E(,k *{xg, hg * g0S} ,  { Ig * g0U})  =  0 for  all
k 0 U,  Ik = 1 if element k is both in the original sample
and responds, 0 otherwise.  

Prediction-model unbiasedness is simply a

result of the weights satisfying the calibration equation
( the prefix “prediction” to needed to distinguish this
model from the quasi-random one).  Note, however, that
if some components of hk come from the survey rather
than xk, the prediction-model assumption that E(,k *hk )
= 0 can be problematic.  At the extreme, consider the
case where one such component is yk itself.  Obviously,
E(,k *yk ) is not usually 0.    In the example described
above, yk may be the total land area on farm operation
k.   Putting total land area in hk makes the associated
calibration estimator prediction-model biased. 

Whether or not ty_CAL can reasonably be called
prediction-model unbiased has no effect on its quasi-
randomization-based properties.   Since Tx =  3S ak[1 +
f(hk g)]xi, our assumptions and the mean value theorem
reveal

Tx ! 3S ak[1 + f(hk ()]xk = !  3S ak [f'(hk g
o)hk (g !

()]xk 
                                      =  OP(N/¾n) 

for some hk g
o between hk g and hk (.    From this we see

that if 3S ajf'(hj ()jhj'xj /N is invertible both for the
realized N and at the probability limit (recall that f is
monotonic so f' is never zero), then

g ! ( = ! { 3S ajf'(hj g
0)jhj'xj }

-1{Tx ! 3S ai[1 + f(hi ()]xi

}    
         = ! { 3S ajf'(hj ()jhj'xj }

-1{Tx ! 3S ai[1 + f(hi ()]xi

}                                                                      +  OP(1/n)
.

The estimator ty_CAL  has an error of 

ty_CAL ! Ty =  3S ak[1 + f(hkg)]yk  ! 3U yk

                    
                 =  3 ak[1 + f(hkg)]ek  ! 3 ek ,  

where ek = yk ! xk (3U f'(hj()pj hj'xj)
-13U f'(hj ()pj hj'yj ,

and pj = 1/[1 + f(hj ()] so 3S ak f'(hk () hk'ek  =
Op(N/¾n).  Continuing:

ty_CAL ! Ty =   3  ak[1 + f(hk ()]ek ! 3  ek  +
      k0S                           k0U 

                                     3  ak { f(hk g) ! f(hk () }ek     
                                   k0S

                 =   3  ak[1 + f(hk ()]ek ! 3  ek  + 
                               3 ak f'(hk () hk (g ! ()ek + Op(N/n)

 
                 =  3  ak[1 + f(hk ()]ek ! 3  ek  +  

                                             (g ! ()' 3 ak f'(hk () hk'ek + Op(N/n)  

                 =  3  ak[1 + f(hk ()]ek ! 3 ek   +  Op(N/n)   
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        k0S                            k0U                    (21)

Thus, ty_CAL is quasi-randomization consistent under mild
conditions whenever t = 3S ak[1 + f(hk ()]yk is.

To estimate the quasi-randomization mean
squared error of ty_CAL (i.e., the estimator’s
randomization mean squared error under the quasi-
randomization model), we first note that the probability
that elements k and j, k … j, are both in the respondent
subsample is Bkj* = Bkjpkpj.  Let Bk* = Bkpk, and recall
that ak = 1/Bk and 1/pk =  ak[1 + f(hk ()].  From equation
(21), we see that  the randomization mean squared error
of ty_CAL is approximately

EI[(ty_CAL ! Ty)
2] . 

                                     3    3   (Bkj* ! Bk*Bj*)(ek /Bk*)(ej /Bj*) 
                     k0U j0U

                   =   3  (1 ! Bk*)ek
2/Bk*   +   

                       k0U                               

                           3    3  (Bkj ! BkBj)(ek /Bk)(ej /Bj)   (22)
                          k0U j0U
                              k … j

If the original sample is Poisson, then vm in
equation (11) with   

rk =  yk ! xk [ 3  aj f'(hj g) hj'xj]
-1 3 aj f'(hj g)hj'yj,       

(23)
                    j0S                      j0S 

serves as both a reasonable estimator for prediction-
model variance and quasi-randomization mean squared
error under mild conditions, since wk . 1/Bk* and rk .
ek.   A close relative of the non-intuitive sample residual
in equation (23) can be found in Folsom and Singh
(2000).    

For a general design, we can get close to the a
good variance/mean-squared-error estimator by starting
with vSSW in equation (12), where rk is again defined by
equation (23).  We need to add a term like

vadd =  3 (wk
2Bk ! wk)rk

2,
         k0S

so that 3U (1 ! Bk*)ek
2/Bk* in equation (22) is estimated

by 3S (wk
2 ! wk)rk

2 rather than 3S wk
2(1 ! Bk)rk

2.   This
correction to vSSW in equation (12) has good prediction-
model-based properties when the ,k are uncorrelated,
and Fk

2 = xk., for some ..  It can be made even the in
the absence of nonresponse.   

When the actual sample is multistage, and the
first stage selection probabilities are ignorably small,
vST2 in equation (14) can be used as the variance/mean-
squared-error estimator with rk defined once more by
equation (23).  

Observe that  when  there is  no nonresponse,
 ( = 0, so that 
f'(hj g) = f'(0) + f''(0)hj g + OP(1/n) =  f'(0) + OP(1/¾n).
As a result, the f'-terms in equation (23) are all
asymptotically identical and can be removed from the
definition of rk without altering the asymptotics of the
variance/mean-squared-error estimators.   

When f is linear, f'(2) =  f'(0) = 1, and the rk in
equation (23) are computed as if there were no
nonresponse.  The same holds true for the he
variance/mean-squared-error estimator vST 2.
Unfortunately, this f corresponds to an awkward
response-probability function:  pk = 1/(1 + hk().  Fuller,
Loughin, and Baker (1994) made these observations for
the case where hk = ckxk.  

The jackknife, vJ, in equation (15) can be
computed with these jackknife replicate weights: 

 wk("j) =  wk ak("j) /ak + 

 ( 3  xm ! 3  wm[am("j) /am ]xm)( 3 am("j)f'(hm g) hm'xm) -1 

m0U     m0S                         m0S    
                                                        cmak("j)f'(hk g) hk'.  
                                                                                 (24)

Again when f'(2) =  f'(0) = 1, vJ can be computed as if
there were no nonresponse.

Like Fuller et al., Folsom and Singh (2000)
assumed hk = ckxk, but they allow the choice of f to vary
with k.  We leave the straightforward analysis of that
extension to the reader.  For our purposes, the f in their
generalized exponential (quasi-randomization) model
is 

                     (u !1)(c ! l)exp(hk() ! (u !c)(1 ! l)
f(hk()  =   ———————————————— ,   
                           (u !c) + (c ! l)exp(hk()
                                                                                (25)

where  l $ 0, 1 < u # 4,  and  l < c # u  are
predetermined constants.   It is  easy to see  that when 
hk( = 0, 1 + f(hk() = c; when hk( = ! 4, 1 + f(hk() =
l; and when hk( =  4,  1 + f(hk() = u.  Thus, l and u are
the lower and upper bounds of 1 + f(hk(), respectively,
while c can be thought of as its center.   Folsom and
Singh’s version of equation (25) replaces c, u, and  l
with ck, uk, and  lk, respectively.   

When c = 1, u = 4, and  l = 0 in equation (25),
f(hk() = exp( hk() ! 1, and so pk = exp(!hk().  That is
to say, the log of the probability of response is a linear
function of hk.   When  c = 2, u = 4, and  l = 1,
f(hk()=exp( hk(), and pk = [1 + exp(!hk()]-1, so the
probability of response is a logistic function of hk.

Folsom and Singh pointed out that the
treatment of nonresponse through calibration weighting
can also be used to adjust for undercoverage.  In the
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context,  the quasi-random phase as sampling occurs
conceptually before the actual sample is drawn.  The
population associated with the sampling frame is
assumed to be a Poisson sample from a hypothetical
complete population  for which the vector Tx must be
known.  The frame population becomes S’, while the
hypothetical complete population is U.  The probability
that element k 0 U is in S’ is assumed to be modeled
correctly by equation (20).   If the first (from U to S’)
and second (from S’ to S) phases of sampling are
independent, then all the theory developed for using
calibration weighting to handle nonresponse carries over
to handling undercoverage.

The authors also noted that overcoverage
(duplication) or a combination of under and
overcoverage can be handled in the same way.  The
definition of pk in equation (20)  becomes the expected
number of times k is in the frame, which can now
exceed 1 due to potential duplication.     

We have seen that the calibration weights
described in this section can produce estimators with
good prediction-model-based properties (under equation
(2)) when the prediction model is correct (in particular,
E(,k *{xg, hg * g0S}, { Ig * g0U}) = 0),  and good quasi-
randomization properties when the response or coverage
model (in equation (20)) is correct.  In some sense, one
model provides protection against the failure of the
other.  See Kott (1994).  

8. Concluding Remarks 
When faced with unit nonresponse, many have
attempted to estimate the element probabilities of
response, pk = 1/[1 + f(hk ()], directly.  This method
requires one to have  information on hk for every
element in the sample whether it responded to the survey
or not, but hk need not have the same dimension as xk.
 The direct-adjustment method is generally not available
for handling coverage errors. 

Fuller (2002) noted that there can be an extra
term in the quasi-random mean squared error of 

t y_GREG=   3S ak*yk + 
                    ( Tx !3S aj*xj)( 3S cjaj*xj'xj)

 -13S ckak*xk'yk,

where S is the respondent subsample, 
ak* = ak[1 + f(hkg)], 
and g is a consistent direct estimator for the quasi-
randomization model parameter, (. 

  To control the magnitude of the weight
adjustment due to nonresponse,  Little (1986)
recommended that one estimate g explicitly and then
divide the sample into C mutually exclusive cells !
often call “poststrata” ! based on their fitted f(hkg)
values.   One can then compute the adjusted weight for
each element k in cell c as wk_ADJ = (3S’(c) wg /3S(c) wg)wk,
where S’(c) is that part of the original sample in cell c,

S(c) is the subsample of S’(c) that respond, and wk is the
sampling weight assigned to element k after sampling
but before quasi-random subsampling.      This 
approach  assumes   that   each 
element in a cell has (roughly) the same probability of
response.
  Estimating the variance/mean-squared-error of
ty_ADJ = 3S wk_ADJyk is beyond the scope of this paper.
Whether of not the wk are calibrated to anything, there
is a different calibration after the quasi-random phase,
where the wk_ADJ do not allow the estimated number of
farms in a cell to change.   See Estevao and Särndal
(2002) for a discussion of nine different ways to
calibrate a two-phase sample.   

In the last section we noted that it is possible
for components of hk in equation (20) to be unknown
before response.  When such an hk is used in calibration,
it might no longer to reasonable to assert that the
resulting ty_CAL is prediction-model unbiased.   This is
particularly troublesome when nonresponse is modest
compared to the sample size.  An intriguing idea is to
calibrate in two phases.  The first phase adjusts for the
difference between Tx and 3S’ akxk, and would not
include any components in hk unavailable at the time of
sampling.  The second phase adjusts for the difference
between  3S’ akxk and 3S akxk and would include
component variables only available after the respondent
subsample is enumerated.  A more thorough analysis of
this idea must wait for another time.       

Let us return to the situation where the response
probability in equation (20) is estimated explicitly.  An
alternative way of incorporating fitted f(hkg) values into
the estimation presents itself based on methodology
developed in the text.  Divide the fitted values into P
cells, where P is again the dimension of xk, and let dk be
a row vector of indicator variables for the P cells.  By
setting each 

wk = ak[1 + (Tx !3S ajxj)(3S ajdj'xj)
 -1 dk'], 

one computes a set of weights for the respondent
subsample  that, unlike {wk_ADJ} above, satisfies the
calibration equation for the respondent sample.  Because
of the nature of dk, this linear method returns the  same
set  of  calibration  weights  as  fitting  wk = 
ak exp(dkf) would – if both produce a set of weights.
Note that since calibration weights can be negative with
the linear method, it may be able to find a set that the
generalized raking method cannot.   The linear method
effectively scales the ak -value for every element in the
same cell by a fixed amount.  Thus, it is unlikely to
produce surprisingly small or surprisingly large weights
when the dimension of xk is small compared to the
sample size. 

At what point P becomes too large in practice
for the sample size ! recall P is assumed to stay fixed as
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n grows asymptotically large ! remains an unanswered
component of the broader question of  how  “best” to
create calibration weights.  Brewer (private com-
munication) has speculated that P should not exceed ¾n.

One would think that in the absence of
nonresponse or coverage errors, a version of Rao’s
randomization-optimal estimator would be optimal at
least in terms of minimizing randomization mean
squared error for a given xk.  Recent empirical work by
Montanari and Ranalli (2002) show this not always to be
the case when the number of strata is large compared to
the sample size.   Moreover, there are often other
considerations: attaining a small model variance for a
particular realized sample, making sure that no
calibration weight is less than 1 (except, perhaps, when
adjusting for duplication).    A satisfying theory relating
xk, hk, and f with the size of model variance and/or
randomization mean squared error is presently beyond
our grasp.
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