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1. Introduction

Two-phase sampling designs are com-

monly used for large-scale surveys in

which a complete population sampling

frame is not available or the variables of

interest is expensive or difficult to col-

lect. One or both of these situations of-

ten occur in natural resource surveys, for

instance. In those types of surveys, it

is also common to have access to auxil-

iary information, which can be used to

improve the accuracy of estimation. In

two-phase sampling designs, the auxiliary

information may exist at two levels. Es-

tevao and Särndal (2002) used the term

complete auxiliary information to refer to

situation in which auxiliary information

is available at both the population and

the phase one level. They showed that

there are nine different ways to incorpo-

rate complete auxiliary information into

two-phase calibration estimation. In this

article, we consider two of those ways in

the context of two-phase regression esti-

204 Snedecor Hall, Ames, IA 50011
lixiaoxi@iastate.edu

mation.

Regression techniques are a common way

to incorporate the auxiliary information

into the survey estimation for two-phase

sampling, using either linear, ratio or

categorical (post-stratification) models.

Different two-phase regression estimators

were studied by Särndal and Swensson

(1987) and Särndal et al. (1992, ch. 9).

Armstrong and St. Jean (1994) applied re-

gression estimators for a two-phase design

in a survey of Statistics Canada. Deville

and Särndal (1992) discussed a general

method of calibration estimation as an

alternative to regression estimation, and

noted the close connections between both

approaches. Dupont (1995) also discussed

the relationship between regression and

calibration. Estevao and Särndal (2002)

expressed their two-phase estimators as

calibration estimators, even though they

can also be viewed as regression esti-

mators. Sitter (1997) and Fuller (1998)

examined replication variance estimation

for the two-phase regression estimator.

The outline of this article is as follows.

In Section 2 we introduce the two regres-

sion estimators that are considered in this

article. One was discussed by Särndal

et al. (1992). The other was described
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by Fuller (1998). For brevity we will

call them Särndal’s estimator and Fuller’s

estimator, respectively, in future discus-

sions. The calibration properties of these

two estimators are examined in Section 3.

Section 4 reports a simulation study that

compares the finite sample properties of

these two regression estimators. Some

conclusions are drawn in Section 5.

2. Two Regression Estima-

tors

The objective of regression estimators is

to use available auxiliary information to

improve the precision of estimates. In

the context of two-phase sampling, the

study variables y are known only for the

second-phase sample, whereas the auxil-

iary variables xk are known either at the

population level or phase one level. As

stated in the previous section, we study

the complete auxiliary information case,

where subsets of the variables in xk are

known for phase one and for the popula-

tion.

First, we define some notation. We con-

sider sampling from a finite population U .

Let sa and s denote the first-phase and

second-phase samples, respectively, and

write πak = Pr(k ∈ sa) for the phase

one inclusion probability for k ∈ U and

πk|sa = Pr(k ∈ s|k ∈ sa) for its phase two

conditional inclusion probabilities, and let

π∗k = πk|saπak. Let x1k be the vector of J1

auxiliary variables known for all k ∈ U ,

where J1 ≥ 2 since x1k will be assumed

to contain the intercept. Let x2k be the

vector of J2 auxiliary variables known for

all k ∈ sa. For an element k ∈ sa, the

complete auxiliary information is thus the

vector

x′k = (x′1k,x
′
2k).

Finally, let y denote the vector of J3 study

variables.

In order to introduce the notation for the

different estimators, let z denote a generic

variable (either y or x), and

z̄N = the population mean of z;

z̄πa = the π-weighted estimator of the

population mean of z, based on phase one;

z̄π = the π-weighted estimator of the pop-

ulation mean of z, based on phase two;̂̄zrega = the regression estimator for the

population mean, based on phase one

(and hence using x1 only as auxiliary vari-

able);̂̄zreg = the regression estimator for the

population mean, based on phase two (us-

ing both x1 and x2). We will consider two

types:

̂̄zFreg = Fuller’s estimator,̂̄zSreg = Särndal’s estimator,

further defined below.

β̂za = the weighted regression coefficients

for zk on phase 1 (using x1 only);

β̂z = the weighted regression coefficients

for zk on phase 2, using both x1 and x2;

β̂1z = the weighted regression coefficients

vector for zk on phase 2, but only using

x1;

For simplicity, we consider a single y

(J3 = 1) in the remainder of the discus-

sion. The first regression estimator con-

sidered is given by Särndal et al. (1992),

and is defined as
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̂̄ySreg =
1

N

(∑
U

ŷ1k +
∑
sa

ŷk − ŷ1k

πak

+
∑
s

yk − ŷk
π∗k

)
. (1)

where

ŷ1k = x′1kβ̂1y for k ∈ U ;

β̂1y =

(∑
s

x1kx
′
1k

π∗k

)−1∑
s

x1kyk
π∗k

. (2)

ŷk = x′kβ̂y for k ∈ U ;

β̂y =

(∑
s

xkx
′
k

π∗k

)−1∑
s

xkyk
π∗k

. (3)

The other is given by Fuller (1998), as

̂̄yFreg = ȳπ +

(
x̄1N − x̄1π̂̄x2rega − x̄2π

)′
β̂y. (4)

where ̂̄x2rega is the estimator for x̄2N ,

based on the regression of x2k on x1k,

given by

̂̄x′2rega = x̄′2πa + (x̄1N − x̄1πa)
′ β̂x2a

.

where β̂x2a
contains the regression coeffi-

cients constructed from sa,

β̂x2a
=

(∑
sa

x1kx
′
1k

πak

)−1∑
sa

x1kx
′
2k

πak
.

Note that β̂x2a
can be a matrix if J2 > 1.

The estimator ̂̄ySreg in (1) is constructed

based on two assumed superpopulation

models. Model ξ1 is the model for the

relationship used to construct the ŷ1k in

(2):

Eξ1(yk) = x′1kβ1,

Varξ1(yk) = σ2
1,

and model ξ2 is used for ŷk in (3):

Eξ2(yk) = x′kβ2,

Varξ2(yk) = σ2
2.

In these models, it is reasonable to assume

that σ2
2 < σ2

1, since ξ2 contains additional

predictor variables, but this is not used

in the estimation. The estimator ̂̄ySreg
in (1) is composed of three components.

The first one represents a population-level

model prediction based on ξ1, the second

component is a first-phase sample “cor-

rection” component based on model ξ2,

and the third one is an additional second-

phase sample correction component.

Similarly, the Fuller estimator in (4) is

based on two assumed superpopulation

models. The first one is the same model

ξ2 as above, and the other is ξ3, given by

Eξ3(x2k) = x′1kβ3,

Varξ3(x2k) = σ2
3.

The estimator ̂̄yFreg in (4) can be rewritten

as

̂̄yFreg =
1

N

[∑
U

(
x′1k , x′1kβ̂x2a

)
β̂y

+
∑
sa

(
0 , x′2k − x′1kβ̂x2a

)
πak

β̂y

+
∑
s

yk − x′kβ̂y
π∗k

 . (5)

In this form, the Fuller’s estimator is seen

to be similar to Särndal’s estimator in

(1) and to be composed of a model-based

population prediction and two correc-

tion components corresponding for both

phases.

We would like to compare the statis-

tical properties of both estimators. It
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is well-known that, under assumptions

not further explored here, both estima-

tors are design consistent and asymptot-

ically design unbiased, so that both will

be “well-behaved” for sufficiently large

sample sizes. However, it is of interest

to know whether one of these estimators

will generally be more efficient than the

other, in either an asymptotic or finite

sample sense. Because they involve differ-

ent models as explained above, there is no

easy way to answer this question in gen-

eral. Hence, in this article we will com-

pare both estimators in two ways. First,

we will evaluate their calibration proper-

ties. Second, we will conduct a simulation

experiment to compare the design mean

squared errors of both estimators.

3. Calibration Properties of

Estimators

Calibration is an approach that “modi-

fies” a design-based estimator ȳπ to incor-

porate auxiliary information. For a gen-

eral discussion of calibration and its prop-

erties, see Deville and Särndal (1992).

In our study, calibration implies that

we require the phase two weighted aver-

ages of the auxiliary variables to be ex-

actly equal to the population mean in

the case of x1k, and to the estimated

population mean based on the first-phase

sample for the x2k. When we use cali-

brated weights to estimate the population

means for other variables, the properties

of the resulting estimators will depend on

the strength of the association between

these variables and the calibration vari-

ables. For sufficiently strong relationship

between the study variable and calibra-

tion variables, the calibrated estimators

should be more efficient than uncalibrated

estimators.

Now we calibrate (1). Replace yk by x′k =

(x′1k,x
′
2k) and define

β̂x2
=

(∑
s

x1kx
′
1k

π∗k

)−1∑
s

x1kx
′
2k

π∗k
,

so that

̂̄xSreg =
(
x̄1N , x̄′2πa + (x̄1N − x̄1πa)

′ β̂x2

)
, (6)

the estimated mean for xk. Hence, we see

that ̂̄ySreg is calibrated exactly for x̄1N , and

is calibrated for a regression estimator of

x̄2N .

Secondly, we calibrate (4). Replace yk by

x′k = (x′1k,x
′
2k) again and we obtain

̂̄xFreg =
(
x̄1N , x̄′2πa + (x̄1N − x̄1πa)

′ β̂x2a

)
. (7)

Hence, ̂̄ySreg is also calibrated exactly for

x̄1N and for a phase one regression esti-

mator of x̄2N .

We can see that the only difference be-

tween (6) and (7) is that (6) uses β̂x2

as the regression coefficient vector while

(7) uses β̂x2a
. Since β̂x2a

is computed on

the first phase sample, which has typically

much larger sample size than the second

phase sample, we conclude that Fuller’s

estimator has better calibrated weights,

because it exploits all the observations

available in sa in the computation of β̂x2a
.

In contrast, Särndal’s estimator only uses

observations in s to compute the regres-

sion coefficient, and hence appears to not

make efficient use of the data. It therefore

seems reasonable to assume that Fuller’s
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estimator might have better finite sample

properties than Särndal’s estimator, even

if asymptotically this difference is negligi-

ble.

4. Simulation

We conducted a simulation to study the

performance of the two regression estima-

tors. For this purpose, finite populations

of size N = 10, 000 were created using the

model

yk = 10 + 5x1k − 5x2k + εk, (8)

where εk ∼ N(0, σ2
ε), and we will investi-

gate two levels for σ2
ε . We also consider

three cases for the relationship between

x2k and x1k. In the first two cases, x2k

and x1k are linearly related through the

model

x2k = 1− x1k + ηk, (9)

with x1k ∼ U(0, 1) and ηk ∼ N(0, σ2
η), for

two levels of σ2
η. In the third case, x1k and

x2k are linearly independent and are both

generated as U(0, 1).

By crossing the cases for the model for

yk with those for the model for x2k, we

obtain six different scenarios for the over-

all population model, which we will iden-

tify by the coefficients of determination

of both models, R2
y and R2

x2
. Specifi-

cally, we varied the model for x2k and

the model variances so that the six cases

correspond to the combinations (R2
y, R

2
x2

)

with R2
y = 0.25 or 0.75, and R2

x2
= 0, 0.25

or 0.75.

Two-phase samples were drawn from each

of the populations, with simple random

sampling without replacement in both

phases. The sample sizes were na = 2, 000

for phase one, and n = 20 or 200 for

phase two. For each sample, we calcu-

late ̂̄yF
reg , ̂̄ySreg and ̂̄yπ for all six popula-

tion. For comparison, we also computê̄yπ, the phase two expansion estimator of

ȳN . Each simulation setting is repeated

B = 10, 000 times.

Table 1 reports the simulated bias of ̂̄yFreg,̂̄ySreg and ̂̄yπ for all populations and phase

two sample sizes, as a percentage of the

finite population mean ȳN . This table

shows that all three estimators are essen-

tially unbiased, even at the smaller sam-

ple size, since the largest simulated bias

was approximately 0.3% at n = 20.

Now we compare the design variances

(or, equivalently, mean squared error) of

Särndal’s and Fuller’s estimators. Ta-

ble 2 reports the values of V (̂̄yFreg) and

V (̂̄ySreg) for different populations and two

phase two sample sizes, as a percentage of

V (̂̄yπ). The relative MSEs of both estima-

tors appear to be primarily determined by

the quality of the regression model for the

yk as a function of the xk, with the mod-

els with high R2
y achieving relative MSE

less than 0.3 in all cases, while the mod-

els with low R2
y achieve relative MSEs be-

tween 0.75 and 0.9.

A striking feature of the results in Table

2 is that there is almost no difference be-

tween V (̂̄yFreg) and V (̂̄ySreg). While the

effect of the second regression model is

indeed visible in the Table 2, it is very

small. This appears to contradict the re-

sults from Section 3, since equations (6)

and (7) showed a difference in the calibra-

tion properties of both estimators through

the regression coefficients β̂x2a and β̂x2.

Hence, in order to study the effect of these
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(¯̄̂y
F

reg − ȳN)/ȳN(%) (¯̄̂y
S

reg − ȳN)/ȳN(%) (¯̄̂yπ − ȳN)/ȳN(%)

Population n = 200 n = 20 n = 200 n = 20 n = 200 n = 20

1: R2
y = 0.75, R2

x2
= 0.75 0.011 -0.035 0.011 -0.035 -0.008 -0.030

2: R2
y = 0.75, R2

x2
= 0.25 -0.010 0.022 -0.009 0.022 -0.023 0.028

3: R2
y = 0.25, R2

x2
= 0.75 0.017 0.115 0.017 0.115 -0.029 0.053

4: R2
y = 0.25, R2

x2
= 0.25 0.035 0.305 0.035 0.305 0.047 0.168

5: R2
y = 0.75, R2

x2
= 0 0.002 -0.008 0.002 -0.007 0.010 0.069

6: R2
y = 0.25, R2

x2
= 0 -0.018 0.135 -0.018 0.135 -0.037 0.168

Table 1: Simulated relative bias for ̂̄yFreg, ̂̄ySreg and ̂̄yπ for six populations and two phase

two sample sizes (in percent).

Var(̂̄yFreg)/Var(̂̄yπ) (%) Var(̂̄ySreg)/Var(̂̄yπ) (%)

Population n = 200 n = 20 n = 200 n = 20

1: R2
y = 0.75, R2

x2
= 0.75 26.41 27.45 26.41 27.45

2: R2
y = 0.75, R2

x2
= 0.25 27.14 27.62 27.16 27.65

3: R2
y = 0.25, R2

x2
= 0.75 76.44 86.27 76.44 86.28

4: R2
y = 0.25, R2

x2
= 0.25 77.16 86.81 77.16 86.82

5: R2
y = 0.75, R2

x2
= 0 28.24 28.53 28.25 28.56

6: R2
y = 0.25, R2

x2
= 0 76.34 86.22 76.35 86.23

Table 2: Values of Var(̂̄yFreg)/V(̂̄yπ) and Var(̂̄ySreg)/V(̂̄yπ) for different populations and

selected phase 2 sample sizes (in percent).
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different regression fits on the properties

of both estimators, we computed the val-

ues of Var(x̄2πa), Var
(
(x̄1N − x̄1πa)

′ β̂x2a

)
,

and Var
(
(x̄1N − x̄1πa)

′ β̂x2

)
for different

populations and different phase two sam-

ple sizes.

Table 3 shows the ratio of variances of the

regression components of both calibrated

estimators,

Var
(
(x̄1N − x̄1πa)

′ β̂x2a

)
Var

(
(x̄1N − x̄1πa)

′ β̂x2

) ,
and the ratio of the variance of expansion

component over the regression compo-

nent, Var(x̄2πa)/Var
(
(x̄1N − x̄1πa)

′ β̂x2

)
.

An interesting pattern emerges from these

results. For the first four populations,

where x1k and x2k are linearly related, the

variances of the regression components

are quite similar to each other, with the

smallest variance ratio equal to 0.85 for a

phase two sample size of 20 and the low

R2 model. Hence, for the first four popu-

lations, the calibration for both Särndal’s

and Fuller’s estimators is almost identical

because the regression components of the

calibration are estimated with approxi-

mately the same precision.

For populations 5 and 6 where x1k is

independent of x2k, the variability of

(x̄1N − x̄1πa)
′ β̂x2a

is much smaller than

that of (x̄1N − x̄1πa)
′ β̂x2

for both sample

sizes, so that there is indeed a big differ-

ence in the regression component of the

calibration. However, this difference does

not translate into a loss of efficiency for̂̄ySreg relative to ̂̄yFreg, because when x1k is

independent of x2k, the variability of the

regression component of the calibration,

Var
(
(x̄1N − x̄1πa)

′ β̂x2

)
, is dwarfed by the

variability of the expansion component of

the calibration, Var(x̄2πa).

Hence, there appears to be a “self-

balancing” character in Särndal’s regres-

sion estimator that causes the apparent

calibration inefficiency in its formulation

to not have an appreciable effect on its

overall statistical properties. Note how-

ever this inefficiency might still appear

in contexts where the regression models

are more complicated, or where estima-

tors are computed for small domains, so

that the finding in this simulation study

should be interpreted cautiously at this

point.

5. Conclusion

In this article, we studied the two regres-

sion estimators for the complete auxil-

iary information case. While they both

rely on the same auxiliary information,

they are not directly comparable because

of incompatibilities between the underly-

ing superpopulation models. Hence, cal-

ibration was used to compare them. We

showed that Fuller’s regression estimator

has an advantage over Särndal’s because

it uses more information for the regres-

sion coefficients. However, the reported

simulation study shows that these two re-

gression estimators are extremely similar

in two ways. First, they produce almost

identical estimators for population means.

Secondly, their design mean squared er-

rors are very similar too, even when the

sample sizes are very small.

Note that the calibration inefficiency of

Särndal’s estimator might still have an

effect in contexts where the regression
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Var
(
(x̄1N − x̄1πa)

′β̂x2a

)
Var

(
(x̄1N − x̄1πa)

′β̂x2

) Var(x̄2πa)

Var
(
(x̄1N − x̄1πa)

′β̂x2

)
Population n = 200 n = 20 n = 200 n = 20

1: R2
y = 0.75, R2

x2
= 0.75 0.99 0.99 1.35 1.33

2: R2
y = 0.75, R2

x2
= 0.25 0.98 0.86 3.92 3.45

3: R2
y = 0.25, R2

x2
= 0.75 0.99 0.97 1.35 1.29

4: R2
y = 0.25, R2

x2
= 0.25 0.99 0.85 4.09 3.36

5: R2
y = 0.75, R2

x2
= 0 0.09 0.01 214.97 18.57

6: R2
y = 0.25, R2

x2
= 0 0.09 0.01 218.91 17.20

Table 3: Comparison of Var(x̄2πa), Var
(
(x̄1N − x̄1πa)

′ β̂x2a

)
and

Var
(
(x̄1N − x̄1πa)

′ β̂x2

)
for different populations and different sample sizes.

models are more complicated, or where

estimators are computed for small do-

mains, so that the finding in this simu-

lation study should be interpreted cau-

tiously at this point. Nevertheless, it ap-

pears that in many situations, the choice

between the two estimators can be driven

by application requirements, not by effi-

ciency concerns.
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