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1. Introduction

Nonresponse is a source of error in surveys that ap-
pears when part of the data to be collected are not
observed. It has the potential to bias significantly
the results of the survey and, consequently, to pre-
vent valid inference. Typical causes for nonresponse
involve refusal to participate in the survey, refusal
to answer a question or unavailability of the inter-
viewee. Nonresponse might also arise if the sampled
unit can not be reached or located, or if they fail to
have a measurement obtained.

Most methods to analyze data that contain non-
response use adjustment procedures to compensate
for the missing data. Kalton (1983) and Kalton and
Kasprzyk (1986) classify such procedures as weight-
ing adjustments and imputation techniques. Weight-
ing adjustments are used to compensate for unit
nonresponse, which occurs when no value for the
characteristics of interest is recorded for the unit.
These adjustments increase the weights of the units
that respond to the survey in order to compensate
for those who do not. Imputation techniques, on
the other hand, are most often intended to handle
item nonresponse, which occurs when there is par-
tial data collection for some items of a given unit.
We will only consider the case of unit nonresponse
in this article.

In the context of unit nonresponse, when no value
for the characteristics of interest is recorded for the
unit, one possible method to compensate for the
presence of nonrespondents weighs the remaining
observations by incorporating estimates of the prob-
abilities that the units are respondents. These prob-
abilities are also known as response probabilities
or propensity scores, following the Rosenbaum and
Rubin (1983, 1985) theory for observational stud-
ies. This method was used by Nargundkar and
Joshi (1975) to correct the Horvitz-Thompson es-
timator to account for the nonresponse. This same
idea was applied by Cassel et al. (1983) to adjust
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the regression estimator. However, other types of
weights based on response probabilities are possible
as well. See, for example, the adjustments discussed
in Chaubey and Crisalli (1995).

A critical step of the weighting with response
probability procedure is the estimation of such prob-
abilities. This step is usually processed under mod-
els relating the response occurrences and auxiliary
variables. Using the terminology of Oh and Scheuren
(1983), popular response models are the uniform
global response mechanism (UGRM), which assumes
equal response probabilities for all units in the sam-
ple, and the uniform response mechanism within
subpopulations (URMWS), where the response prob-
abilities are constant within each subpopulation or
group. These models are popular in practice, be-
cause they only require simple ratio adjustments to
the estimators.

A more sophisticated class of response models use
an explicit parametric function to relate the response
probabilities and the auxiliary variables. Typical
choices for the parametric function are the logit and
the probit models. Frequently, however, there is
no a priori knowledge about the nonresponse pro-
cess to substantiate the specification of a paramet-
ric function like the logit or probit. This represents
a major disadvantage of the parametric approach to
model the nonresponse process since, if the paramet-
ric model is misspecified, the resulting estimator is
potentially biased.

It is therefore of interest to investigate the use of
more flexible estimation techniques for the response
probabilities. One particularly flexible technique is
to estimate the response probabilities by nonpara-
metric methods. Usually, these methods only as-
sume that the response probabilities are related to
the auxiliary variables by a “smooth” but unspec-
ified function. The response probabilities may be
estimated, for instance, by kernel-based smoothing
techniques (see e.g. Wand and Jones 1995).

The use of kernel smoothing methods in the nonre-
sponse context was first proposed by Giommi (1984).
In that article, the author proposed to estimate the
response probabilities at different values of an auxil-
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iary variable by the response rates within neighbor-
hoods centered at the those values. These resulting
estimator of the response function is a running mean
of the response indicators and can be also be viewed
as a simple kernel smoother that uses a uniform ker-
nel function. Giommi (1987) extends this previous
estimator using a more general kernel function. In
both articles, the author used the estimated response
probabilities to construct estimators for the popu-
lation mean according to the Cassel et al. (1983)
adjusted regression estimator. The performance of
the estimators was evaluated by Monte Carlo simula-
tion experiments. The response probability estima-
tors proposed by Giommi were also further consid-
ered by Niyonsenga (1994) and Niyonsenga (1997).
These articles addressed the nonresponse problem
following the method of selection in phases proposed
by Särndal and Swensson (1985) and Särndal and
Swensson (1987), where unit and item nonresponse
correspond to subsequent phases in a multi-stage
sampling framework.

In the current article, we extend the kernel-based
approach of the previous authors in two ways. First,
we will extend the estimation procedure from kernel
regression to local polynomial regression, a method
generally considered superior in the nonparametric
literature (see Wand and Jones 1995, p.130). Sec-
ond, we will develop an asymptotic framework in
which the theoretical properties of the nonparamet-
rically weighted estimator can be formally derived,
and show that the estimator is consistent under the
joint distribution of the sampling design and the re-
sponse mechanism. Note that our results are directly
applicable to the estimators in Giommi (1984) and
Giommi (1987), because under equal-probability de-
signs, these estimators can be viewed as local poly-
nomial estimators with zero-degree polynomials.

The remainder of the article is organized as fol-
lows. Section 2 introduces the survey framework and
the notation to account for nonresponse. Section 3
presents the construction of the proposed estimator
for the population mean under nonresponse, and in
Section 4, we establish the properties of the estima-
tor. Finally, in Section 5, we summarize the main
findings of the article. The derivations of the the-
oretical results in the article are found in Da Silva
(2003).

2. Survey and Response Framework

We consider a finite population U = {1, 2, ..., N},
where N is known. Suppose that associated with U
there are p characteristics of interest, Y1, Y2, · · · , Yp,
and q auxiliary variables, X1, X2, · · · , Xq. Let Y i =

(Y1,i, Y2,i, · · · , Yp,i)
′ and Xi = (X1,i, X2,i, · · · , Xq,i)

′

denote the vectors of values of the characteristics of
interest and the auxiliary variables corresponding to
the i-th unit, i ∈ U , respectively. We denote Y i by
Yi (Xi by Xi) when p = 1 (q = 1), and write Y ,X
for the matrices (vectors) of the variables over the
population U .

Let s be a sample selected from U (s ⊂ U) ac-
cording to some probabilistic sampling design p(·).
Using the information contained in s, the goal is to
estimate quantities associated with the population
U , such as means or totals of given characteristics.
Sometimes, ratios of two means or totals are also of
interest. In this article, we will consider the esti-
mation of the population mean of (Y1, Y2, · · · , Yp)

′,
which is given by ȲN = N−1

∑
i∈U Y i. Most popu-

lar estimators for ȲN have the form N−1
∑
i∈s wiY i

or equivalently, N−1
∑
i∈U wiY i Ii, with wi the sam-

pling weight associated with the i-th unit and Ii an
indicator variable for the event that the i-th unit is
selected to the sample. We use I = (I1, I2, · · · , IN )′

to represent the vector of sample inclusion indica-
tors for all population units. For simplicity, we shall
only consider here the Horvitz-Thompson estimator

ȳπ =
1
N

∑
i∈s

π−1
i Y i, (1)

where πi = Pr(i ∈ s) is the inclusion probability for
the i-th unit.

In order to take into account nonresponse in the
sample, we shall assume that each unit in the popu-
lation is either a (potential) respondent or a non-
respondent. We introduce the response indicator
Ri, assuming the value one if the i-th unit re-
sponds andzero otherwise, for all i ∈ U , and let
sr = {i ∈ s : Ri = 1}. The distribution of the vec-
tor (Ri : i ∈ s)′ is called the response mechanism.
Unlike the vector I, which has a known distribution
once the sampling design is chosen, the survey sam-
pler has no control over the response mechanism.
However, since both the sampling design and the re-
sponse mechanism are involved in the distribution
of the survey estimator, it is necessary to specify a
model for the nonresponse process.

In this article, we will assume that the Ri corre-
spond to Poisson sampling, i.e. they are independent
Bernoulli variables with

Pr(Ri = 1|Y ,X, s) ≡ φi ≡ φ(Xi) (2)

for all i ∈ U , where φ(·) is a smooth but otherwise
unspecified function of the Xi (with 0 < φ(·) ≤ 1).
This response model implies that the nonresponse
process does not depend on the units that are se-
lected into the sample or the values of the vector Y
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corresponding to these units, but it allows for vary-
ing response probabilities, which depend on the aux-
iliary variables. These response probabilities corre-
spond to propensity scores, whose theory was devel-
oped by Rosenbaum and Rubin(1983, 1985) in the
context of observational studies. See David et al.
(1983) and Little (1986) for the use of propensity
scores in survey nonresponse problems.

Let R = (R1, R2, · · · , RN )′. Combining the sam-
pling design p(·) and the response model (2), we ob-
tain a model for the joint distribution of I and R,
given Y and X, namely,

L
(
I,R

∣∣Y ,X
)

= L
(
I
∣∣X)L

(
R
∣∣X) , (3)

where L
(
I
∣∣X) denotes the distribution of the vector

I generated by the sampling design p(·), which can
depend on X, and L

(
R
∣∣X) is the conditional dis-

tribution of R implied by the response mechanism
(2). Evaluating inference under model (3) follows
the quasi-randomization approach, in the terminol-
ogy of Oh and Scheuren (1983). It treats the vari-
ability in the realized sample as dependent not only
on the sampling design, but also (jointly) on the re-
sponse model.

3. A Corrected Estimator for the
Population Mean

In the presence of nonresponse, when classical esti-
mators used in survey sampling are constructed by
replacing the original sample s by the realized sam-
ple sr, they no longer keep their usual statistical
properties. For example, the nonresponse version of
(1)

ȳπr =
1
N

∑
i∈sr

π−1
i Y i (4)

is biased for the population mean. The bias, un-
der the joint distribution of the sampling design and
the response mechanism (2), is given by B(ȳπr) =
−N−1

∑
i∈U (1−φi)Y i, (Cassel et al. 1983). Clearly,

in the case of a nonnegative variable Y , (4) underes-
timates ȲN , with the absolute bias increasing with
the magnitude of the nonresponse probabilities for
the units in the population.

One method to correct the estimator (4) for bias
was discussed by Nargundkar and Joshi (1975), who
argued that if the response probabilities were known,

ȳπφ =
1
N

∑
i∈sr

wiφ
−1
i Y i, (5)

with wi = π−1
i , would be unbiased for ȲN . However,

since in practice the response probabilities are un-
known, estimator (5) is infeasible. But, it suggests

the estimator

ȳπφ̂ =
1
N

∑
i∈sr

wiφ̂
−1
i Y i, (6)

where φ̂i is an estimator of φi, i ∈ sr. If it is re-
quired that the adjusted weights add up to unity, one
should divide (6) by

∑
i∈sr

wiφ̂
−1
i . For this modifi-

cation, see for example Little and Rubin (2002, p.
46).

One estimator of the form (6) is the weighting-
class estimator (Oh and Scheuren 1983). It as-
sumes that the population U can be divided into
G disjoint, exhaustive and prespecified classes of el-
ements U1, U2, · · · , UG. In the sample, there are
ng units from the g-th class, among which rg are
respondents (0 ≤ rg ≤ ng). The response prob-
abilities are estimated within each class by φ̂i ≡
rg/ng, i ∈ srg

= sr ∩ Ug. One generalization
of this method is the fully efficient fractional im-
puted (FEFI) estimator, proposed by Kim and Fuller
(1999). The estimated response probabilities are
φ̂i ≡

∑
j∈srg

wj
/∑

j∈sg
wj , for all i ∈ srg, where

sg = s ∩ Ug and g = 1, 2, · · · , G. Thus, under both
the weighting–class and the FEFI methods, all re-
sponse probabilities within a class have the same
estimate. If the true corresponding probabilities
are not homogeneous, however, these methods pro-
duce biased estimators. In the following section, we
present a kernel smoothing method to estimate the
response probabilities that does not rely on the spec-
ification of homogeneous cells.

In this article, we will consider (6) as the esti-
mator for the population mean. Instead of using
fixed classes Ug, the estimates φ̂i, i ∈ sr, will be
obtained by a kernel regression for each i. The idea
behind the method is that if the function φ(·) in
(2) is smooth, then the estimation of φi = φ(Xi)
should be possible by local averaging of the Rj in
the sample for which Xj is “close” to Xi. The ob-
servations that are used in the averaging process at i
are identified by a window (kernel) centered around
Xi, which works somewhat like the classes in the
FEFI method. The kernel method has the advan-
tage that the response probabilities do not have to
be assumed to be equal for all observations in a cell,
and that the probabilities will not vary abruptly at
cell boundaries.

We now describe the local polynomial estimator of
the response probabilities, and for simplicity we will
only consider the situation where the nonresponse
process depends on one auxiliary variable X. Un-
der (2), the indicator response variables are inde-
pendent random variables, with E(Ri|X) = φ(Xi)
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and Var(Ri|X) = φ(Xi)(1 − φ(Xi)), for all i ∈ U .
The procedure to estimate φi = φ(Xi) fits the cen-
tered polynomial

β0 + β1(· −Xi) + · · ·+ βk(· −Xi)k

to {(Xj , Rj) : j ∈ s} by weighted least squares.
The observation weights are given by wjKh(Xj −
Xi), where k is the degree of the polynomial,
Kh(·) = h−1K (·/h) , K(·) is a continuous positive
kernel function and h is the smoothing parameter,
also known as the bandwidth. Hence, the estimate of
φ(Xi) is φ̂i = β̂0, obtained by minimizing

Ŝi(β) ≡
∑
j∈s

wjKh(Xj −Xi){Rj − β0−

β1(Xj −Xi)− · · · − βk(Xj −Xi)k}2. (7)

with respect to β0, β1, . . . , βk.
This estimator differs from the “classical” local

polynomial regression estimator described in Wand
and Jones (1995) because of the inclusion of the
sampling weights wi. These weights are included
to make design-based inference possible, as was also
done in e.g. Breidt and Opsomer (2000). This pro-
cedure makes it possible to estimate φi for any i ∈ U
without having to specify a parametric form for the
response function φ(·). As long as φ(·) is a con-
tinuous and smooth function, the local polynomial
regression estimator φ̂i can be used to properly ad-
just the design-based estimator for the effect of the
nonresponse.

Two simple expressions for φ̂i are obtained for the
local constant (k = 0) and local linear (k = 1) fits.
In the former case, the resulting estimator is

φ̂(Xi, 0, h) =

∑
j∈s wjKh(Xj −Xi)Rj∑
j∈s wjKh(Xj −Xi)

, (8)

while, for the latter, it is

φ̂(Xi, 1, h) =∑
j∈s
{ŝ2(Xi, h)− ŝ1(Xi, h)(Xj −Xi)}aij(h)

n (ŝ2(Xi, h)ŝ0(Xi, h)− ŝ1(Xi, h)2)
,

with

aij(h) = wjKh(Xj −Xi)Rj

and

ŝ`(Xi, h) =
1
n

∑
j∈s

(Xj −Xi)`wjKh(Xj −Xi).

Because the dependent variables Ri can only assume
the values zero and one, φ̂(Xi, 0, h) and φ̂(Xi, 1, h)

produce estimates restricted to the interval [0, 1], as
can readily be checked. That property does not hold
for k ≥ 2, however. When the sampling weights are
constants, φ̂(Xi, 0, h) corresponds to the Nadaraya–
Watson estimator used by Giommi (1987) in the re-
sponse probability estimation context.

4. Theoretical Results

4.1 Asymptotic Framework and Assump-
tions

To study asymptotic properties under the quasi-
randomization model (3), we assume that the pop-
ulation U is embedded in an increasing sequence
of finite populations {Uν}∞ν=1, where the ν-th pop-
ulation has size the Nν (Nν > Nν−1). Define
Y ν = (Y1, Y2, · · · , YNν

)′ to be the vector of values
of one characteristic of interest, Y , associated with
Uν , and similarly, let Xν = (X1, X2, · · · , XNν

)′ be
corresponding vector for the auxiliary variable X.
For each ν, we assume that Xν is known and that a
sample sν of size nν (nν ≥ nν−1) is selected from Uν ,
according to sampling design pν(·). This increasing-
population setup is commonly used for studying the
asymptotic properties of survey estimators (see Isaki
and Fuller (1982) for an early reference).

Let Iν = (I1, I2, · · · , INν )′ be the sample inclusion
indicator vector for the ν-th population. Suppress-
ing the ν for ease of notation, let πi = Pr(Ii = 1),
and let

∆j1,··· ,jk ≡ Ed

(
k∏
`=1

(Ij` − πj`)

)
(9)

denote higher moments for the sample inclusion in-
dicators Ij1 , Ij2 , · · · , Ijk , where the subscript “d” in-
dicates the expectation is taken with respect to the
sampling design. Let Rν = (R1, R2, · · · , RNν

)′ de-
note the response indicator vector for the ν-th pop-
ulation.

We now state the assumptions needed to derive
our main results. We shall assume that there are
strictly positive constants λ1, λ2, . . . , λ6 such that:

(A1) λ1 < Nνn
−1
ν πi < λ2 < ∞, ∀ i ∈ Uν ;

(A2) N−1
ν nν → π, for some 0 < π < 1, as ν →∞;

(A3) For distinct j1, j2, · · · , jk ∈ Uν , where k =
2, 3, · · · , 8,

∣∣∆j1,··· ,jk
∣∣ ≤



[∏k
`=1(N − ` + 1)

]−1

n
k
2
ν λ3 ,

if k is even, ,[∏k
`=1(N − ` + 1)

]−1

n
k−1
2

ν λ4,

if k is odd ,
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(A4) limν→∞ N−1
ν

∑
i∈Uν

Yi = µ ∈ (−∞,∞) and
N−1
ν

∑
i∈Uν

|Yi|4 ≤ λ5, for all ν ≥ 1.

In addition to these assumptions on the sampling
design and the population distribution of the Yi, we
will also need the following assumptions on the re-
sponse mechanism:

(B1) R1, R2, · · · , RNν are independent random vari-
ables;

(B2) Pr{Ri = 1
∣∣Iν ,Y ν ,Xν} = Pr{Ri = 1

∣∣Xν} ≡
φi, ∀ i ∈ Uν ;

(B3) φi = φ(Xi), ∀ i ∈ Uν , where φ(·) is a twice
continuously differentiable function with λ6 <
φ(·) ≤ 1. The first derivative φ′(·) has a finite
number of sign changes.

Finally, we require assumptions on the distribu-
tion of the Xi and the kernel estimator:

(C1) For all ν ≥ 1, X1, X2, · · · , XNν
are indepen-

dent and identically distributed random vari-
ables with distribution FX(x) =

∫ x
−∞ fX(t) dt,

where fX(·) is a continuous and positive prob-
ability density function on a compact set
[aX , bX ]. Without loss of generality, we shall
take [aX , bX ] ≡ [0, 1];

(C2) The kernel function K(·) is a bounded and con-
tinuous probability density, which is symmetric
around zero and supported on [-1,1];

(C3)
∫ 1

−1
z4K(z)dz < ∞;

(C4) For all ν ≥ 1, {hν} is a sequence of bandwidths
satisfying 0 < hν ≤ 1, hν → 0, nνh

2
ν → ∞ and

Nνhν / log Nν →∞, as ν →∞;

(C5) The first derivatives f ′X(·) and K ′(·) have a
finite number of sign changes on the intervals
[aX , bX ] and [-1,1], respectively.

A detailed discussion of assumptions (A1)–(A4),
(B1)–(B3) and (C1)–(C5) is provided in Da Silva
(2003).

4.2 Estimation of the Population Mean un-
der a Local Constant Fit

Consider the local constant fit φ̂(Xi, 0, hν) of (8),
for which we will formally describe the statistical
properties in this section. The objective is to con-
struct a consistent estimator to the reciprocal of the
i-th response probability, φ−1

i , and then use it to
adjust the estimator for the population mean ac-
cording to (6). Notice, however, that the random
variable φ̂(Xi, 0, hν) can be equal to zero for some

i ∈ sν , if there are no respondents in the interval
(Xi − h, Xi + h). In these situations, the reciprocal
of the corresponding estimated response probability
is undefined and, by consequence, so is ȳπφ̂. More
generally, local polynomial estimators of degree k
will be undefined whenever there are less than k + 1
respondents in the interval (Xi − h, Xi + h), which
can happen even if i ∈ sr.

One way of handling this problem formally is by
modifying the local polynomial estimator to always
produce positive values with probability one. Define

m̂iν ≡ (m̂1iν , m̂2iν)′

=
1

Nνhν

∑
j∈sν

wjK

(
Xj −Xi

hν

)
(Rj , 1)′. (10)

Observe that φ̂(Xi, 0, hν) = m̂−1
2iνm̂1iν , for all i ∈ Uν ,

and therefore is not invertible when m̂1iν is equal to
zero. So, one possible correction for this estimator
is to add a small (nonrandom) positive quantity to
m̂1iν . This type of adjustment was previously advo-
cated for similar reasons by Fan (1993) and Breidt
and Opsomer (2000), for instance. We shall bound
φ̂(Xi, 0, hν) away from zero, by replacing m̂1iν by

m̂∗
1iν = max {m̂1iν , (Nνhν)−1δ}, (11)

where δ is a fixed positive constant, and the corre-
sponding (adjusted) response probability estimator
will be given by

φ̂0iν ≡ m̂−1
2iνm̂

∗
1iν , i ∈ Uν . (12)

Note that (12) is strictly positive because of the
adjustment (Nνhν)−1δ. Also, when m̂1iν ≥
(Nνhν)−1δ, which happens with high probability for
ν sufficiently large, then both estimators φ̂0iν and
φ̂(Xi, 0, hν) are positive and φ̂−1

0iν = φ̂(Xi, 0, hν)−1;
that is, the reciprocal of the adjusted estimator of
(12) coincides with the reciprocal of the zero order
kernel regression estimator of (8).

According to prescription (6), the estimator for
the population mean is therefore given by

ȳπ0ν ≡
1

Nν

∑
i∈sr

wiφ̂
−1
0iνYi. (13)

The following results present the theoretical proper-
ties of (12) and (13). In what follows, let PX denote
the joint probability distribution of X1, X2, · · · .

Theorem 1. Consider a sequence of increasing pop-
ulations {Uν : ν ≥ 1}, where Uν has size Nν .
Assume that for each ν, a sample sν of fixed size
nν (nν ≥ nν−1) is selected from Uν by a proba-
bilistic sampling design pν(·), satisfying (A1)–(A3).
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Suppose the response mechanism satisfies the con-
ditions (B1)–(B3), Xν satisfies (C1) and assump-
tions (C2)–(C5) hold. Consider the estimator (12)
for the response probability φ(Xi), where i ∈ Uν is
fixed. Then, with PX–probability one,

E
[
|φ̂−1

0iν − φ(Xi)−1|
∣∣Xν

]
≤

O(hν) I{Xi∈[0,hν ]∪(1−hν ,1]} + (14)

O
(
h2
ν

)
I{Xi∈(hν ,1−hν ]} + O

(
(nνhν)−1/2

)
.

Theorem 1 implies directly that φ̂−1
0iν is consistent

and asymptotically unbiased for φ(Xi)−1.

Theorem 2. Suppose the conditions of Theorem 1
hold. Consider the estimator ȳπ0ν in (13) to esti-
mate the population mean of any variable Y satisfy-
ing (A4). Then, with PX–probability one,

E
[(

ȳπ0ν − ȳπψν
)2 ∣∣Xν

]
= O

(
(nνhν)−2

)
, (15)

where ȳπψν is a random variable such that, with
PX–probability one,

E
(
ȳπψν − ȲNν

∣∣Xν

)
=

O
(
h3/2
ν

)
+ O

(
(nνhν)−1

)
(16)

and
Var
(
ȳπψν

∣∣Xν

)
= O

(
(nνhν)−1

)
. (17)

Corollary 1. Under the conditions of Theorem 2,
suppose that the sampling design is such that, con-
ditioned on Xν ,(

ȳπψν − ȲNν
−Bν

)
Var(ȳπψν)

L→ N(0, 1) a.s. PX ,

as ν tends to ∞. Suppose also that

V ≡ lim
ν→∞

(nνhν)Var
(
ȳπψν

∣∣Xν

)
∈ (0,∞) a.s. PX .

Then, conditioned on Xν ,(
ȳπ0ν − ȲNν

−Bν

)
Var(ȳπψν)

L→ N(0, 1) a.s. PX ,

as ν tends to ∞.

Remark 1. The results in Theorems 1 and 2 should
be interpreted as statements with probability one
with respect to the distribution of the sequence of
values for the auxiliary variable X in the population;
that is, the results are valid for almost all such pos-
sible sequences, under the distribution PX . So even
though the results depend on the regularity condi-
tions on the distribution of X given in (C1), it is
still a “finite population” result in the sense of being
valid for (almost) any sequence of finite populations
Uν .

Remark 2. The statement (15) implies that

ȳπ0ν = ȳπψν + Op

(
1

nνhν

)
. (18)

and hence that ȳπ0ν − ȲNν and ȳπψν − ȲNν have the
same asymptotic distribution (up to terms of suffi-
ciently high order). Under the additional assump-
tion that ȳπψν is asymptotically normal, we obtain
the asymptotic normality result given in Corollary 1.

Remark 3. The bandwidth parameter plays an im-
portant role in the asymptotic properties of ȳπψν .
By (16), the bias has two components that converge
to zero, as a consequence of (C4). The first one
is at most of order h

3/2
ν . In this local polynomial

regression context, this order can be seen as a com-
promise between O(hν) and O

(
h2
ν

)
, which represent

the orders of the biases when the estimation of φ(Xi)
takes place at the “boundary” and “bounded away
from the boundary”, respectively (see Theorem 1).
Despite this, it is possible for this component to
achieve order O

(
h2
ν

)
by requiring additional assump-

tions; for example, if the assumption of finite fourth
moment on the Y variable — assumption (A4) —
is strengthened to uniformly boundedness. The sec-
ond component in the bias of ȳπψν is at most of order
1/nνhν , and hence is a negligible component in the
mean squared error compared to the order of the
variance in (17).

Remark 4. The 1/nνhν convergence rate in the
approximation (18) and in variance (17) plays the
same role as 1/nν in the parametric context. Speak-
ing somewhat loosely, it is possible to think of nνhν
as the “equivalent sample size” in the nonparamet-
ric regression context. Hence, the price paid for not
specifying a parametric shape for the nonresponse
function is a slower rate of convergence and a larger
asymptotic variance, compared to a those obtained
under a parametric model specification.

Remark 5. Combining the results in (15), (16) and
(17), it follows that

E
[(

ȳπ0ν − ȲNν

)2 ∣∣Xν

]
= ah3

ν +
b

nνhν
,

for some positive constants a, b. So, an “optimal”
bandwidth choice, in the sense of minimizing the
mean square error of ȳπ0ν for nν fixed, is given by
h0 = [b/3anν ]

1/4
. Furthermore, as ȲNν

converges
to a finite constant by (A4), then on a set of PX–
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probability one, for all ε > 0,

P
{
|ȳπ0ν − ȲNν

| ≥ ε
∣∣Xν

}
≤

1
ε2

E
{[(

ȳπ0ν − ȳπψν
)

+
(
ȳπψν − ȳNν

)]2∣∣Xν

}
→ 0,

as ν tends to infinity. Therefore, ȳπ0ν is consistent
for ȲNν .

Remark 6. Expression (17) in Theorem 2 gives
an asymptotic rate for the variance of ȳπ0ν . Al-
though this variance can be explicitly expressed in a
quadratic form, the structure of the variance weights
results in a long and complicated expression that is
unsuited for constructing direct variance estimators.
We shall address the estimation of this variance in a
further article.

5. Conclusions

In this article, we addressed the problem of unit non-
response in sample surveys by considering a weight-
ing procedure that adjusts the sampling weights by
the reciprocal of estimates for the response prob-
abilities. The estimated response probabilities are
obtained by nonparametric regression, a procedure
that makes it possible to avoid prespecifying a para-
metric form for the nonresponse model. The proce-
dure is shown to estimate consistently the popula-
tion mean of any characteristic of interest that has
a finite fourth population moment. The asymptotic
rates of convergence for the bias and variance of the
asymptotic distribution are provided. The effect of
the bandwidth parameter on the bias and variance
is also examined.

A number of open questions still need to be ad-
dressed in the study of kernel-based nonresponse ad-
justments for survey estimators. In the methodolog-
ical area, a useful variance estimator still needs to
be derived. In addition, the results given in this
article need to be generalized from zero-order local
polynomials to those of higher order. Finally, the
practical behavior of the estimators needs to be eval-
uated through simulation experiments and examples
on real data.
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