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1.  Introduction 
 

Let P = {1, 2,…, N} represent the set of labels of the 
units of a finite population (N known) and yi 

represent a fixed value of interest for each unit i ∈ P. 
The focus of this paper is on the prediction of a finite 
population total T =∑i  yi by sampling n units from a 
population of size N units.  If s represents a sample of  
size n selected from P and r represent the remaining 
N - n non-sampled units from P, then the population 
total can be written as T = ∑syi + ∑ryi.  Define ′1  = 

[ ]s r′ ′1 1  and Y = 
s

r

 
 
  

y

y
 where s′1  is an 1 ×  n vector 

of ones, r′1 is a 1 × (N - n) vector of ones, sy  is an n 

×  1 vector of sampled units, and ry is an (N - n) ×  1 
vector of the non-sampled units.  Then we may write  
                              T = s′1 ys + r′1 yr.       (1.1) 

For example, suppose we wish to estimate the 
average total amount a university student can expect 
to borrow before graduation in a certain region of the 
country.  We can use sample survey information from 
graduating students to predict the total loans for all 
students in that region and from that we can estimate 
the average total that will be borrowed.   

Classical theory models the data collection 
procedure with a sampling design, a probability 
function defined on the sample space, S, of all 
possible samples of size n.  The sampling design 
along with unbiasedness requirements yields a 
frequentist approach to relating observed with 
unobserved population units.  In contrast, a 
superpopulation model provides the stochastic 
structure for Bayesian inferential purposes.  

Bayesian interpretations of classical designed-
based estimators such as the Horvitz-Thompson 
estimator and the well-known ratio-estimator have 
been established in the literature.  For example, the 
classical ratio estimator has been obtained through 
various Bayesian superpopulation models (see, for 
example, Ghosh and Meeden, 1997, Section 3.2.1 
and Royal and Pfefferman, 1982, p. 402).  The 
Horvitz-Thompson estimator has also been shown to 

have an empirical Bayesian analog; see Ghosh and 
Meeden (1997, Section 4.2) and a fully Bayesian 
analog; see Ghosh and Meeden (1997, Section 5.1).  
Another popular estimator for finite population 
prediction is the general regression estimator 
proposed by Cassel, Sarndal and Wretman (1976), 
Sarndal (1980), and Sarndal, Swensson, and 
Wretman, (1997).  The general regression estimator 
is the Horvitz-Thompson estimator plus an 
adjustment term.   

In this paper we define a projection matrix by 
constructing a multivariate error structure which 
allows us to develop a fully Bayesian estimator of the 
population total T.  As a special case of our estimator 
we obtain a Bayesian interpretation of the general 
regression estimator.  Since our estimator is a 
function of the mean of the posterior predictive 
distribution, we can find the posterior standard 
deviation to our fully Bayesian estimator.  
Consequently, we are able to construct interval 
estimates that have a strict probabilistic interpretation 
without reference to repeating sampling.  

In Section 2 we introduce the general regression 
estimator and then derive it in matrix form. In 
Section 3 we introduce a superpopulation model and 
obtain an empirical Bayes estimator of the population 
total.  We also demonstrate that a special case of our 
empirical Bayes estimator is the general regression 
estimator.  In Section 4 we establish the Bayesian 
model and then provide the general form of the 
integrand that produces the predictive distribution.  In 
Sections 5 and 6 we derive the distributions in the 
integrand of the predictive distribution.  In Section 7 
we combine the results of Sections 4 through 7 and 
derive our Bayesian estimator of the population total.  
We present the posterior standard deviation for the 
fully Bayesian estimator in Section 8 and end the 
paper with a brief discussion in Section 9. 

 
2. General Bayesian Regression Estimator 
 

In this section we introduce the general 
regression estimator and then present it in a new form 
using matrices. This facilitates subsequent 
derivations.   
 As a means to possibly improve the basic 
Horvitz-Thompson estimator using auxiliary 
information, Sarndal et al. (1997) employ classical 
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sampling design theory, using inclusion probabilities, 
and the regression model  
 

 y = Xb + e, (2.1) 
 

where X is the model matrix, b is the unknown 
coefficient vector, and e ∼ N(0,V).  Equation (2.1) is 
used, however, only as a means to obtain an estimate 
of b.  Hence, unbiasedness and variance expressions 
are derived under the sampling design.  In short, 
Sarndal et al. (1997) do not assume that the 
regression model (2.1) generates the sample.  Thus, 
the general regression estimator (GRE) derived in 
Sarndal et al. (1997) is model assisted but not model 
dependent.  Sarndal et al. (p.225, 1997) define the 
GRE as  

     
1 =1 =1 1

ˆˆ
pn N n

jkk
GRE j jk

k kk j k k

Xy
T X

= =

 
= + β − 

 π π 
∑ ∑ ∑ ∑ , (2.2) 

where yk is a variable of interest, like loan amount, 

for k = 1, 2,…, N, πk is the inclusion probability, ˆ
jβ is 

an unknown regression coefficient for j = 1, 2,…, p, 
and Xjk is a known auxiliary variable.  Notice that the 
GRE is equal to the Horvitz-Thompson estimator plus 
an adjustment term. Using a regression model to 

estimate β ≡ (β1, …, βp)′, Sardnal et al. (1997, p. 
228) suggest the estimator 

β̂ ≡

1

2 2
1 1

n nkk k k

k kkk k k

y
−

= =

 ′
 
 σ π σ π 
 

∑ ∑
X X X

, 

where Xk is a p × 1 vector of known auxiliary 

information  and 2
kσ  denotes the kth diagonal element 

of the variance matrix V in (2.1).  Under a simple 

random sampling design in which π = Diag ( )N
n

, β̂  

is the generalized least squares estimator 

( )1 1ˆ
s s s s

− −
′ ′≡ X X Xβ Σ S

-1
ys, where Σ p

>∈ � , the set 

of all p × p positive definite real-valued matrices.  
Now, the GRE (2.2) can be rewritten as  
 

          ĜRET =  ( )1 1 ˆ
s s s s s s s

− −′ ′ ′ ′+ −1 y 1 X 1 Xπ π β  

           = ( )1ˆ ˆ
s s s s s s

−′ ′ ′+ −1 X 1 y Xβ π β . (2.3) 
 

A similar matrix representation of the general 
regression estimator is presented by Mukhopadhyay 
(1993).  Assuming Σ = s2I, we can express (2.3) as 
 

GRE
ˆˆ

s s ss
NT n

⊥′ ′= + X1 X 1 yPβ , 

 where ( ) 1
s

ˆ
s s

−′= X Xβ Xsys, PXs
= s s

+X X , is the 

orthogonal projection matrix onto Χ(Xs), the column 

space of Xs, s
+X  is the Moore-Penrose inverse of Xs, 

and 
s

⊥
XP is the orthogonal projection matrix onto the 

orthogonal complement of Χ(Xs). 
 
3. An Empirical Bayes General Regression 
Estimator 
 

 In this section we introduce a 
superpopulation model and obtain an empirical Bayes 
estimator of the population total (1.1).  Our empirical 
Bayes estimator of the population total requires 
derivation of the mean of the posterior predictive 
distribution E(yr|ys).  Finally, we show that a special 

case of our empirical Bayes estimator is the general 
regression estimator. 

Royall and Pfeffermann (1982) focus attention 
on necessary assumptions needed for robustness of 
their statistical procedures for predicting the 
population total (3.1) given ys. They consider their 

procedure robust if the posterior probability 
distribution of T is not greatly affected if the model is 
taken to be 

   y = Xβ + Uγ + e       (3.1) 
 

instead of (2.1), where y, X, β and e, are defined as in 
(2.1) and U contains additional regressors with a 
fixed coefficient vector γ.  Renssen and Niewenbroek 
(1997) consider estimating the population total T by 
using two or more surveys to obtain common 
variables, U, for use in (3.1).  They assume these 
additional regressors are observed in both surveys 
where the corresponding population totals are 
unknown. The variables in U are combined with the 
auxiliary variables in X, which have known 
population totals.  They then use these common 
variables as a tool to improve the estimate of the 
population total with what they call an adjusted 
general regression estimator. 

Consider the superpopulation model (3.1) where 

X = 
s

r

 
 
  

X

X N p×∈ � such that rank(X) = p, with Xs 

n p×∈ � and Xr ( )N n p− ×∈ � . Furthermore, assume U 

=
s

r

 
 
  

U

U N q×∈ � where rank(U) = q such that Us 

N q×∈ � and Ur ( )N n q− ×∈ � . Finally, let 1q×∈γ � and 

let e ~ N(0,V) with V known, where 
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 V =
ss

rr

 
 
  

V 0

0 V
.  

 

To estimate the total (1.1), we utilize E(yr | ys) by 
regressing ys on Xs, resulting in an empirical Bayes 

estimator of β.  
Thus, consider the regression model ys = Xsβ + e 

with e ~ N(0,Vss), where Vss p
>∈ �  is known.  For an 

improper prior p(β) µ constant, one can show that the 
posterior distribution of β is  

β|ys ~ N ( ) ( )11 11 1 ,  s ss s s ss s s ss s
−− −− − ′ ′ ′ 

 
X V X X V y X V X . 

Substituting into (3.1) we have  
 

 ˆ
s= + +y X U eβ γ . (3.2) 

  

 Using the improper prior p(γ) µ constant, the 
posterior predictive distribution has the form  
p(yr|ys) 

( )ˆN ,
q

r r s r rr= +∫ y X U V

�

β γ  

× ( ) 11 1 1 1N ( ) ,s ss s s ss s s ss s d
−− − − − ′ ′ ′ 

 
U V U U V e U V U γγ ,   

 (3.3) 

where ˆ( )s s s s= −e y X β .  Using (3.4), we have 
 

 E(yr | ys)   

= ( )ˆN ,
N nq

r r r s r rr
−

+∫ ∫ y y X U V

� �

β γ  

 

( ) 11 1 1 1 N ( ) ,s ss s s ss s s ss s rd d
−− − − − ′ ′ ′×  

 
U V U U V e U V U yγ γ

 

= ( )ˆ ˆ, , , , , ,r s r rr s s s ssr
E E 

  y y U V y U Vγ β γ β  

= ( )1 1 1ˆ ˆ( )r s r s ss s s ss s s s
− − −′ ′+ −X U U V U U V y Xβ β , 

 

where Eyr
(◊) and Eγ(◊) denote expectations with 

respect to the distributions of yr and γ, respectively.  
Thus, our empirical Bayes estimator of the 
population total is  
 

    

( )

1 1

1

ˆ ( | )

ˆ ( )

ˆ .                           (3.4)

EB s s r r s

s s r r s r s ss s

s ss s s s

T E

− −

−

′ ′= +

′ ′ ′= + +


′× −


1 y 1 y y

1 y 1 X U U V U

U V y X

β

β

 

We now show that a special case of ÊBT is the 

general regression estimator ĜRET .  Define π to be an 

N ¥ N matrix whose diagonal elements, πii ∫ πi, i = 
1,2,…N, are inclusion probabilities and the off-
diagonal elements are zero so that 

 

 π =
s

r

 
 
  

0

0

π
π  

and tr(π) = n.  Next, assume V = π(I − π)
−1π and U = 

π1. Note that the covariance structure V is the matrix 
representation of the geometric distribution. Similar 
assumptions are presented by Ghosh and Meeden 
(1997, Section 4.2).  Then, we have that  
 

        E( ˆ| , , ,s s s ssy β U Vγ ) 

                 = ( )1 1 1 ˆ( )s ss s s ss s s s
− − −′ ′ −U V U U V y X β  

       = [ ] ( ) ( )1 1 ˆ
r r r s s s s s s s

− −′ ′ − −1 1 1 I y X βπ π π . (3.5) 
 

Now tr(π) = n implies r r r s s sn′ ′= −1 π 1 1 π 1 , so, from 
(3.5) our empirical Bayes estimator becomes 
 

EBT̂ = 1 1 1
s s

ˆ ( )r r s r s ss s s ss s
− − − ′ ′ ′ ′+ +

 
1 y 1 X β U U V U U V e  

= ˆ
s s s s ′ + 1 X β e + ˆ

r r s′1 X β +  

 [ ] ( )1 1
r r r r r r s s s s s

− −′ ′ ′ −1 1 1 1 1 I π π eπ π  

= ˆ
s′1 Xβ  + ( )1 ˆ

s s s s s
−′ −1 π y X β  

= GRE
ˆ .T   

  
4.   The Superpopulation Model 

 

In this section we develop a Bayesian model and 
then provide the general form of the integrand that 
will produce the predictive distribution.   

Consider the superpopulation model 
 

             y = Xβ + Uγ + e (4.1) 

where X N p×∈ � with rank(X) = p, U N q×∈ � with 

rank(U) = q,  β 1p×∈ � , γ 1q×∈ � , and e ~ N(0,V).  

Assume V N
>∈ � can be partitioned as 

V =
ss sr

rs rr

 
 
  

V V

V V
, 

where Vss n
>∈ � , Vrr ( )N n−

>∈ � , and Vsr ( )N n n− ×∈ �  

such that Vrs  = sr′V  and (Vrr − 1
ssrs sr
−V V V ) ∈ ( )N n−

>
� .    

Assume β and γ each have improper uniform 
prior distributions.  Using the super population model 
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(4.1), we obtain E(yr | ys)  to estimate Tr = r r′1 y  in 
(1.1).  

The predictive distribution is (Geisser, 1993, p. 
49) 
p(yr|ys)= 

( ) ( ) ( ) ( )1
,

p q
r s s

r
f f p d d

f
, , ,∫ ∫ y y y

y
� �

β γ β γ β γ γ β  

= ( ) ( ) ( ), ,r s s s
p q

f p p d d∫ ∫ y y y y

� �

, γ,β γ β β γ β  (4.2) 

 

where f denotes the appropriate density.  Notice that, 
if yr is independent of ys, then 
p(yr|ys) = 

( ) ( ) ( ), 
p q

r s sf p p d d∫ ∫ y y y

� �

γ,β γ β β γ β . 

 

In the following sections we derive the distributions 
in the integrand of (4.2). 
 
5. The Marginal Density of yr 
 

In general, independence between yr and ys may 

not obtain.  To derive  f(yr  | ys, β ,γ),  define zr ≡ yr  

+  M ys and zs ≡ ys, where M is chosen so that zr is 

uncorrelated with zs.  That is, M must satisfy Cov(zr 
,zs) = Vrs + MVss = 0, which yields zr  

= 1
r rs ss s

−−y V V y .  Note that 
 

z = 1
s

r rs ss sr
−

 
 

−  

y

y V V y
 

 

and, therefore, z ~ N(µ, Σ), where 
 

    µ=
s

r

 
 
  

z

z

µ

µ =  

 ( ) ( )1 1

s s

r rs ss s r rs ss s
− −

+ 
 

− + − 
 

X U

X V V X U V V U

β γ

β γ  

and   

Σ ≡ 
s

r

 
 
  

z

z

0

0

Σ

Σ  =
ss

rr rs ss sr
−1

 
 

−  

V 0

0 V V V V
. 

Because zs and zr are uncorrelated and jointly 
multivariate normally distributed, they are 
independent and, therefore, 

f(zs, zr) = ( )N ,s s sz zz µ Σ ( )N ,r r rz zz µ Σ  

      = ( )N ,s s s ss+z X U Vβ γ  

    ( ) ( )( 1 1 N ,r r rs ss s r rs ss s
− −× − + −z X V V X U V V Uβ γ   

    × )1
rr rs ss sr

−−V V V V . (5.1) 

Substituting yr − Vrs
1

ss
−V ys for zr in (5.1) and noting 

that the Jacobian is one yields the quadratic term 

( ) ( )( ){ }1
r r r rs ss s s s

− ′ − + + − +
 

y X U V V y X Uβ γ β γ

( ) 11
srrr rs ss

−−× −V V V V  

× ( ) ( )( ){ }1 .r r r rs ss s s s
− − + + − +

 
y X U V V y X Uβ γ β γ  

 

Thus,  
 

f(yr | ys, β, γ) = 

( ) ( )( )( 1N ,r r r rs ss s s s
−+ + − +y X U V V y X Uβ γ β γ  

 × )1
rr rs ss sr

−−V V V V . (5.2) 
 

Similarly, substituting ys for zs in (5.1) yields  
 

N( | , )s s sz zz µ Σ = N(ys| Xs β + Usγ , Vss) 

 = f(ys |  β, γ). 
 
6.   Posterior Distributions for β and γ 
 

In this section we obtain the conditional and 
marginal components of the posterior p(γ,β | ys) .  

Because p(γ ,  β) µ constant, we have 
 

p(γ, β | ys) = p (γ | β, ys) p(β | ys) 

                  = N(ys | Xsβ + Usγ,Vss ). (6.1) 
 

Thus, the quadratic terms in the exponents of p(γ |  β, 
ys) and p( β |  ys) contained in (6.1) are 
 

( ) ( )1
s s s ss s s s

−′   − + − +   y X U V y X Uβ γ β γ  

           = 1
s ss s

−′y V y  - 1
s ss s

−′y V X β  - 1
s ss s

−′y V U γ   

       − 1
s ss s

−′ ′X V yβ  - 1
s ss s

−′ ′U V yγ + 1
s ss s

−′ ′X V Xβ β    

       + 1
s ss s

−′ ′X V Uβ γ  + 1
s ss s

−′ ′U V Xγ β  

       + 1
s ss s

−′ ′U V Uγ γ . (6.2) 
 

From (6.2) we have that the quadratic term in p(γ | β, 
ys) is 

      
1

s ss s
−′ ′U V Uγ γ - 1

s ss s
−′y V U γ  - 1

s ss s
−′ ′U V yγ  

                 + 1
s ss s

−′ ′X V Uβ γ  + 1
s ss s

−′ ′U V Xγ β  

           = 1
s ss s

−′ ′U V Uγ γ  - 2 ( ) 1
s s ss s

−′ ′ ′−y X V Uβ γ . (6.3) 
 

Next, note that 1
ss
−V  has full-rank factorization 
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 1
ss
−V = 1 1′K K , (6.4) 

 

where K1 n
>∈ �  and let sU% = K1Us.  Using (6.4), we 

rewrite (6.3) as 
1

s ss s
−′ ′U V Uγ γ - 2 ( ) 1

s s ss s
−′ ′ ′−y X V Uβ γ  

  = 1 1s s′ ′ ′U K K Uγ γ  - 2 ( ) 1 1s s s′ ′ ′ ′−y X K K Uβ γ  

  = s s′ ′U U% %γ γ  - 2 ( ) 1s s s′ ′ ′ ′−y X K U%β γ  

  = ( ) ( )s s
′U U% %γ γ  - 2 ( )1 .s s ss

′ − uP K y X U%
%β γ  (6.5) 

Define  
 C1 = ( )1 s ss

−uP K y X% β . (6.6) 
 

Using (6.4) and (6.6) we can express the quadratic 
term in p(γ | β, ys) as 

( ) ( )s s
′U U% %γ γ - 2 1 s′C U% γ  + 1 1′C C  

         = ( ) ( )1 1s s
′− −U C U C% %γ γ  

         = ( ) 1s s s s

′ ′′ ′ ′− −
  uU y X K P%

%γ β  

              ( )1s s ss
 × − − uU P K y X%
% γ β  

         = ( )1 1 1( )s ss s s ss s s
− − − ′ ′ ′− −

 
U V U U V y Xγ β  

              ( )1
s ss s

−′× U V U  

              × ( )1 1 1( )s ss s s ss s s
− − − ′ ′− −

 
U V U U V y Xγ β . 

Thus, 

p(γ|β,yr) = ( )1 1 1N ( ) ,s ss s s ss s s
− − − ′ ′ −

U V U U V y Xγ β  

 × ( ) 11
s ss s

−− ′ 


U V U .  

  ≡ N , µ Vγγ γ  . (6.7) 
 

 We next derive the quadratic term of the 
marginal distribution p(β | yr).  From (6.6) we have  
 

1 1′C C = ( )1 s ss
′ − uP K y X% β ( )1 s ss
 − uP K y X% β  

          = 1 1s ss
′ ′ ′ uX K P K X%β β  - 2 1 1s ss

′ ′ uy K P K X% β  

           + 1s ss
′ ′ uy K P Ky% . (6.8) 

 

Using (6.3), we utilize the remaining term containing 
β in (6.1) to obtain the quadratic term in p(γ | β, ys), 
which is 
 
 

    1
s ss s

−′ ′X V Xβ β  - 1
s ss s

−′y V X β  - 1
s ss s

−′ ′X V yβ   

          = 1
s ss s

−′ ′X V Xβ β  - 2 1
s ss s

−′y V X β . 

          = 1 1s s′ ′ ′X K K Xβ β  - 2 1 1s s′ ′y K K X β . (6.9) 

 
 

Thus, from (6.8) and (6.9), the quadratic term in p(β | 
ys) is  
 
   1 1s s′ ′ ′X K K Xβ β - 1 1s ss

′ ′ ′ uX K P K X%β β   

             - 2 1 1s s′ ′y K K X β +2 1 1s ss
′ ′ uy K P K X% β  

      = 1 1s ss
⊥′ ′ ′
uX K P K X
%

β β  - 2 1 1s ss
⊥′ ′
uy K P K X
%

β . (6.10) 

Define sX&  = 1 ss
⊥
uP K X
%

.  Because 
s

⊥
uP
%

is a symmetric 

idempotent matrix, one can show that (6.10) becomes 
 

     1 1s ss
⊥′ ′ ′ uX K P K X
%

β β - 2 1 1s s′ ′y K K X β    

            = 11s ss
⊥′ ′ ′ uβ X K P K X β
%

 - 2 1 1s ss
⊥′ ′y K P K X βu%  

            = ss s′ ′β X X β& & − 2 1s s′ ′y K X β&  

            = ss s′ ′β X X β& & − 2 1s ss
′ ′ Xy K P X β&

&  

            = ( ) ( )s s
′X Xβ β& &  - 2 ( ) ( )1 s ss

′
XP K y X β&

& .   
 

We assume that the sample size n is greater than the 
combined rank(X) = p and rank(U) = q and since C2 

≡ 1 ssXP K y&  is a constant with respect to β, the 

quadratic term in p(β | ys) becomes 
 

   ( ) ( )s s
′

X Xβ β& &  - 2 ( )2 s′C X β& + 2 2′C C  

       = ( ) ( )2 2s s′− −X β C X β C& &  

       = ( ) ( )1 1s s s ss s
′− −X XX β P K y X β P K y& &

& &  

       = ( ) ( )1 1s s s s s s
+ +′ ′− −β X K y X X β X K y& & & &  

       =
1

1 1 11s s s ss s

−
⊥ ⊥

′  ′ ′ ′ ′−  
   

u uβ X K P K X X K P K y% %  

        
1

1 1s ss

−
⊥ ′ ′×  
uX K P K X
%

 

        
1    

1 1 1 1 .s s ss ss s

−
⊥ ⊥  ′ ′ ′ ′× −  

   
u uβ X K P K X X K P K y% %  

Therefore,  

p(β | ys) = N 1
1 , ( )s s s s

+ − ′
  
β X K y X X& & &  

              = N
1

1 1 1 1 ,s s s ss s

−
⊥ ⊥

  ′ ′ ′ ′  
 

u uβ X K P K X X K P K y
% %  

                    ×
1

1 1s ss

−
⊥  ′ ′  

  
uX K P K X%  

              ≡ N , 
 β ββ µ V . (6.11) 
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The variable sX% has an interesting interpretation.   

In particular, by letting 1s s=X K X%  and recalling that 

sU% = K1Us, then sX& = 1s s
⊥ 

 
 

uP K X
%

 can be viewed 

as an error matrix, say E, for projecting sX% onto the 

column space of sU% . In other words, sX& shows how 
the Bayesian paradigm handles the alignment or 
combination of the auxiliary information contained in 

sX% and sU% by creating a variable of “left-over” or 

residual information from projecting sX% onto the 

column space of sU% .  Also, notice that s s′X X& & = 

1 1s s s s
⊥ ⊥  ′ ′  

  
u uX K P P K X
% %

because
s

⊥
uP % is idempotent.  

Thus, the covariance structure for β is Vβ = s s′X X& & = 
′E E  which represents a multivariate estimate of the 

covariance matrix. 
  If we assume β and γ are conditionally independent, 
then  
 Χ(Xs) ⊥ 1

ss
−V

Χ(Us), (6.12) 

 and 1
s ss s

−′U V X = 0 (Harville, 1997, p.257).  In 

particular, because of (6.12) it follows that s s′U X% % = 
1

s ss s
−′U V X = 0.  Thus, (6.10) becomes 

 

1 1s ss
⊥′ ′ ′ uX K K XP%β β - 2 1 1ss s

⊥′ ′ uy K P K X
%

β   

= 
ss s

⊥′ ′ uX P X
%

% %β β  - 2 1 ss s
⊥′ ′ uy K XP
%
% β  

= s s′ ′X X% %β β  - 2 1s s′ ′y K X% β  

= ( ) ( )s s
′X X% %β β  - 2 ( )1 s ss

′
XP K y X%

% β . 
 

The quadratic term in p(β | ys) can now be expressed 

as 
 

 ( ) ( )s s
′X X% %β β  -2 ( )2 s′C X% β  + 2 2′C C  

= ( ) ( )2 2s s
′− −X C X C% %β β  

= ( ) ( )1 1s s s ss s

′− −X XX P K y X P K y% %
% %β β  

= ( ) 11 1
s ss s s ss s

−− − ′ ′ ′− 
 

X V X X V yβ  

    ( )1
s ss s

−′× X V X  

  × ( ) 11 1
s ss s s ss s

−− − ′ ′− 
 

X V X X V yβ . 

 

Hence, (6.12) implies that 
 
 
 
p(β|ys)= 

        ( ) ( )1 11 1 1N ,s ss s s ss s s ss s
− −− − − ′ ′ ′ 

 
X V X X V y X V Xβ  

           ≡ N , 
 µ Vβ ββ . 

 
Also, because of (6.12), (6.7) becomes  
 

p(γ|β,ys)=  

( ) ( ) 11 1 1 1
sN ( ) ,s ss s s ss s s ss s

−− − − − ′ ′ ′− 
 

U V U U V y X U V Uγ β

       = ( ) 11 1 1 1
sN ( ) ,s ss s s ss s ss s

−− − − − ′ ′ ′ 
 

U V U U V y U V Uγ  

       = p(γ | ys). 
    
7.  The Bayes Estimator 
 

In this section we combine the results of Sections 
4 and 5 and derive our Bayesian estimator of the 
population total. Substituting equations (5.2), (6.7) 
and (6.11) into (4.2) we obtain 

  

p(yr | ys)    

  = ( | , ) ( | ) ( | )r s s s
p q

f p p d d∫ ∫ y y y y

� �

γ,β γ β γ β  

  = ( )(N r r r
p q

+∫ ∫ y X U

� �

β γ  

       ( )( ) )1 1,rs ss s s s rr rs ss sr
− −+ − + −V V y X U V V V Vβ γ  

        × ( )1 1 1N ( ) ,s ss s s ss s s
− − − ′ ′ −

U V U U V y Xγ β  

        × ( ) 11
s ss s

−− ′ 


U V U   

        × N 1 1
1( ) , ( ) .ss s ss s ss s d d− − ′ ′ ′

  
β X X X K y X X γ β& & & & &  (7.1) 

 

The posterior predictive mean is, therefore,  
 

E(yr | ys) = ( ){ },   r s s sr
E E E , y y y y yβ γ γ β  

= ( ) ( )( )1
r r rs ss s s s

−+ + − +γ γX µ U µ V V y X µ U µβ β . 

 (7.2) 
 

Using equation (7.2), our Bayes estimator of the 
population total is 

B̂T = s s r′ ′+1 y 1 E(yr | ys) 

      = ( ){ 1
s s r r r rs ss

−′ ′+ µ + µ +1 y 1 X U V Vβ γ  
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          ( )( )}s s s× − µ + µy X Uβ γ .                          (7.3)  

If we assume V = π(I − π)
−1π and U = π1, then we 

can show (7.3) has the exact form of the regression 
estimator (2.1)  
 

B̂T = ( )1
s s s s

−′ ′+ −1 Xµ 1 π y X µβ β , 

where =βµ { } 1  ss s s
−′ ′X QX X Qy  such that  

 

Q = 1 1s
⊥′ uK P K%  

    = ( ) ( ){1
s s s s s s
− − − −π I π I π 1  

 ( ) ( )}1 1
s s s s s s s s

− −′ ′ × − − 1 I π 1 1 I π π . (7.4) 

 

Recall that Sardnal et al. (1997, p. 228) suggest 

estimating β with ( )1
1

ˆ
s s s s

−
−

′ ′≡ X X Xβ Σ S
-1

ys.  Note 

that ˆ
sβ  has the exact form as µβ above, but in our 

Bayesian context, Σ-1
 is defined by (7.4). 

Under the more strict assumption where β and γ 
are independent, i.e. Χ(Xs) ⊥ 1

ss
−

V Χ(Us), equation 

(7.2) becomes  

E(yr | ys) =  ( )1ˆ ˆ
r rs ss s s

−+ −X β V V y X β  

where ( ) 11 1ˆ
s ss s s ss s

−− −′ ′=β X V X X V y .  In particular, our 

Bayes estimator (7.3) becomes the population total 
predictor found in Royall and Pfeffermann (1982, 
equation 1, p.402; that is 
 

B̂T = s s r′ ′+1 y 1 ( )1ˆ ˆ
r rs ss s s

− + −
 
X β V V y X β . 

 

The above estimator has the form of the best linear 
unbiased predictor (Royall, 1976a).  Furthermore, 
when  β and γ are independent, then the Bayes 
estimator for the population total under the 

assumption V = π(I − π)
−1π with U = π1 is the 

general regression estimator (2.1) with an adjusted 
error term, that is 
 

 B̂T = ( )1ˆ ˆ
s s s s s

−′ ′+ −1 Xβ 1 π y π X β , 

where 
 

( ) 11 1 1 1ˆ ( ) ( )s s s s s s s s s s

−− − − −′ ′= − −β X π I π π X X π I π π y . 
 

 Notice that difference between the Bayesian 
estimator above to the general regression estimator 
(2.1) is the fraction πs, which is the inclusion 

probability multiplied to Xsµβ. Note that µβ is equal 

to the weighted least squares estimator ˆ
sβ .    

 
 
 
  
8.   Dispersion of B̂T  
 

In this section we derive the posterior standard 

deviation for the fully Bayesian estimator B̂T  given in 
(7.3). We have 

 

Var(T) = Var ( )s s r r s′ ′+1 y 1 y y  

 = r′1 Var(yr |  ys)1r 

 = r′1 ( )1
r rs ss sr

− −
V V V V     

+ ( ) ( ) ( )1
11 1

r rs ss s s ss s r sr ss s
−

−− − ′′− −U V V U U V U U V V U  

+ ( )( ) 1
1

r sr ss s s ss

−− ⊥
1 1′ ′− uX V V X X K P K X

%
 

× ( )1
r sr ss s

− ′− 


X V V X 1r. 

 
9.  Discussion 

 

In this paper we have developed an empirical 

Bayes estimator, ÊBT , and a fully Bayesian estimator, 

B̂T , that yield the classical general regression 

estimator GRET̂  as a special case.  The fully Bayesian 
procedure recognizes the uncertainty of all prior 
parameters with “non-informative” or improper 
priors whereas the empirical Bayesian procedure 
estimates one of the parameters with a classical 
approach.  The fully Bayesian procedure explicitly 
shows how the estimate of the parameter β is 
weighted with the inclusion probabilities that are 
used extensively in classical designed-based finite 
population prediction (see equation (7.4)).  One of 
the advantages of using the fully Bayesian procedure 
for inference on the population total is the ability to 
clearly measure the posterior variation on the 
unknown quantity of interest T.  Consequently, we 
can obtain the posterior variation on the unknown 
quantity of interest T under the same assumptions 
that provided our special case Bayesian analog to the 

classical general regression estimator GRET̂ .  This 
provides us with a Bayesian interpretation of the 
general regression estimator specified by Sarndal et 
al. (p.225, 1997).  That is, we are able to construct 
interval estimates that have a strict probabilistic 
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interpretation without reference to repeating 
sampling. 
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