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Abstract:

Over the last two decades, a considerable attention
has been given to estimate the mean square pre-
diction error (MSPE) of an estimated best linear
predictor (EBLUP) of a mixed effect for a general
mixed linear normal model. All such MSPE esti-
mators except the naive estimator are second-order
correct and incorporate all sources of variabilities in
estimating the true MSPE. In this paper, we com-
pare different MSPE estimators for the simple but
very important Fay-Herriot model for small sample
through an extensive Monte Carlo simulation exper-
iment. Our study indicates that the recently pro-
posed Chen-Lahiri jackknife MSPE estimators per-
form very well compared to other rival MSPE es-
timators in a variety of situations. We prove the
second order accuracy of the Chen-Lahiri jackknife
MSPE estimator and in the process obtain an useful
approximation to this jackknife estimator.

1. Introduction

In order to estimate per-capita income for small ar-
eas (population less than 1,000), Fay and Herriot
(1979) considered an aggregate level model and used
an empirical Bayes method which combines survey
data from the U.S. Current Population Survey with
various administrative and census records. Their
empirical Bayes estimator worked well when com-
pared to the direct survey estimator and a synthetic
estimator used earlier by the Census Bureau. The
model can be written as:

yi = x′iβ + vi + ei, i = 1, · · · ,m,

where vi’s and ei’s are independent with vi
iid∼

N(0, A) and ei
ind∼ N(0, Di), Di (i = 1, ...,m) being

known. The Fay-Herriot model is a simple mixed
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effect model but has been found to be very effective
in solving small-area estimation problems.

For the Fay-Herriot model, an EBLUP, say
θ̂i(yi; Â), of θi = x′iβ + vi is given by:

θ̂i(yi; Â) =
Di

Â + Di

x′iβ̂ +
Â

Â + Di

yi,

where Â is an ANOVA estimator of A and β̂ =
(
∑

j=1
1

Â+Dj
xjx

′
j)
−1

∑
j=1

1
Â+Dj

xjyj . See Prasad
and Rao (1990).

We define MSPE[θ̂i(yi; Â)] = E[θ̂i(yi; Â) − θi]2,
where the expectation is taken over the Fay-Herriot
model.

Naive MSPE estimator is given by mseN
i =

g1i(Â) + g2i(Â), where g1i(Â) = ÂDi

Â+Di
, g2i(Â) =

D2
i

(Â+Di)2
x′i

(∑m
j=1

1
Â+Dj

xjx
′
j

)−1

xi. The naive
MSPE estimator usually underestimates the true
MSPE. There are two reasons for this underesti-
mation problem. First, it fails to incorporate the
extra variabilities incurred due to the estimation
of various model parameters and the order of this
underestimation is O(m−1), where m is the number
of the small-areas. Secondly, the naive MSPE
estimator even underestimates the true MSPE of
the BLUP, the order of underestimation being
O(m−1).

Several attempts have been made in the literature
to account for these two sources of underestimation
and to produce MSPE estimators that are correct
up to the order O(m−1). These are called second
order correct MSPE estimators. See Prasad and Rao
(1990), Datta and Lahiri (2000), Butar and Lahiri
(2003), Jiang et al. (2002), among others, for various
approaches.

(i) The Prasad-Rao (PR) MSPE estimator:
msePR

i = g1i(Â) + g2i(Â) + 2g3i(Â), where
g3i = 2D2

i

m2(Â+Di)3

∑m
j=1(Â + Dj)2.

(ii) The Jiang-Lahiri-Wan (JLW) estimator:

mseJLW
i
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= g1i(Â)− m− 1
m

m∑
u=1

(
g1i(Â−u)− g1i(Â)

)
+

m− 1
m

m∑
u=1

[θ̂i(yi; Â−u)− θ̂i(yi; Â)]2 (1)

where

θ̂i(yi; Â−u) =
Di

Â−u + Di

x′iβ̂−u +
Â−u

Â−u + Di

yi,

β̂−u = (
∑
j 6=u

1
Â−u + Dj

xjx
′
j)
−1

∑
j 6=u

1
Â−u + Dj

xjyj .

(iii) The Chen-Lahiri (CL) jackknife:

mseCL
i = g1i(Â) + g2i(Â)

−
m∑

u=1

wu

(
g1i(Â−u) + g2i(Â−u)

−[g1i(Â) + g2i(Â)]
)

+
m∑

u=1

wu[θ̂i(yi; Â−u)− θ̂i(yi; Â)]2.(2)

Note that mseCL
i could be negative for small

m and thus Chen and Lahiri (2002) recom-
mended using the following MSPE estimator
in case the above formula yields a negative
value: mseCL

i = g1i(Â) + g2i(Â) + D2
i (Â +

Di)−3vWJ +
∑m

u=1 wu[θ̂i(yi; Â−u)− θ̂i(yi; Â)]2,
where vWJ =

∑m
u=1 wu(Â−u − Â)2. We con-

sider two choices of wu = m−1
m (CL-1) and

wu = x′u

(∑m
j=1 xjx

′
j

)−1

xu (CL-2).

(iv) A new approximation to the Chen-Lahiri
jackknife (ACL): mseACL

i = g1i(Â) + g2i(Â) +
D2

i

(Â+Di)3
vWJ + D2

i

(Â+Di)4
(yi − x′iβ̂)2vWJ . This

approximation is obtained by approximating∑m
u=1 wu

(
g1i(Â−u) + g2i(Â−u)− [g1i(Â) + g2i(Â)]

)
and

∑m
u=1 wu[θ̂i(yi; Â−u)− θ̂i(yi; Â)]2 by Taylor

series expansion.

For small m, JLW could produce negative MSPE
estimates. See Bell (2001). Thus, we correct JLW
for negative MSPE estimates using a method similar
to Chen and Lahiri (2002). Also, for small m, Â
could yield zero estimate. This is problematic for all
second order correct methods. In order to achieve
good small sample properties of all the second order
correct MSPE estimators, we suggest using g2i(Â)
for the MSPE estimate whenever Â = 0.

Our jackknife estimators given in (iii) and (iv)
above are also second order correct. However, the

proof of this second order property does not follow
from the one given in Jiang et al. (2002) for prov-
ing second order property of (ii). To this end, we
assume the following regularity conditions:

(r.1) 0 < DL ≤ Di ≤ DU < ∞, ∀i = 1, · · · ,m

(r.2) supi≥1 hii = O( 1
m ).

We need the following technical result to prove
Theorem 2.
Theorem 1: Under the regularity conditions (r.1)
and (r.2),

(i)
∑m

u=1 wu(Ã−u − Ã) = 0;

(ii) For any random variable η satisfying E(η2) =
O(1), we have

E

[
η

m∑
u=1

wu(Â−u − Â)

]
= O(m−s). ∀s ≥ 0.

The following theorem establishes the second or-
der properties of our jackknife estimators given in
(iii) and (iv).
Theorem 2: Under (r.1) and (r.2), we have

E(mseWJ
i ) = MSE[θ̂i(y; Â)] + o(m−1);

E
[
mseAWJ

i −mseWJ
i

]
= o(m−1).

2. Monte Carlo Simulations

In this section, we investigate the performances of
different MSPE estimators given in section 1 for
small m through Monte Carlo simulations. We
consider m = 12, p = 1, β = 1, and A = 10. For the
first eleven areas, we consider the following combina-
tions of the sampling variance and covariate values:
(D,x) : (10, 1); (9, 1.5); (14, 2); (14, 2.5); (11, 3);
(10, 3.5); (10, 4); (13, 5); (4, , 6); (3, 7); (14, 8). To
study the effect of the covariate on the accuracies
of different MSPE estimators, we change x = x12

for the last area, keeping D = D12 fixed. Similarly,
to study the effect of the sampling variance on the
accuracies of different MSPE estimators, we change
the sampling variance D for the last area keeping
x = x12 fixed.

For a specific simulation, R = 10, 000 independent
samples of (vi, ei), i = 1, · · · , 12, are generated from
the Fay-Herriot model. We then calculate the rela-
tive bias (RB) of each of these MSPE estimators for
all the 12 areas using the Monte Carlo method as
follows:

RBi = 100
E(mspei)−MSPEi

MSPEi
, i = 1, · · · , 12,
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where mspei denotes an estimator of MSPEi, the
MSPE of EBLUP θ̂i(yi; Â) of the true small-area
mean θi (i = 1, · · · , 12), and the expectation “E” is
approximated by the Monte Carlo method. We re-
port RB’s for the last area and summary statistics
(mean and the standard deviation) of the RB’s for
the rest of 11 areas. In all these tables, the numbers
in the second row represent the RB of the MSPE es-
timators corrected for the situation when Â = 0. We
notice that in general the naive estimator underesti-
mates, the severity of the underestimation depends
on the values of h and D/A.

We illustrate the effect of x through leverage value
defined as h = h12 = x2∑12

j=1
x2

j

. Note that h is an in-

creasing function of x > 0. We increase h from 0 to
1 by increasing x. Table 1 displays RB’s of different
MSPE estimators for different x. Table 2 presents
the means and the standard deviations of the RB’s
for the rest of the 11 components. The naive esti-
mator underestimates MSPE in general, the mag-
nitude of the underestimation being severe when h
approaches 0. For the last area, the Prasad-Rao es-
timator performs well for small h but it tends to
overestimate when h approaches its maximum value
1. On the other hand, the average performance of
the Prasad-Rao estimator for the remaining 11 areas
is good when h is small but not so good when h is
large. Our jackknife estimators are very robust for
different x’s - they perform extremely well in pro-
tecting against outlying x. The performance of the
JLW even after correction for negative estimates is
not good, espectially when h is close to 1. For small
h it is similar to our jackknife with wu = m−1

m .

Table 4 displays RB’s of different MSPE estima-
tors for different D/A for the last small-area. Here
again, the naive estimator generally underestimates
the true MSPE, the underestimation being severe for
large D/A. The RB’s for the Prasad-Rao and our
jackknife methods exhibit an interesting pattern for
varying D/A. The absolute RB’s generally increases
with increasing |D/A − 1|. Both the methods usu-
ally overestimate when D/A < 1 and underestimate
when D/A > 1. Small values of D/A cause severe
overestimation for the Prasad-Rao method. In com-
parison, our jackknife MSPE estimators are quite
robust. Here again the performance of JLW is not
good, especially when D/A for the last area is large.

In Table 5 we display the means and the stan-
dard deviations of the RB’s for the rest of the 11
components for different values of D/A. In this ta-
ble also, the robustness of our jackknife methods in
comparison with the naive, the Prasad-Rao and JLW
methods is clearly demonstrated.

Table 3 and 6 report percentages of times Â is zero
for different values of D/A and h.
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3. APPENDIX

We need the following lemma to prove our main the-
orems.
Lemma A.1 Under (r.1) and (r.2), we have, for all
s ≥ 0,

(a)E|Ã−u −A|2s = O(m−s); (b)P (Ã−u ≤ 0) = O(m−s)
(c)E|Â−u −A|2s = O(m−s); (d)E|Â− Ã|s = O(m−s)
(e)E|Ã−u − Ã|s = O(m−s); (f)E|Â−u − Â|s = O(m−s)

Proof: See Chen (2001).
Proof of Theorem 1: (i) It follows directly from
the results

∑m
i=1 wu(δ−u − δ) = 0 (Wan (1999)) and∑m

i=1 wu(c−u − c) = 0 (Chen (2001)).
(ii) Because Â−u−Â = Â−u−Ã−u+Ã−u−Ã+Ã−Â,∑

wu = m− p and (i), we get

η
∑

wu(Â−u − Â)

=
∑

wu(Â−u − Ã−u)η + (m− p)(Ã− Â)η

=
∑

wu(A0 − Ã−u)ηI(Ã−u≤0)

+(m− p)(Ã−A0)ηI(Ã≤0)

The result follows from Lemma A.1 (b), the facts
P (Ã ≤ 0) = O(m−s) (Lahiri and Rao (1995) Lemma
C.1), E|A0−Ã−u|t ≤ 2t−1[|A0−A|t+E|Ã−u−A|t] =
O(1) ∀t > 0 by Lemma A.1 (a), and E|A0 − Ã|2 =
O(1) ∀t > 0 by Lemma A.1 (c) and Cauchy-Schwarz
inequality.

We now state and prove the following important
Lemma used in the proof of Theorem 2.
Lemma A.2. Under regularity conditions (r.1) and
(r.2), we have

(i) E
[
hWJ

1i −H1i(A)
]

= −g3i(A) +

E
[

D2
i

(Â+Di)3
vWJ(Â)

]
+ o(m−1);

(ii) E
[

D2
i

(Â+Di)3
vWJ(Â)

]
=g3i(A) + o(m−1);

(iii) E
[
hWJ

2i

]
= E

[
D2

i

(Â+Di)4
(yi − x′iβ̂)2vWJ(Â)

]
+

o(m−1);

(iv) E
[

D2
i

(Â+Di)4
(yi − x′iβ̂)2vWJ(Â)

]
= g3i(A) +

o(m−1).

Proof of Lemma A.2: To prove (i), let A∗
u and

Ã∗
u lie between Â−u and Â, ∀u = 1, · · · ,m. Then we

have
m∑

u=1

wu[H1i(Â−u)−H1i(Â)]

=
∑

wu[g1i(Â−u)− g1i(Â)]

+
∑

wu[g2i(Â−u)− g2i(Â)]

= I + II, say,

where I =
∑

wu[g1i(Â−u) − g1i(Â)] and II =∑
wu[g2i(Â−u)− g2i(Â)].

I =
∑

wu[(Â−u − Â)g′1i(Â) +
1
2
(Â−u − Â)2g′′1i(Â)

+
1
6
(Â−u − Â)3g′′′1i(A

∗
u)],

II =
∑

wu[(Â−u − Â)g′2i(Â) +
1
2
(Â−u − Â)2g′′2i(Ã

∗
u)].

where f ′(x), f ′′(x) and f ′′′(x) are the first, second
and third derivative of the function f(x) with re-
spective to x.

Since |g′1i(Â)| = D2
i

(Â+Di)2
≤ D2

U

D2
L

,

E
[∑

wu(Â−u − Â)g′1i(Â)
]

= o(m−1) by Theorem

3.1 (ii). Noting g′′′1i(A
∗
u) = 6D2

i (A∗
u +Di)−4 ≤ 6D−2

L ,
E|

∑
wu((Â−u − Â)3g′′′1i(A

∗
u)| = o(m−1)

by Lemma A.1 (f). Therefore, E(I) =
E

[
D2

i

(Â+Di)3
vWJ(Â)

]
+ o(m−1).

From direct calculation and using the
regularity conditions, we can easily get
|g′2i(Â)| ≤ c1(supi hii)|Â + DU | and |g′′2i(Ã

∗
u)| ≤

c2(supi hii)|Ã∗
u + DU |, where c1 and c2 are inde-

pendent constants, therefore E(II) = o(m−1) by
Theorem 1 (ii) and Lemma A.1 (f).

From Prasad and Rao (1990) Theorem A.3, we
have

E[H1i(Â)−H1i(A)] = −g3i(Â) + o(m−1) (3)

Therefore,

E[hWJ
1i −H1i(A)]

= E[H1i(Â)−H1i(A)− I − II]

= −g3i(A) + E[
D2

i

(Â + Di)3
vWJ(Â)] + o(m−1).

To prove (ii), let us look at E(vWJ(Ã)) first. From
direct calculation (Chen (2001)), we have

m2E(vWJ(Ã))

= m2E
[∑

(δ−u − δ)2
]
− 2E

[∑
(δ−u − δ)(c−u − c)

]
+

∑
(c−u − c)2

= 2
∑

(A + Du)2 +
∑

D2
i −

1
m

(
∑

(Du))2

+
2
m

∑
(A + Du)

∑
Di
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−2
∑

(A + Di)Di +
∑

D2
i −

1
m

(
∑

Du)2 + O(1)

= 2
∑

(A + Du)2 + O(1).

Noting that E|vWJ(Â) − vWJ(Ã)| ≤
2

∑
wu{(E|Â−u − Â|2 + E|Ã−u − Ã|2)(E|(Â−u −

Ã−u)− (Â− Ã)|2}1/2 = O(m−s) ∀s > 0 by Lemma
A.1 (b), (e), (f) and Cauchy-Schwarz inequality and
that D2

i

(Â+Di)3
≤ D2

U

D3
L

, we have E[ D2
i

(Â+Di)3
vWJ(Â)] =

E[ D2
i

(Â+Di)3
· vWJ(Ã)] + o(m−1). Also, because

E
∣∣∣( D2

i

(Â+Di)3
− D2

i

(A+Di)3
)(Ã−u − Ã)2

∣∣∣ = O(m−2.5) by
Lemma A.1 (c), (e) and Cauchy-Schwarz inequality,
we get

E

[
D2

i

(Â + Di)3
vWJ(Ã)

]

= E

[
D2

i

(A + Di)3
vWJ(Ã)

]
+ o(m−1).

= g3i(A) + o(m−1)

E[hWJ
1i −H1i(A)] = o(m−1).

(ii) is proved.
To Proof (iii) and (iv) we first apply Taylor series

expansion of θ̂i(yi;A) about the point Â to get

θ̂i(yi; Â−u)− θ̂i(yi; Â)

= θ̂′i(yi; Â)(Â−u − Â) +
1
2
θ̂′′i (yi;A∗

u)(Â−u − Â)2.

where A∗
u is between Â−u and Â. Following the same

algebra in Lahiri and Rao (1995) Theorem C.1, we
can get E|θ̂′i(yi; Â)θ̂′′i (yi;A∗

u)(Â−u − Â)3| ≤ O(m−3)
and E[|θ̂′′i (yi;A∗

u)|2(Â−u − Â)4] ≤ O(m−4). Hence,

E[θ̂i(yi; Â−u)− θ̂i(yi; Â)]2

= E[θ̂′i(yi; Â)(Â−u − Â)]2 + O(m−3). (4)

Noting that θ̂′i(yi; Â) = Di

(Â+Di)2
(yi − x′iβ̂) +

Di

(Â+Di)2
∂x′iβ̃
∂A |A=Â, we have

[θ̂′i(yi; Â)]2

=
D2

i

(Â + Di)4

[
(yi − x′iβ̂)2 + 2(yi − x′iβ̂)

∂x′iβ̃

∂A
|A=Â

+(
∂x′iβ̃

∂A
|A=Â)2

]
. (5)

Using the same algebra in (ii), we can show

E

{
D2

i

(Â + Di)4

[
2(yi − x′iβ̂)

∂x′iβ̃

∂A
|A=Â

+(
∂x′iβ̃

∂A
|A=Â)2

]
(Â−u − Â)2

}

= E

{
D2

i

(A + Di)4

[
2(yi − x′iβ̃)

∂x′iβ̃

∂A
+ (

∂x′iβ̃

∂A
)2

]
(Â−u − Â)2

}
= o(m−2). (6)

Now yi−x′iβ̃ and ∂x′iβ̃
∂A may be written as yi−x′iβ̃ =

εi + l′iε and ∂x′iβ̃
∂A = s′iε with li = (li1, · · · , lim)′,

supi,j |lij | = O(m−1), si = (si1, · · · , sim)′,
supi,j |sij | = O(m−1), ε = (ε1, · · · , εm) and εi =
vi + ei. Therefore, from direct calculation, we have

E

{
D2

i

(A + Di)4

[
2(yi − x′iβ̃)

∂x′iβ̃

∂A
+ (

∂x′iβ̃

∂A
)2

]
(Â−u − Â)2

}
≤ O(m−3), (7)

by Cauchy-Schwarz inequality and Lemma A.1 (f).
Therefore, (iii) follows from (4), (5), (6), (7) and the
fact that

∑
wu = m− p.

Finally, using the same algebra in (ii), (iv) follows
from direct calculation. We refer to Chen (2001)for
details.
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Table 1: Relative Biases (%) of MSPE Estimators for area=12

h Naive PR JLW CL-1 CL-2 ACL-1 ACL-2
0 -27.03 13.44 18.34 18.34 19.00 -4.35 -5.45

1.61 5.90 5.90 6.47 -14.31 -15.30
0.3 -22.42 8.33 25.79 13.30 12.29 -5.64 -6.50

-0.04 15.73 4.50 3.59 -12.49 -13.27
0.5 -18.66 7.36 41.10 9.84 8.54 -4.88 -5.63

0.94 31.23 3.24 2.06 -10.01 -10.68
0.8 -11.03 9.35 173.94 4.05 3.16 -1.05 -1.66

5.60 152.79 0.83 0.04 -3.72 -4.27
0.98 -2.81 14.87 2747.64 -0.87 -0.99 5.06 4.50

12.90 2470.11 -1.25 -1.35 4.10 3.60

Table 2: Summary statistics of RB’s for the first 11 areas

h Naive PR JLW CL-1 CL-2 ACL-1 ACL-2
MEAN 0 -24.89 14.91 26.47 18.65 18.62 -3.86 -4.91

4.10 14.66 7.60 7.55 -12.68 -13.62
0.3 -25.49 14.82 24.34 18.63 18.85 -4.28 -5.37

3.90 12.59 7.52 7.74 -13.13 -14.10
0.5 -26.04 14.69 23.59 18.79 19.19 -4.71 -5.79

3.76 11.91 7.64 8.01 -13.58 -14.55
0.8 -27.15 14.17 24.22 19.75 20.31 -5.42 -6.48

2.99 12.17 8.17 8.69 -14.57 -15.51
0.98 -28.11 13.42 26.08 20.99 21.56 -6.19 -7.22

2.16 13.73 9.16 9.68 -15.45 -16.36
STD 0 2.94 6.43 13.39 1.76 2.07 2.47 2.44

6.93 13.55 1.98 1.84 3.10 3.07
0.3 2.28 5.43 10.91 1.99 2.10 2.02 2.02

5.74 10.61 2.21 2.10 2.22 2.22
0.5 2.06 4.58 9.26 2.52 2.51 2.01 2.03

4.78 8.96 2.67 2.55 1.75 1.76
0.8 2.86 2.31 7.92 4.16 4.03 3.06 3.09

2.35 7.39 3.91 3.75 2.47 2.49
0.98 4.21 1.07 8.77 6.01 5.80 4.49 4.50

0.95 7.90 5.37 5.16 4.03 4.04

Table 3: Negative ANOVA Estimates of A (%)

H 0 0.3 0.5 0.7 0.98
Â = 0 10.43 10.38 10.22 10.14 9.99
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Table 4: Relative Biases (%) of MSPE Estimators for area=12

D/A Naive PR JLW CL-1 CL-2 ACL-1 ACL-2
0.1 -7.46 75.81 229.81 2.82 2.40 12.54 11.38

67.09 203.49 0.98 0.60 9.75 8.70
0.5 -15.76 18.96 70.08 8.39 7.38 -0.56 -1.43

12.91 58.72 3.45 2.53 -4.60 -5.39
1 -18.41 8.41 43.72 9.73 8.45 -4.46 -5.23

2.07 33.79 3.32 2.15 -9.45 -10.14
2 -19.56 2.76 29.07 11.02 9.31 -6.52 -7.20

-4.55 18.73 2.86 1.32 -12.79 -13.40
10 -21.96 4.86 24.92 21.04 13.73 -5.22 -6.03

-10.58 5.53 2.55 -3.34 -18.76 -19.43

Table 5: Summary statistics of RB’s for the first 11 areas

D/A Naive PR JLW CL-1 CL-2 ACL-1 ACL-2
MEAN 0.1 -27.44 10.69 23.54 20.87 21.20 -6.74 -7.62

0.25 11.99 9.60 9.90 -15.47 -16.26
0.5 -26.33 12.68 23.08 19.14 19.57 -5.41 -6.37

2.12 11.63 8.12 8.52 -14.13 -14.99
1 -26.04 14.34 23.46 18.76 19.18 -4.78 -5.84

3.49 11.84 7.67 8.05 -13.62 -14.57
2 -26.34 18.36 24.95 19.47 19.68 -4.04 -5.33

6.32 12.37 7.53 7.73 -13.52 -14.68
10 -33.83 116.25 37.57 29.80 27.17 0.63 -3.83

77.16 13.74 7.41 5.30 -16.33 -19.96
STD 0.1 3.80 1.77 8.81 6.82 6.40 4.24 4.25

1.50 7.89 6.07 5.66 3.71 3.71
0.5 2.34 2.77 8.49 3.70 3.56 2.53 2.55

2.86 8.04 3.64 3.46 1.94 1.96
1 2.06 4.29 9.13 2.61 2.60 2.03 2.05

4.52 8.83 2.76 2.64 1.72 1.73
2 2.25 6.34 10.10 2.04 2.13 2.06 2.07

6.56 9.90 2.21 2.12 2.13 2.12
10 3.19 46.79 12.91 2.60 2.54 3.37 3.08

39.75 12.58 1.67 1.71 4.17 3.60

Table 6: Negative ANOVA Estimates of A (%)

D/A 0.1 0.5 1 2 10
Â = 0 96 98.6 10.16 11.01 18.84
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