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Abstract: In several articles (2001, 2003), we have

described a method for statistical matching that allows

assessment of the uncertainty introduced during the

match that is due to relationships in variables that are not

jointly observed.  These articles focussed on matches of

bivariate normal (X,Z) samples with bivariate normal

(X,Y) samples.  In this paper we present new findings,

with a focus on results from matching when all

components of X,Y,Z are bivariate normal.

1. Introduction

We begin with a brief overview of statistical matching in

the next section.  We then summarize previously-

published descriptions of our procedure in Section 3.

Then, we present a new generalization of our procedure

to higher dimensions in Section 4.  We summarize our

new findings in Section 5, and provide conclusions and

areas for future research in Section 6.

2. Statistical Matching - An Overview

Suppose there are two sample files, File A and File B,

taken from two different surveys.  Suppose further that

File A contains potentially vector-valued variables (X,Y),

while File B contains potentially vector-valued variables

(X,Z).  The objective of statistical matching is to combine

these two files to obtain at least one file containing

(X,Y,Z).

In contrast to record linkage, or exact matching, the two

files to be combined are not assumed to have records for

the same entities.  In statistical matching the files are

assumed to have little or no overlap; hence, records for

similar entities are combined, rather than records for the

same entities.  For example, one may choose to match

individuals who are similar on characteristics like

gender, age, poverty status, health status, etc.

All statistical matches described in the literature have

used the X variables in the two files as part of the

matching process.  To illustrate, suppose File A

consisted, in part, of records

X1, Y1

X2, Y2

X3, Y3

while File B has records of the form

X1, Z1

X3, Z3

X4, Z4

X5, Z5

If only the X variables are used to define matches, this is

akin to assuming that Y and Z are uncorrelated, given X;

if the variables have normal distributions, then the

assumption is that Y and Z are conditionally

independent, given X.  This "conditional independence"

assumption has been discussed extensively in the

statistical matching literature (e.g., Rodgers (1984), and

references given therein).

Given the assumption of conditional independence, it

would be immediate that one could create

X1, Y1, Z1

X3, Y3, Z3

Notice that matching on X1 and X3 (where X is, say, age)

does not imply that these are the same entities.
This paper does not necessarily reflect the views or
position of the U.S. General Accounting Office.
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What to do with the remaining records is less clear and

techniques vary.  Broadly, the various strategies

employed for statistical matching can be grouped into

two gener al cat egories : "constrained" and

"unconstrained."  Each is described in turn.

Constrained statistical matching requires the use of all

records in the two files and basically preserves the

marginal Y and Z distributions.  In the above example,

for a constrained match one would have to end up with

a combined file that also had additional records that used

the remaining unmatched File A record (X2,Y2) and the

two unmatched File B records (X4,Z4) and (X5,Z5).  In

other words, all of the records on both files get used.

Notice that, as would generally be the case, one could not

limit the role of X in the matching so as to require

identical values of X to allow a match; in at least some

cases, matches would have to be allowed where X’s were

close (similar) to one another.

Unconstrained matching does not have the requirement

that all records are used.  Referring to the above

example, one might stop after creating (X1,Y1,Z1) and

(X3,Y3,Z3).  Usually in an unconstrained match, though,

all the records from one of the files (say File A) would be

used (matched) to "similar" records on the second file.

Some of the records on the second file may be employed

more than once, or not at all.  Hence, in the

unconstrained case, the remaining unmatched record on

File A, the observation (X2,Y2), would be matched to

make the combined record (X2,Y2,Z??).  The observations

(X4,Z4) and (X5,Z5) from File B might or might not be

included.

A number of practical issues, not discussed in this brief

overview, need to be addressed in statistical matching;

for example, alignment of universes (i.e., agreement of

the weighted sums of the data files) and alignment of

units of analysis (i.e., individual records represent the

same units). 

Rodgers (1984) includes a more detailed example of

combining two files, using both constrained and

unconstrained matching, than the example we have

provided here.  We encourage the interested reader to

consult that reference for an illustration of how sample

weights are used in the matching process, etc.

3. Our Statistical Matching Procedure

In several articles (2001, 2003), we have described a

method for statistical matching that uses information

from X, Y, and Z in the matching process.  Our

procedure is an extension of innovative ideas due to

Kadane (1978) and Rubin (1986) that allows assessment

of the uncertainty introduced during the match that is

due to relationships in variables that are not jointly

observed, as opposed to simply assuming conditional

independence.

The covariance matrix of the vector (X,Y,Z) can be

written in partitioned form as

All elements of can be estimated from File A

(containing (X,Y)) or File B (containing (X,Z)) except

and its transpose, .  Although cannot

be estimated directly from Files A or B, the assumption

that (X,Y,Z) have a nonsingular distribution places some

restrictions on the possible values of , which we

refer to henceforth as "admissible" values for

convenience.  Without loss of generality, can be

assumed to be a correlation matrix.

Our algorithm begins with selecting an admissible value

of .  This value is used in regressions to estimate

missing data values of Z in File A and of Y in File B; Z

is regressed on X and Y in File A, and Y is regressed on

X and Z in File B.  Random residuals are imputed to the

regression estimates of Z in File A and Y in File B to

recover the variance lost during the regression step.  The

files are matched using constrained matching, with the

metric being the Mahalanobis distance on (Y,Z).  For

matched records, estimated values are replaced with

observed values from the other file.
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This process is repeated for a range of admissible values

of , say n of them, to produce n distinct synthetic

datasets that are available for n subsequent analyses that

can display the effect of alternative assumptions on the

value of .

Note that the random residual imputation step described

above is not guaranteed to occur.  The amount of residual

to impute is estimated by subtracting the variance of the

regression estimate of a variable from the estimated

variance of the variable; because both File A and File B

contribute to this calculation, a nonpositive definite

quantity can result.

For example, the variance of Z, , is estimated

using File B.  The variance of the regression estimates of

Z in File A is given by 

where is specified, , , and are

estimated using File A, and is estimated using

File B.

For one or both of Y and Z, when a nonpositive definite

expression is obtained after the subtraction of the

variance of the regression estimate of a variable from the

estimated variance of the variable, no imputation of

residuals is done for the regression estimate of the

variable in the file where it is missing (e.g., the

regression estimate for Z in File A).  Thus far in our

research, occurrences of this phenomenon generally

correspond to when the assumed distribution of (X,Y,Z)

is close to being singular, as indicated by the smallest

eigenvalue of being close to zero.

4. Generalizations Of Our Procedure To Higher

Dimensions

Our algorithm, as outlined in Section 3, can be followed

for (X,Y,Z) of any dimension.

As might be expected, the procedure is more complicated

when the dimension of (X,Y,Z) exceeds 3.  In particular,

the specification of an admissible value of requires

some effort.

One possible strategy is to begin with the "conditional

independence value" , which always

is an admissible value for .  This provides a

starting point for generating perturbations that would

then need to be checked for admissibility.  This option is

a good choice if no auxiliary information about the (Y,Z)

relationship is available.

Another possibility that might be useful for generating

admissible values of either when the dimension of

(Y,Z) is low (e.g., univariate Y, bivariate Z), or when

many of the (Y,Z) relationships can be estimated using

auxiliary sources, is to use the following recursion

formula for partial correlations (e.g., Anderson, 1984,

p. 43):

Note that in the simplest case of univariate (X,Y,Z), with

i=Y, j=Z, and k=X, this formula reduces to

solving for and  allowing to vary from -1 to

1, a bound for is obtained in terms of and

, namely

This equation displays the range of admissible values

for , given the observed values of and

.  The midpoint of the interval is the "conditional

independence" value
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Consider again a situation where the dimension of (Y,Z)

is low, e.g., (X,Y,Z1,Z2).  Here, a collection of admissible

values for the pair ( , ) needs to be

generated.  One way of doing this, using the recursion

formula, is to first select a value for in accordance

with a bound analogous to what is outlined above; i.e.,

from the interval,

This value of then determines via the

equation

The recursion formula then is used to obtain the relation

w h i c h  s p e c i f i e s  i n  t e r m s  o f

, , and .  is estimated

from File B.  Then, by allowing  to vary from

-1 to 1, the allowable range of values for can be

determined.  Applying these bounds to the equation

the allowable range of values for can be

determined that correspond to the selected value

of , and an admissible value selected.

Returning to the strategy of beginning with the

"conditional independence value" as

a starting point of generating a range of admissible

values for , one can determine the maximum range

of admissible values for each component of  by

using the fact that a necessary condition for to be

positive definite is that the covariance matrix of (Y,Z)

given X is positive definite:

Note that  is the residual covariance matrix of

(Y,Z) after regressing (Y,Z) on X, and that this matrix is

block diagonal at the "conditional independence" value

of .

For each element of , the maximum amount of

"wiggle room", or allowable perturbation, about the

conditional independence value can be determined via

the square root of the product of the appropriate variance

components from A and C in the matrix.  This

follows from the requirement that every principal

submatrix of a positive definite matrix must be positive

definite.  For example, the maximum amount of

allowable perturbation about the conditional

independence value of Covar(Yi,Zj) is given by the square

root of (Var(Y i|X) * Var(Zj|X)).  After making this

determination for all elements of , one can then

iterate within these boundaries to find the widest possible

range of admissible values.

We used this strategy successfully to carry out simulation

research using bivariate X, Y, and Z.  Corresponding to

our previously published simulation research, we first

specified the distribution of (X,Y,Z).  Then, we generated

samples of size 1000 for (X,Y) (File A), and for (X,Z)

(File B), and then our algorithm was applied.

5. Summary of research using X1,X2,Y1,Y2,Z1,Z2

A total of 1930 simulations were done.  Without loss of

generality, zero means and unit variances were assumed.

First, the (Xi,Yj) and (Xi,Zk) correlations were generated
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over a range of values such as 0, 0.25, 0.50, and 0.75.

For a set of generated correlations, the conditional

independence values of Corr(Yi,Zj) were computed.  If

the resulting matrix was positive definite, this set of

values was saved for later processing, giving a very large

set (~400,000).  A 1/1000 subsample of this set was

drawn, and then 4 perturbations were generated around

each conditional independence value.  The combined

collection of conditional independence values and

perturbations gave a total of 1930 sets of values.

Of the 1930 simulations, residuals were imputed for the

regression estimates for both Y=(Y1,Y2) in File B and

Z=(Z1,Z2) in File A in 1595 cases; 202 cases had no

imputation for one of (Y,Z); and 133 cases had no

imputation at all.

Performance was robust for reproducing the specified

value of  over the 1930 simulations, with the best

results occurring when residuals were imputed for the

regression estimates of one or both Y and Z.  Table 1

provides details.

Some distortion in estimated covariances occurred when

residuals were not imputed for one or both variables; e.g.,

if residuals were not imputed for the regression estimate

of Z in File A, we sometimes observed distortion

in in File A.  This finding was not unexpected, it

was consistent with our previous research.

6. Conclusion, Areas of Future Research

We now have generalized our algorithm to multivariate

normal (X,Y,Z) of any dimension.  Our simulation

results for (X1,X2,Y1,Y2,Z1,Z2) indicate that file sizes of

1000, the same file sizes we used in our previous

research on (X,Y,Z), gave satisfactory results.  If larger

file sizes were used, we would expect better results

reproducing specified , and a lower proportion of

cases where residuals would not be imputed for the

regression estimates for one or both of Y and Z.

Although we have found a way to generate the full range

of admissible values of for a given set of observed

relationships in File A and File B, more efficient

methods deserve study.  Another area of worthwhile

research is to estimate the proportion of instances where

residuals cannot be imputed for the regression estimates

of Y and/or Z for various sample sizes and relationships

in File A and File B.  This information would help guide

practitioners in the application of our method, as it is

preferable to have file sizes large enough so that it is very

likely one can impute residuals to the regression

estimates for both Y and Z.  Additionally, the

performance of our method needs to be assessed when the

variables do not have a normal distribution, when one or

more variables to be matched are categorical, etc.

It is important to not ever lose sight of the fact that

statistical matching, in the absence of auxiliary

information, is unable to provide any sort of "best

estimate" of the (Y,Z) relationship; the most that can be

done is to exhibit variability for a range of plausible

values of the (Y,Z) relationship, which allows for

sensitivity analyses to be carried out.

Our procedure can be used for this purpose in the

multivariate normal framework.  Perhaps it is robust

enough to extend to other situations as well, too.

Additional research is needed, though, as stated above.
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           Table 1: Summary of Simulation Results for (X1,X2,Y1,Y2,Z1,Z2)

Simulation Subset

Average absolute difference between

specified value of   and values

computed from matched (Y,Z) pairs

Performance

reproducing

specified values

of in File A

and in File B
(Y1,Z1) (Y1,Z2) (Y2,Z1) (Y2,Z2)

overall (1930 simulations) 0.02 0.02 0.02 0.02 usually good

residuals imputed to

regression estimates of both

Y and Z (1595 simulations)

0.02 0.02 0.02 0.02 good

residuals imputed to

regression estimates of one

of  Y and Z but not the

other (202 simulations)

0.01 0.01 0.02 0.02 not good in some

instances

residuals not imputed to

regression estimates of  Y

nor Z (133 simulations)

0.04 0.04 0.04 0.04 often not good
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