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1. Introduction 

Raking was proposed by Deming and Stephan 
(1940) as a way to ensure consistency between 
complete counts and sample data from the 1940 U.S. 
Census of population. Raking is now a widely used 
procedure that uses auxiliary data from external sources 
to produce estimates with good statistical properties. 
The primary use of raking is to adjust the survey 
estimates for undercoverage and response biases. In 
addition, raking typically improves the reliability of 
survey estimates. The effectiveness of raking in 
reducing the bias and variance of the estimates depends 
on the relationship between the auxiliary variables used 
in raking and the survey estimates. When the two are 
highly correlated, the mean square error of the estimates 
can be substantially reduced. 

Raking, also called iterative proportional fitting, 
can be described as an algorithm that requires a 
sequence of adjustments. The survey weights are first 
adjusted to be consistent with control totals from the 
marginal distribution of one variable (or dimension). 
The resulting weights are then adjusted to the control 
totals for the second marginal distribution. The process 
continues for all the dimensions. One sequence of 
adjustments through all the dimensions is called a cycle 
or iteration. The algorithm iterates until all weighted 
totals conform to the control totals for all the marginal 
distributions simultaneously. 

In working with a variety of surveys that use 
raking at Westat, we have encountered some issues and 
concerns with the procedure. We examine some of 
these issues in this paper, and provide some 
recommendations based on our experiences bolstered 
by theory. We use examples from the 2001 National 
Household Education Surveys Program (NHES) to 
illustrate these issues, even though many of the 
concerns arose in other surveys. NHES is a random-
digit-dial (RDD) telephone survey that collects 
information on the civilian, noninstitutionalized 
population of the 50 States and the District of 
Columbia. The NHES surveys are designed to allow 
repeated measures of various phenomena over time. 
The objective of NHES:2001 is to make inferences 
about the entire civilian, noninstitutionalized population 
for the domains of interest. Although only telephone 
households are sampled, the estimates are adjusted to 
totals of persons living in both telephone and 

nontelephone households derived from the Current 
Population Survey (CPS). As noted above, one of the 
main reasons for doing this is to reduce the bias arising 
from the noncoverage of households without telephones 
in NHES. NHES:2001 data were used to construct the 
examples discussed below, but the examples were 
artificially created to highlight a particular issue. See 
Hagedorn, et al (2003) for further information about the 
NHES:2001 Surveys. 

In Section 2, we give an overview of raking and 
poststratification, and present a general model for 
calibration methods. Properties of raking estimators 
when there are no empty cells are discussed in  
Section 3. We describe some potential problems with 
raking in Section 4. Section 5 contains a summary and 
some recommendations. 

 
 

2.  Calibration Methods 
We begin by describing some theory on the 

poststratified and raked estimators. Both estimators are 
in a class of estimators that Deville and Särndal (1992) 
refer to as calibration estimators. A calibration 
estimator is one in which the base weights, id , the 
inverse of the probability of selection, are adjusted so 
that the revised weights, iw , are close to the original 
weights but satisfy some constraints. Typically, the 
constraint is that the sum of the revised weights equal a 
known population total, iw N=∑ , or more generally 

i iw =∑ x X , where ix  is a vector of auxiliary data 
known for all sampled units and for the entire 
population. With poststratification, the constraint 
requires that the revised weights sum to the population 
total for groups or cells of the population. With raking, 
the constraints involve summing to the population or 
control totals for two or more variables at the same 
time, but the constraints are marginal and do not 
involve the cells formed by crossing the variables.  

Different calibration estimators can be 
constructed by changing the measure of closeness. For 
example, raking corresponds to a metric that measures 
the distance between the revised weight and the original 
weight (let x denote the ratio) by the function 

( ) log( ) 1G x x x x= − + . Deville and Särndal (1992) 
show the different distance measures have little effect 
when the sample size is large. 

We mentioned some of the reasons for raking in 
the previous section, but these reasons and others also 
apply to calibration estimators in general. One reason 
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for using a calibrated estimator is that the constraints 
force the sum of the weights to equal known population 
totals for the selected dimensions, and this provides 
some face validity for the estimates. Since the totals are 
known from some other source, this is a form of 
conditioning the estimators that has statistical 
advantages over unconditional approaches (Holt and 
Smith, 1979). A second reason for calibrating the 
estimators is that it adjusts for other sources of error, 
including sampling, nonresponse, and noncoverage. For 
example, in many RDD surveys like NHES, adjusting 
the estimates from a telephone survey to known 
population counts from the entire population (both 
telephone and nontelephone households) is the major 
reason for calibration and is critical to reducing the 
mean square error of the estimates. The reduction in the 
mean square error of the estimates is related to the 
predictive power of the auxiliary variables used in the 
adjustment. Choosing variables that are highly related 
to the primary outcome variables of the survey or that 
are highly related to the propensity to respond or the 
likelihood of being covered results in the greatest 
reduction in the mean square error. For example, with a 
calibrated estimator, the error in estimating a population 
total that is used as a constraint is zero (it is a known 
value that does not vary from sample to sample). 
Similarly, estimates of population totals that are highly 
correlated with the auxiliary variables have small 
sampling errors. Below, poststratification and raking 
are described in more detail. 

Consider poststratification to population control 
totals, where the population count, hN ( )1,...h H= , is 

known for each poststratum or cell h. The poststratified 
estimator of the population total is: 
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unadjusted survey estimate of the population total in 
cell h.  

The poststratified estimator assumes that all the 
sampled units respond. A generalization used in 
practice that handles unit nonresponse is the population 
cell weighting estimator. This estimator is: 
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where the sums are over the set of respondents in cell h. 
As a convenience, the population cell weighting 
estimator is referred to as the poststratified estimator, 
ignoring the distinction noted above. The difference 
will be discussed later. 

Two issues arise with using the poststratified 
estimator in practice. The first issue is that the 
poststratified estimator requires external data on the 
number of units in the population in each cell ( )hN . 

When several auxiliary variables are used in the 
adjustment, the counts in each cell of the cross-
tabulation of the auxiliary variables are needed, and this 
level of detail is not always available. Even when the 
required counts are available, it may not be wise to use 
the full cross-classification for adjusting the estimator. 
The poststratified estimator is a ratio estimator, and its 
denominator is a sample estimate of the number of units 
in cell h. If the sample size in cell h is small, then the 
estimator is biased and the poststratified estimator could 
be unreliable. Sometimes, the cells are collapsed to 
avoid this problem. 

The population raking estimator is an alternative 
that may be used when several auxiliary variables are 
available. Raking is often thought of as a multivariate 
version of poststratification since the process of raking 
involves repeated poststratification to multiple 
dimensions. One virtue of raking is that only the 
marginal control totals are needed, rather than counts 
for all the cells in the cross-classification such as would 
be required with poststratification. 

To aid in the discussion, the raking estimator is 
described in a simple two-variable situation. The 
extension to more variables is immediate. Suppose 
there are two auxiliary variables with H and K classes, 
respectively. The raking estimator can be written as: 
 

 ( ),
ˆ

r

hki hki
pr hk i k h

h k
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%  (3) 

 
where hkw%  is the weight formed by raking the weighted 
count of the number of respondents in cell (h,k) to the 
marginal totals as described in the following steps.  

 

� Let
( )

( , )
,

ˆ
hk h k i

i h k
N d

∈
= ∑  be the unadjusted 

estimate of the population in cell (h,k). 
� Compute weights at each iteration t using 

the following: 
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� Iterate to convergence (i.e., until the sums of 
the weights match all the marginal counts 
within specified tolerance limits). 

 
At each iteration the weights are poststratified 

twice, first to the row dimension and then to the column 
dimension. With more than two dimensions, this 
adjustment is repeated for each dimension. If the raked 
weights converge, then the order of introducing the 
dimensions does not matter, and the row and column 
variables can be interchanged without affecting the 
estimates. This formulation shows why raking is often 
viewed as multivariate poststratification.  

 
Another way of writing the raked weight is: 

 

 ˆˆ ˆhk hk h kw N α β=% ,  (4) 
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. Using this formulation, the 

weight can be viewed as being adjusted by a factor for 
each dimension, hα  is the adjustment for the first 

dimension (level h) and kβ  is the adjustment for the 
second dimension (level k). The row factor is the 
product of all the adjustments that are made to the row 
across iterations. Similarly, the column factor is the 
product of all the column adjustments across the 
iterations. 

As an example, suppose that a sample of children 
between the ages of 5 and 7 enrolled in kindergarten, 
1st or 2nd grade are selected in NHES. Control totals 
are known for both the age and grade margins from an 
auxiliary source. The control totals are: 3,500, 3,800, 
and 3,700 for 5, 6, and 7 year olds, respectively; 4,000, 
4,000 and 3,000 for kindergarten, 1st grade, and 2nd 
grade, respectively. Table 1 gives the estimates from 
the survey before and after raking to the control totals. 
Using the notation given above, the grade factors are: 

0.70kgα = , 1 1.05stα = , and 2 1.88ndα = , and the age 

factors are: 5 1.43yrβ = , 6 1.08yrβ = , and 7 0.68yrβ = . 

 
 

Table 1. Estimates before and after raking by age 
and grade 

 
Estimates prior to raking 

 Age  

Grade 5 6 7 Total 
K 3,200 1,000 100 4,300 

1 200 2,500 1,200 3,900 

2 0 100 2,200 2,300 

Total 3,400 3,600 3,500 10,500 

Estimates after raking 

K 3,199 754 47 4,000 

1 301 2,843 856 4,000 

2 0 203 2,797 3,000 

Total 3,500 3,800 3,700 11,000 
 
 
An important feature of raking that may not be 

obvious is that the algorithm forces the weights to 
conform to the marginal totals without perturbing the 
associations in the unadjusted table (Haberman, 1979). 
Another way of saying this is that raking retains the 
cross-product ratios or odds ratios in the observed data, 
while producing estimates that are consistent with the 
marginal constraints. For example, in Table 1 notice 
that all nine cross-product ratios that can be formed are 
the same for the estimates in tables before and after 
raking (e.g., the cross-product ratio of the subtable of 
children aged 5 and 7 and in kindergarten and 1st grade 
has the value of 192 for both tables). 

This feature of raking is implicit when the raked 
weights are written as a product of row and column 
factors, such as given by (4). The relationship may be 
clearer if the full table of survey estimates is written 
using a log-linear model. For example, when there are 
three dimensions, the survey estimates are fully 
determined by the known population total and the 
model: 

 
( ) ( )

( ) ( ) ( )
ln ijk i j k ij

ik jk ijk

e µ α β γ αβ

αγ βγ αβγ

= + + + + +

+ +
 (5) 

 
where ijke  are the unadjusted estimates in cell i of the 

first dimension, cell j of the second dimension, and cell 
k of the third dimension. The first term on the right-
hand side of the equation is an intercept term, the next 
three terms are the main effects corresponding to the 
specific level for each dimension, the next three terms 
are the second-order interactions, and the last term is 
the three-level interaction.  

If the survey estimates are poststratified to all the 
cells in the three dimensional table, then all of the terms 
in (5) are specified by the control totals, and none of the 
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original structure of the unadjusted estimates are 
retained. If the survey estimates are raked to the three 
marginal dimensions instead, then the second- and 
higher-order terms in (5) are not determined by the 
control totals. The interaction terms from the 
unadjusted table are retained in the raked table. 

 
 

3. Convergence Properties 
As noted earlier, raking or iterative proportional 

fitting is a well-known procedure and many of its 
properties have been studied in a variety of contexts, 
but probably most intensively with respect to 
contingency tables. Ireland and Kullback (1968), and 
Bishop, Fienberg, and Holland (1972) show that the 
algorithm converges to a unique solution provided all of 
the cells in the cross-classified table have positive 
entries. The proofs require the marginal counts to be 
consistent. In our terminology, this means the marginal 
counts all sum to the same total. We expand this 
definition of consistency in the next section to cover 
situations in which the same variable is used on more 
than one dimension, and the control totals do not come 
from the same source. Convergence is achieved if the 
raked marginal estimates are equal to the marginal 
control totals, within a specified tolerance. 

While these results are useful in some settings, 
many of the raking problems in current surveys use 
auxiliary data to a greater extent than ever before and 
this often results in raking to tables with zero cells. If 
some cells have no observations, then the convergence 
theorems do not apply. Bishop, Fienberg, and Holland 
(1972) discuss convergence for tables with zero cells, 
but only for special cases. Fagan and Greenberg (1984) 
evaluate the convergence when raking with zero cells, 
but their solution involves iteratively solving linear 
programming transportation problems just to determine 
if the problem converges. Given the speed of computing 
today, it is probably simpler and easier to determine if 
the algorithm converges by running it and allowing a 
large number of iterations.  

The literature and our own experiences suggest 
that most well-behaved raking problems converge 
relatively quickly, even when the tolerance for 
convergence is relatively small. However, a well-
behaved raking problem cannot be defined simply in 
terms of having no cells with zero counts. Surveys often 
rake with a large number of dimensions, highly 
correlated dimensions, or dimensions that have few 
sample observations for some of the margins. In the 
next section we consider problems that are not well-
behaved. 

When the algorithm converges to the specified 
marginal totals, the procedure has desirable asymptotic 
properties. For example, Ireland and Kullback (1968) 
show raking minimizes the discrimination information 
and produces best asymptotically normal estimates. 
However, these asymptotic properties may not be very 

relevant for the finite sample problem, especially if 
convergence requires a large number of iterations. We 
believe that a large number of iterations is an indicator 
of potential problems with the raked weights, frequently 
signaling that the raking factors may vary substantially. 
The highly variable weights that are produced by such 
factors are undesirable because they may inflate the 
variances of the estimates and result in unstable 
estimates within domains. Examples of these types of 
problems are given in the next section. 

 
 

4. Potential Problems With Raking 
In this section, we describe specific situations in 

which raking could be problematic. Problems 
associated with inconsistencies in the control totals are 
discussed in Section 4.1. Section 4.2 examines the 
problems associated when there are a large number of 
raking dimensions. In Section 4.3, we discuss raking 
with dependent dimensions. The potential problems 
associated with measurement bias are addressed in 
Section 4.4. Throughout the discussion in Sections 4.1 
through 4.4, we consider properties of raking assuming 
complete response and coverage. The effects of 
differential nonresponse and coverage on raking are 
discussed in Section 4.5. Although we discuss each 
situation individually, it is often the case that these 
problems are related. (For example, when a large 
number of dimensions are used, it is often the case that 
two or more dimensions are correlated.) 

With the exception of one operational issue 
discussed in Section 4.1, we address methodological 
issues. For example, we do not consider the situation in 
which the sum of the control totals for one raking 
dimension does not match the sum of the control totals 
for another dimension. Although this will result in a 
failure to converge (provided the difference in the sums 
of the control totals exceeds the maximum tolerance), it 
can be easily remedied computationally and is thus 
strictly an operational and not a methodological 
concern. 

 
 

4.1 Inconsistencies in the Control Totals 
The one particular operational issue we consider 

is a particular type of inconsistency in the control totals. 
We deal with it because it is a relatively common 
problem and, if overlooked, may have an undesirable 
effect on the outcome of the raking procedure. In 
particular, the situation considered here is one in which 
the same variable is used in more than one raking 
dimension; e.g., age category by educational attainment 
is one dimension, and age category by income category 
is another dimension. If a single external dataset is used 
as the source for control totals for both of these 
dimensions, then there should be no inconsistencies in 
the control totals. However, if different sources are used 
because the variables are not available from the same 
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external file, inconsistencies may arise. We assume the 
grand totals from both files are equal so that 
convergence is possible.  

Consider an example in which three age 
categories (20-39, 40-59, and 60 or older) are used. 
Suppose that for each age category, three educational 
attainment categories are used to obtain the first raking 
dimension, and four income categories are used to 
obtain the second dimension. Let 1ijN  denote the 

control total for age category i and educational 
attainment category j, and let 2ikN  denote the control 
total for age category i and income category k. If the 
totals are from different external sources, for each i, 

1 2ij ik
j k

N N≠∑ ∑ , generally. Raking will not converge 

because of this disparity.  
However, this operational problem can be easily 

remedied. The remedy is to compute the control totals 
for one dimension by applying the proportions (from 
one source) for that dimension to totals (from the other 
source) for the other dimension. In the above example, 
this can be done by applying the proportions from 
dimension 2 to the totals from dimension 1, as follows: 
 

 2
2 1

2

ik
ik ij

jik
k

N
N N

N
′ = ∑

∑
 (6) 

 
Using this approach, the control totals 1ijN  and 2ikN ′  

are consistent in that 1 2ij ik
j k

N N ′=∑ ∑  for all i. 

Before applying this remedy, it is important to 
evaluate the quality of the two data sources for the 
control totals. In this type of calibration problem, the 
control totals are assumed to be known without error. If 
the age totals vary substantially across the sources, this 
premise may not be satisfied and further consideration 
should be given to the raking. 

 
 

4.2 Large Number of Dimensions 
Now turning to more methodological issues, one 

situation that could be problematic is when a large 
number of dimensions are used in raking. This situation 
may arise in surveys with a large number of auxiliary 
variables that are associated with nonresponse or 
undercoverage. It may also arise in longitudinal 
surveys, due to the wealth of information compiled 
about respondents at each wave of the survey. Fuller 
(2002), notes that “If a large number of control 
variables are used, it may not be possible to construct 
weights satisfying the calibration constraints and also 
falling within reasonable bounds.” In fact, in these 
situations, raking may be very slow to converge and, in 
extreme situations, might not converge at all.  

To investigate the behavior of raking with a 
relatively large number of dimensions, we created an 
example in which the following dimensions were used 
for raking: 

 
� Race/ethnicity by income (9 levels); 
� Region by urbanicity (8 levels); 
� Home tenure by age (18 levels); 
� Family type (5 levels); and 
� Receipt of food stamps (2 levels). 
 
In all, the cross-classification of these five 

dimensions results in 12,960 possible cells. The survey 
dataset used for this example contained only 9,583 
cases. Thus, it is obvious that many of the possible cells 
were empty, and many others had very few cases. In 
this case, convergence was not achieved in 100 
iterations. 

Even when the raking does converge, it is 
important to realize that the associations that are being 
preserved are based on a sample and are subject to 
sampling variability, as well as other sources of error. 
The other sources of error may not be the same for the 
survey and the source of the control totals. For example, 
it was noted above that the cross-product ratio of the 
subtable of children aged 5 and 7 and in kindergarten or 
1st grade in Table 1 is 192. This cross-product ratio is 
computed from the sample cases in the four cells 
corresponding to a subtable of the full sample. If the 
sample size in the subtable is small, then the estimated 
cross-product ratio may not be very stable (even though 
generally these ratios are stable with moderate cell 
sizes.) 

When the sample sizes in subtables of the raking 
dimensions are small, then it is possible that the raked 
weights that preserve the associations based on small 
samples may have some undesirable features, such as 
very high variability. This situation can arise in other 
settings, but it is common when the dimensions are 
highly correlated, such as with age and grade. We 
discuss this problem more in the next section.  

One remedy is to combine dimensions. Another 
option is to collapse the levels of the dimensions as 
needed to retain a large enough sample size in the 
collapsed cells. Of course, these options may not 
always be possible or desirable for reasons stated 
earlier. 

 
 

4.3 Raking With Dependent Dimensions 
With the log-linear model given in (5) in mind, 

consider the age by grade example discussed in  
Section 2. Table 2 gives the mean of the weight 
adjustments in each cell and for both margins. The 
adjustments can be derived by multiplying the 
corresponding grade and age factors given in Section 2, 
or by taking the ratio of the raked estimates to the 
unadjusted estimates for each cell. Notice that none of 
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the margins for the unadjusted estimates differ by much 
from the control totals, with the largest mean raking 
factor of 1.30 applied to the unadjusted 2,300 2nd 
graders to match the control total of 3,000 2nd graders. 
However, looking across rows or columns, there is 
substantial variation in the mean raking factors. For 
example, in the column corresponding to children who 
are 6 years old, the adjustment for those in kindergarten 
is 0.75 and for those in 2nd grade is 2.03. This variation 
in factors occur even though the overall unadjusted 
estimate was only 6 percent less than the control total 
for all 6 year olds.  

 
 

Table 2. Mean adjustments by cell for the raked 
survey estimates, by age and grade 

 

 Age  

Grade 5 6 7 Total 

K 1.00 0.75 0.47 0.93 
1 1.51 1.14 0.71 1.03 

2 – 2.03 1.27 1.30 

Total 1.03 1.06 1.06 1.05 
 
 
As noted earlier, with poststratification the 

survey estimates in the cells defined by the log-linear 
model in (5) are completely specified by the control 
totals. For example, when poststratification to cells in a 
two-way table is used, the model of unadjusted 

estimates given by ( ) ( )ln ij i j ij
e µ α β αβ= + + +  is 

replaced by ( ) ( )ln ij i j ij
p µ α β α β′ ′ ′ ′ ′= + + + , where 

ijp  is the poststratified estimate in cell (i,j). 

With raking, the main effects are fully defined by 
the control totals, but the raked table retains the higher 
order interactions from the original table. Consider a 
table with three dimensions that are raked to each of the 
three dimensions. The raked table is: 
 

 
( ) ( ) ( )
( ) ( )

ln ijk i j k ij ik

k ijk

r µ α β γ αβ αγ

βγ αβγ

′ ′ ′ ′= + + + + +

+ +
 (7) 

 
where the higher order interactions are identical to 
those prior to raking. Only the intercept and main 
effects are replaced by factors determined by the 
control totals. In the two-way example with three levels 
for both dimensions given above, all nine second-order 
interactions were preserved between the unadjusted and 
raked tables. 

Heuristically, the raking adjustment may result in 
large variations in the mean cell factors because it is 
attempting to meet the marginal constraints without 

perturbing the associations in the original table. If the 
raking dimensions are based on independent variables 
(i.e., all the interactions are zero), then raking will 
converge very quickly. If the dimensions are highly 
correlated, then more iterations are generally required. 
With highly correlated dimensions, there is also the 
possibility that the associations in the unadjusted 
estimates may not be consistent with control totals and 
the raking process will never converge. For example, 
suppose the unadjusted survey estimates fell on the 
diagonal with 3,400 children who are age 5 and in 
kindergarten, 3,600 children who are age 6 and in 1st 
grade, and 3,500 children who are age 7 and in 2nd 
grade. Assuming the same control totals as given above, 
the raked estimates never converge. 

To summarize, when the raking dimensions are 
highly correlated, it is not uncommon for the raking 
process to take a large number of iterations to converge 
and for the weights to have higher variability than 
might otherwise be expected. These are in fact the two 
most common symptoms of problems with raking. In 
these cases, one possible solution (if feasible) is to 
combine the two variables to form a single dimension.  

In Section 4.1, we discussed an example in 
which the same variable is used in more than one 
dimension. Although this will result in correlations 
between the dimensions, there may be good reasons for 
doing this. For example, there may be differential 
coverage among groups formed by combinations of age 
and education, and further differences in coverage when 
age is crossed with income. In such situations, it may be 
desirable to use the same variable in more than one 
dimension, but it is important to be aware of the 
potential consequences of using correlated raking 
dimensions. 

 
 

4.4 Measurement Bias 
When a survey variable is measured with bias the 

parameter that is estimated is actually a parameter with 
error, rather than the underlying parameter itself. For 
example, in (5), with measurement bias in the first 
dimension, rather than estimating iα , the survey data 

may be estimating i i iα α τ∗ = + , where iτ  is the 
measurement bias for level i of the first dimension. (We 
assume here that the control total is the correctly 
measured variable, but in practice that is not always the 
case.) If there is measurement bias in a main effect, it is 
likely that there is also measurement bias in the 
interaction terms involving the variable that is measured 
inconsistently. 

To investigate the effect of measurement bias on 
raking, consider an example in which measurement bias 
was known to exist in one of the dimensions. For this 
example, four dimensions were used in raking: 
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� Race/ethnicity by income; 
� Region by urbanicity; 
� Home tenure by age; and 
� An indicator of whether the household 

received public assistance income. 
 
The public assistance income variable was 

measured differently in the survey and the source of the 
control totals. In this case, raking converged rather 
quickly (in 11 iterations) but there was a considerable 
amount of variation in the raking adjustment, and even 
in the mean adjustment for each of the margins for the 
public assistance income dimension. Because receipt of 
public assistance income is associated with coverage in 
a telephone survey, some difference in the mean 
adjustments for each level of this dimension is to be 
expected as discussed in the next section. Thus, it may 
be difficult to identify—and impossible to separate 
out—the effect of measurement bias. However, if it is 
known that a variable is measured differently between 
the survey and the source of the control totals, it is 
generally good practice not to use that variable in 
raking (or in other calibration estimators). 

In addition to the public assistance example, we 
encountered another measurement bias example when 
using both age and grade in raking. Control totals used 
for raking the person-level weights for NHES are 
derived from two different CPS files. School enrollment 
and grade data are available on the October CPS file, 
but these data are not available on the March CPS file. 
However, the March CPS file is more contemporaneous 
with the NHES field period and contains data from the 
annual demographic survey of the CPS. Thus, the 
control totals were obtained by applying percentage 
distributions from the October CPS to an overall 
estimated total number of children from the March 
CPS. Marginal grade distributions and marginal age 
distributions are assumed to remain relatively stable 
throughout the year. On the other hand, the joint 
distribution of age and grade changes throughout the 
year (specifically, over the period from October through 
March), as children typically remain in the same grade 
throughout this period while the age distribution within 
each grade shifts upward. If both age and grade are used 
in raking—whether in separate dimensions or combined 
together in a single dimension—this temporal disparity 
must be addressed. One approach to address and correct 
for this discrepancy is to “age” or “deage” the sample; 
i.e., recalculate age to be consistent between the survey 
and the control totals source.  

 
 

4.5 Response and Coverage Issues 
Earlier it was noted that the poststratified 

estimator assumed complete response, and the 
population cell weighting estimator was based on the 
responding units. More accurately, the poststratified 
estimator assumes complete response and coverage, 

while the population cell weighting estimator is based 
on the responding, covered units. It is assumed that the 
control totals are based on a source with 100 percent 
coverage. The same distinction applies with raking, and 
the raking estimator given by (3) corresponds to the 
population cell weighting estimator in this regard. 

When the data are based on incomplete data (due 
to either nonresponse or noncoverage), any evaluation 
of the statistical properties of the survey estimates must 
be based on an underlying model. Kalton and Maligalig 
(1991) show that the population cell weighting 
estimator is unbiased under the response model that 
assumes all units within a cell have the same probability 
of being observed (including only response and 
coverage propensities.) Moreover, they show that if the 
probability of being observed within a cell is the 
product of the row and column probabilities, then the 
population raking estimator is unbiased. 

Since most survey estimates are subject to both 
nonresponse and undercoverage, the implication is that 
the raked estimates will be biased unless there are no 
interactions of the auxiliary variables used to create the 
raking dimensions with the response and coverage 
rates. In the examples above, this would mean that the 
probability of being observed may differ by age and 
grade levels, but the overall probability of being 
observed must be the product of the age and grade 
factors to insure unbiasedness under the model. 

The practical implications of these results are 
somewhat limited. First, it is difficult to ascertain 
whether response rates are products of the row and 
column effects in most situations. Coverage rates may 
be estimated in some cases, but the coverage estimates 
for individual cells are often poorly estimated because 
of small sample sizes. Second, the data are not expected 
to conform to the model completely. Often, the bias 
remaining after adjusting for the row and column 
effects is smaller than if no adjustments were made. 
This statement corresponds to the common observation 
that higher order interactions are generally smaller than 
lower order effects, but there are exceptions. Third, 
Little and Wu (1991) show that raking generally works 
well, even if the model that justifies raking does not 
hold.  

Consequently, we believe it a reasonable and 
good practice to use raking in these situations, absent 
reliable data that indicates the model of multiplicative 
factors for the levels of the dimensions is invalid. If 
raking is used and the model is inappropriate, then the 
bias of the raked estimates still will be smaller than bias 
of the unadjusted estimates in most cases.  

 
5. Summary and Recommendations 

Raking is widely used to improve the precision 
of survey estimates, to force survey totals to match 
external totals, and to adjust for differential coverage 
and differential nonresponse. As with other estimation 
methods, the statistical properties of the raking 
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estimator can be assessed through a model that links the 
sample to the survey population. Little and Wu (1991) 
showed that raking generally works well, even if the 
model that justifies raking does not hold.  

In general, raking is an effective estimation 
approach. However, certain situations may result in 
problems with raking; these include: 

 
� Inconsistencies in control totals; 
� Correlated raking dimensions; 
� Sparse tables; and 
� Measurement bias. 
 
All of these problems except the first one, which 

we consider an operational problem, are the result of 
trying to impose a specific structure on the survey 
estimates when that structure might not be valid for the 
survey data. Correlated raking dimensions are 
problematic when the survey data do not exhibit the 
same correlation pattern. Sparse tables are problematic 
when raking tries to preserve the interactions that are 
based on small sample estimates, while making the 
weights consistent with the control totals. Measurement 
bias is problematic because the survey data and control 
totals are not samples drawn from the same population.  

The symptoms of potential problems with raking 
are slowness or lack of convergence, highly variable 
overall (mean) adjustments for a given dimension, and 
highly variable adjustments at the unit level. Since we 
classify all the problems as a manifestation that the 
structure of the estimates from the survey is 
inconsistent with the structure of the values from the 
population, any of the problems may result in slowness 
to converge or variability in the weights. 

It is imperative that the survey practitioner or 
analyst who is using raking as an estimation tool 
include diagnostics in the raking procedure and review 
the diagnostics for potential problems. The diagnostics 
should include a count of the number of iterations 
required for convergence; the mean, minimum, and 
maximum adjustment factor for each level of each 
dimension; summary statistics for the unit-level 
adjustment factor; and summary statistics for the raked 
weight such as the coefficient of variation of the 
weights. Such statistics should be compared to similar 
statistics computed prior to raking. 

There are a number of approaches that may be 
used to remedy problems with raking, depending on the 
particular situation. In some cases, e.g., when the raking 
dimensions are correlated, it may be preferable to use  
poststratification rather than raking, if that approach is 
feasible. In other cases, problems such as measurement  
bias might suggest looking for a different source of  

control totals or dropping a raking dimension. If the 
problems are due to sparse tables, dropping a raking 
dimension or collapsing cells (e.g., by combining 2 or 
more levels of a raking dimension variable) may 
remedy the problem. Even after the raking procedure 
has been successfully applied, it may be desirable to 
trim or truncate the weights; the potential reduction in 
variance should be weighed against the increase in bias 
due to trimming or truncation. 
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