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1 Introduction 

Complex sampling design and complex parameter are 
familiar concepts in survey sampling. Another survey 
feature that often extends beyond the simple ordinary 
formulation is the use of auxiliary information at the 
estimation stage. As the recent literature has shown, 
auxiliary information can be more or less complex, 
depending on the survey design. Estimation for 
complex cases is not well-covered by standard textbook 
techniques. A broader framework for estimation is 
needed with such auxiliary information. We use the 
term complex auxiliary information for the several 
non-standard cases examined in this paper. 
 

The most basic use of auxiliary information occurs 
for a single stage, single phase sampling design, where 
a known set of auxiliary variables and their 
corresponding totals are used to compute calibrated 
weights for the estimate of a population total. This 
procedure is reviewed in section 2. More complex cases 
considered in later sections arise when auxiliary 
information is available at different stages and phases 
of sampling. Then it is not always evident how to make 
efficient use of the available auxiliary information. In 
this paper, we look at different ways of using complex 
auxiliary information to produce efficient calibration 
estimators in two-stage and two-phase sampling. The 
derivation of the variance of these estimators requires a 
simple procedure to linearize the expression for a 
nonlinear calibration estimator. This simple procedure 
is introduced as the method of automated linearization. 
 

The paper is arranged as follows. In section 2 we 
explain automated linearization for calibration 
estimators in a one-stage, one-phase sampling design. 
Section 3 examines estimation for two-phase sampling 
designs, and section 4 looks at estimation in two-stage 
sampling with and without integrated weighting. A 
brief summary and comments are given in the 
concluding section 5. 

2 Automated linearization 

We first look at the simple case of auxiliary information 
for a one-stage, one-phase unit sampling design. 
Consider a finite population }...,,...,,2,1{ NkU =  
from which a probability sample s is drawn. We denote 

by kπ  the inclusion probability of unit k and by 

kka π/1= the sampling weight of k. Let y be the 

variable of interest. Its value for unit k, ky , is observed 

for sk ∈ . The unknown total to be estimated is 

∑= U kyY . 

 
We denote by x an auxiliary vector of dimension 
1≥J , and by kx  its value for unit k. We assume that 

we have the following auxiliary information: 
(i) The population vector total ∑= U kxX  is known. 

(ii) The vector value kx  is known for every sk ∈ . 
 

Here, X is assumed known from an outside source 
such as a census. If we know the value kx  for every 

Uk ∈ , as when kx  is on the population frame U  for 
every k, then both (i) and (ii) are met. We can compute 
the simple unbiased estimator of the known X as 

ks ka xX ∑=ˆ . Under general conditions )ˆ(1 XX −−N  is 

)(O 2/1−np . 

 
Our objective is to estimate ∑= U kyY . One 

possibility is the simple unbiased Horvitz-Thompson 

(HT) estimator ∑= s kk yaŶ . However, a more 

efficient weighting of the observed ky  is one that takes 
the auxiliary information into account. Let us consider 

instead ks kCAL ywY ∑=ˆ , where the weights 

{ }skwk ∈;  satisfy the calibration equation 

Xx =∑ ks kw . We say that the weights { }skwk ∈;  are 

calibrated to ∑= U kxX . 

 
Alternative sets of calibrated weights can be 

derived by the distance measure approach, as for 
example in Huang and Fuller (1978) and Deville and 
Särndal (1992). The minimization of each distance 
measure produces a different set of calibrated weights. 
However, the proposed distance measures are fairly 
similar so they tend to produce estimators with similar 
properties. Instead we use the instrument vector 
approach, also called generalized calibration, as in 
Deville (2002) and Le Guennec and Sautory (2002). 
This method allows a more general parameterization of 
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the calibration weights. We specify a vector kz  of the 

same dimension as kx  and compute the weights 

 )1( k
T
skk aw zλ+= ,  sk ∈  (2.1) 

where 1)()ˆ( −
∑−= T

kks k
TT

s a xzXXλ . The mapping from 

kz  to kw  is not one-to-one. Different choices for kz  

produce the same weights kw . We are free to choice 

the form of kz  as long as the JJ ×  matrix 

)( T
kks ka xz∑  has an inverse for every possible sample 

s. We refer to such a kz  as a valid instrument vector. 

The standard choice of kk xz =  produces the 
generalized regression estimator, although as explained 
later, this choice is not necessarily optimal for any 
given design. For any valid instrument vector kz , the 

weights satisfy Xx =∑ ks kw , and the estimator can be 

written as BXX ˆ)ˆ(ˆˆ T
ks kCAL YywY −+== ∑ , where 

∑∑
−= s kkk

T
kks k yaa zxzB 1)(ˆ .  

 

Here B̂  is a nonlinear design-weighted statistic, 

thus, it is not what we call a HT statistic. Although Ŷ  is 

a linear statistic, the term BXX ˆ)ˆ( T−  makes CALŶ  a 
nonlinear estimator. This causes no problem for point 

estimation since CALŶ  can be readily computed. But the 
nonlinear form of the estimator creates a problem for 
obtaining a simple exact expression for the variance of 

CALŶ  and for finding a corresponding sample-based 
estimate of this variance. Linearization is the usual 
technique for circumventing this difficulty with 
nonlinear statistics. Woodruff (1971) is a basic 
reference. Since then, many papers have appeared on 
the linearization of complex statistics of interest in 
survey sampling, for example, Binder (1996), Binder 
and Kovačević (1995), and Deville (1999). The 
emphasis in these references is on linearization of 
statistics for estimating complex parameters, a purpose 
somewhat different from ours, which is the study of 
calibration estimators of a total. Théberge (1999) 
presents a linearization approach similar to the one 
given here. His development is based on the use of 
distance functions rather than an instrument vector. 
 

Linearization of the nonlinear CALŶ  involves a 
power series expansion, including an evaluation of 
partial derivatives. The rather lengthy derivation is 
given for example in Särndal, Swensson and Wretman 

(1992). This method isolates a main term, linCALY ,
ˆ , 

which is a linear statistic. The remainder term is of 

lower order in probability and assumed negligible 
compared to the main term. The expression for the 
remainder term is usually not made explicit in 
Woodruff linearization. This is not a serious drawback, 
because standard practice is to discard this term and 

simply take linCALY ,
ˆ  to be a “sufficiently good” linear 

approximation to CALŶ . Under general conditions, 

)ˆˆ( ,
1

linCALCAL YYN −−  is )(O 1−np , not just )(O 2/1−np , 

permitting the easily derived variance of linCALY ,
ˆ  to be 

used as an accurate approximation of the variance of 

CALŶ , even for modest sample sizes. 
 

Instead of the standard linearization approach, we 
introduce the method of automated linearization. This 
simple two-step procedure “automatically” makes 
explicit both the linearized statistic and the lower order 
term. In contrast to Woodruff linearization, automated 
linearization requires no evaluation of partial 
derivatives. For the case of simple auxiliary information 
in this section, we confirm the well-known expression 

for the variance of linCALY ,
ˆ . Automated linearization has 

two steps: 
 

Step 1. In the expression BXX ˆ)ˆ(ˆˆ T
CAL YY −+= , create 

a term of lower order in probability by centering B̂  on 

the population vector ∑∑
−= U kk

T
kU k yzxzB 1)(  to 

which B̂  converges in probability. Then BB −ˆ  is 

)(O 2/1−np , and we have 

)ˆ()ˆ()ˆ(ˆˆ BBXXBXX −−−−−= TT
CAL YY  (2.2) 

where )ˆ()ˆ(1 BBXX −−− TN  is )(O 1−np , a lower order 

compared to BXX TN )ˆ(1 −−  which is )(O 2/1−np . 

 
Step 2.  Rewrite (2.2) as 

)ˆ()ˆ()ˆˆ(ˆ BBXXBXBX −−−+−= TTT
CAL YY . (2.3) 

The calibration estimator is the sum of three terms: the 

constant term BXT , the design-based linear term 

BXTY ˆˆ − , and the design-based nonlinear term 

)ˆ()ˆ( BBXX −−− T  of lower order. The first two terms 
on the right hand side of (2.3) define the linearized 
statistic 

BXBXBX T
ks k

TT
linCAL eaYY +=+−= ∑)ˆˆ(ˆ
,  (2.4) 

where BxT
kkk ye −= . 
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Our point estimator of Y is CALŶ . It has a small 

bias, })ˆ()ˆ(E{)ˆE( BBXX −−−=− T
CAL YY , since 

})ˆ()ˆ(E{1 BBXX −−− − TN  is of order )O( -1n . 

Therefore, the variance of CALŶ  is approximately the 

variance of the linearized statistic linCALY ,
ˆ . Since BXT  

is a constant, the use of auxiliary information reduces 
the variance of the estimator from )(Var ∑s kk ya  to 

approximately )(Var ∑s kkea . It is important to note 

that the ke  are fixed but unknown values and that 

ks kea∑  is a HT statistic in the ke . Although the ke  

resemble regression residuals, they arise automatically 
from steps 1 and 2, without any explicit regression 
model or fit. Because ks kea∑  is a HT statistic, we 

obtain immediately, 

ll
eeFYY kU klinCALCAL ∑∑=≅ )ˆ(Var)ˆ(Var ,  (2.5) 

where 1−=
l

l

l

k

k
k a

aa
F  for k≠l , 1−== kkkkl aFF  for 

k=l , with 
lkkla π/1=  where 

lkπ  is the joint inclusion 

probability of k and l . We use ∑∑U  as shorthand 

for the double sum ∑∑
∈ ∈Uk Ul

. To estimate the variance of 

CALŶ , we use the sample-based analogue of (2.5), 

lll
eeaaaY kkksCAL ˆˆ)()ˆ(V̂ −= ∑∑  (2.6) 

where Bx ˆˆ T
kkk ye −=  and ∑∑s stands for ∑∑

∈ ∈sk sl

. 

 

The weights kw  in ks kCAL ywY ∑=ˆ  depend on the 

instrument vector kz . For every choice of kz  for 

Uk ∈ , there corresponds a vector B satisfying the 

equation kU k
T
kU k y∑∑ = zBxz )( . We can find an 

optimal B, and a corresponding kz , by minimizing 

)ˆ(Var ,linCALY  given by (2.5). This kz  is asymptotically 

optimal for CALŶ  in that it minimizes 

)ˆ(Var)ˆ(Var , CALlinCAL YY ≅ . The optimal B is 0B , defined 

as the solution of the normal equation 

kU k
T
kU k yFF

llll
xBxx ∑∑∑∑ =0)( . (2.7) 

A comparison with the general form 

kU k
T
kU k y∑∑ = zBxz )(  defining B, suggests that an 

optimal instrument vector is 0
kk zz = , where 

ll l
xz ∑ ∈= U kk F0 . The result agrees with Montanari’s 

(1987) determination of B so as to minimize the 
variance of the unbiased difference estimator 

BXX TY )ˆ(ˆ −+ . 
 

To see the features of the weights, let us write them 

as })()(1{ 1
ks

T
kkk

T
s kkU kkk aaaw zxzxx −

∑∑∑ −+= . 

We note the following: 
(i) The computation of the weights kw  for sk ∈  

requires the design weights ka , the auxiliary 

vector values kx , the instrument vector values kz , 

and the known auxiliary vector of totals ∑U kx . 

(ii) The ka  are fixed by the design. 

(iii) We are free to choose the kz  as long as the matrix 

∑s
T
kkka xz  is invertible. 

(iv) The weights kw  calibrate to the known totals 

∑U kx  for any valid instrument vector kz . 

(v) The weights kw  are not dependent on y or on any 
presumed relationship between y and x, as in a 
model dependent approach. 

 
Some choices of kz  are “better” than others. The 

optimal choice, as noted above, is 

ll l
xzz ∑ ∈== U kkk F0 . It makes sense that the optimal 

choice depends on the sampling design. The 

sample-based choice corresponding to 0
kz  is 

== *
kk zz

ll ll
x∑ ∈

−
s kkk Faa 1 . The weights kw  do not 

depend on the values ky  of the variable of interest y 

and thus the optimal weights do not depend on ky . 

Once the kz  are specified, the same weights can be 
used for all y-variables in the survey. The estimator 

CALŶ  is free of any unverifiable assumptions about a 
possible regression of y on x. In the application of this 
approach it does not matter whether there exists a linear 
relationship between y and x. Furthermore, no 
assumptions are required on the properties of the 
residuals ke . These are treated as fixed but unknown 
values over the population U rather than random 
variables from a hypothetical superpopulation model. 
 

As a simple illustration, consider Simple Random 
Sampling (SRS) from U with the sampling fraction 

Nnf /=  and consider T
kk x ),1(=x , where kx  is a 

scalar variable value. The required population 

information is T
U kU k xN ),( ∑∑ =x . Then the optimal 

instrument is found to be 
ll l

xzz ∑ ∈== U kkk F0 = 
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))(1
1

(
1 UkfN

N
xx −−

−
 where NU kU ∑= xx . The 

corresponding sample based choice is =kz *
kz = 

))(1
1

(
1 skfn

n
xx −−

−
 where ns ks ∑= xx . However 

both 0
kz  and *

kz  are invalid because the first 
component of these vectors is always zero, leading to a 

singular matrix ∑s
T
kkka xz . We drop the first auxiliary 

variable with the known total N and work instead with 
the vector kk x=x . This gives 

=kz *
kz = ))(1

1
(

1 sk xx
fn

n −−
−

. The result is the 

familiar CALŶ = })({ bxxyN sUs −+  with 

})())(({ 2
∑∑ −−−= s sks sksk xxyyxxb . As is easily 

verified, this estimator gives CALŶ = N  when 1=ky  for 

all k, and =CALŶ ∑= U kU xxN  when kk xy = . That is, 

even though we must reduce the auxiliary vector from 
T

kk x ),1(=x  to kk x=x , the resulting set of weights 

still reproduce the two known quantities N and ∑U kx . 

No loss of information is incurred from the 

non-invertibility of ∑s
T
kkka xz  with T

kk x ),1(=x . 

 
We end this section by listing the steps of the 

preceding argument. These important steps are applied 
in each of the subsequent sections, where the auxiliary 
information is more complex. 
 
Step 1 The auxiliary information: Specify an 

kx -vector with known totals. 

Step 2 Point estimation: Specify a valid kz , compute 
the calibrated weights and the resulting point 
estimate. 

Step 3 Variance and variance estimation: Use 
automated linearization to (a) identify the 
linearized statistic, (b) obtain the residuals that 
determine the variance, and (c) transform that 
variance into an estimated variance. 

3 Calibration estimation in two-phase sampling 

We now consider the setup for sampling in two phases. 
From the population }...,,...,,2,1{ NkU = , a large 

probability sample, 1s , is drawn with known first-phase 

inclusion probabilities k1π . The first-phase sampling 

weights are kka 11 /1 π=  for 1sk ∈ . One or more 

variables are observed for 1sk ∈ . Then, from 1s , a 
sub-sample, s, is drawn with known conditional 
probabilities k2π . The second-phase sampling weights 

are kka 22 /1 π= , conditionally on the realized 1s . We 

denote by kkk aaa 21=  the overall sampling weight for 

unit k. The value ky  of the variable of interest is 

observed for all sk ∈ . The objective is to find a more 
efficient alternative for estimating ∑= U kyY  than the 

two-phase double expansion estimator ∑= s kk yaŶ . 

 
We need to consider two auxiliary vectors for each 

unit k. We denote these by 1x  and 2x , with k1x  and 

k2x  representing their respective values for unit k. 

Their dimensions are 11 ≥J  and 12 ≥J  respectively. 

The auxiliary information for 1x  and 2x  is as follows: 
 
(i) The population vector total ∑= U k11 xX  is known 

while the population vector total ∑= U k22 xX  is 

not known. 
(ii) For every 1sk ∈ , the vector values k1x  and k2x  

are known. 
(iii) For every sk ∈ , the vector values k1x  and k2x  

are known. 
 

The information given by (i), (ii) and (iii) is used to 
compute the weights for the calibration estimator 

∑= s kkCAL ywŶ  in an effort to improve on 

∑= s kk yaŶ . There are different ways to produce these 

weights kw , depending on how we use (i) to (iii). For 
example, we can carry out a single calibration step, or 
arrive at the kw  in two steps by first producing a set of 

first-phase weights kw1 . Each step requires starting 
weights, an auxiliary vector and a valid instrument 
vector. We consider the following alternatives: 
 
(a) One step calibration. Starting from kkk aaa 21= , 

compute directly final weights kw  for sk ∈ , 

calibrated to satisfy 












=

∑

∑
∑

1 21

1

s kk

U k

ks k a
w

x

x
x , with 









=

k

k
k

2

1

x

x
x  of dimension 21 JJ + . This is case B1 

in Estevao and Särndal (2002). 
 
(b) Two step calibration. In step one, starting from 

ka1 , compute first-phase weights kw1  for 1sk ∈ , 

such that ∑∑ = U kks kw 1111
xx . In step two, starting 

from kkk aaa 21= , and using the kw1  from step (i), 

compute final weights kw  for sk ∈ , such that 
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=∑ ks kw x ks kw x∑
1 1 . The final weights satisfy 














=

∑

∑
∑

1 21

1

s kk

U k

ks k w
w

x

x
x . This is case A1 in 

Estevao and Särndal (2002). 
 

The two procedures make slightly different use of 
the auxiliary information and in general, they produce 
different weights kw  for sk ∈ . The use of information 
is somewhat more extensive in (b) than (a), in that it 
requires the information about the individual values k1x  

for 1sk ∈ . This may or may not lead to an increase in 

efficiency, depending on the relation between k1x , k2x  

and ky . These questions are discussed in Estevao and 
Särndal (2002). We can use automated linearization to 
obtain the form of the residuals and the variance of each 
estimator in (a) and (b). We examine case (b) below. 
 

The first-phase calibrated weights for case (b) are 
computed as 

)1( 111 1 k
T
skk aw zλ+=  with 

1
111111 )()(

111

−
∑∑∑ −= T

kks k
T

s kkU k
T
s aa xzxxλ  

for some valid instrument vector k1z . The kw1  are then 
used as input to compute the final calibrated weights as 

)1( k
T
skk aw zλ+=  where 

1
1 )()(

I

−
∑∑∑ −= T

kks k
T

s kks kk
T
s aaw xzxxλ  

where 







=

k

k
k

2

1

x

x
x  and kz  is another valid instrument 

vector. We derive the variance by using automated 

linearization. First, we insert into CALŶ = ks k yw∑  the 

expression for kw . Then, we define 













=

2

1

ˆ

ˆ
ˆ

B

B
B = 

( ) )(1
∑∑

−
s kkks

T
kkk yaa zxz  and center it on  its 

population counterpart, the non-random vector 









=

2

1

B

B
B ( ) )(

1
∑∑

−
= U kkU

T
kk yzxz . After some algebra, 

we then define the statistic *
1B̂ = 

)( )ˆ()(
11 11

1
111 ∑∑

−
s

T
kkks

T
kkk aa Bxzxz , which we center 

on its population counterpart =*
1B  

)( )()( 1
1

11 ∑∑
−

U
T
kkU

T
kk Bxzxz . The result is  

Ra

yaY
TT

k
T
ks k

s
T

kkCAL

++−+

−=

∑

∑
*
11

*
111 )(

)(ˆ

1
BXBxBx

Bx
 (3.1) 

where R  is the lower order term given by 

)ˆ()ˆ(
ˆ

ˆ

ˆˆ̂
ˆˆ̂

*
1

*
111

22

11

22

11 BBXX
BB

BB

XX

XX −−−














−
−















−

−−= T

T

R  

with ∑=
1 1

ˆ
s jkkj a xX  and ∑= s jkkj a xX

ˆ̂
, 2,1=j . The 

term of main interest is the linear statistic 

*
11

*
1, 1

ˆ BXT
s kks kklinCAL eaeaY ++= ∑∑  (3.2) 

where *
11 BXT = *

11 )( Bx T
U k∑  is a constant, and the 

residuals in the two random terms are 

2211 BxBxBx T
k

T
kk

T
kkk yye −−=−=  and 

*
11

* BxBx T
k

T
kke −= . 

 
By ignoring the lower-order term in (3.1), we can 

use the linear design-weighted statistic (3.2) to obtain 

the approximate variance of CALŶ . Then, conditioning 

on 1s , we obtain 

)V(E)E(V)ˆ(Var)ˆ(Var c1c1, +=≅ linCALCAL YY  

where )(E *
111c 1

BxT
ks kk ya −= ∑  and cV  is the 

conditional variance of ks kea∑ , given 1s . The 

expressions for )E(V c1  and )V(E c1 , and for their 
respective estimates are not detailed here. They follow 
well-known patterns for two-phase sampling as shown 
for example in Estevao and Särndal (2002). For the 

estimated variance, we use B̂  and *
1B̂  instead of B  

and *
1B . Note that 0)V(E c1 =  if sample selection stops 

after the first phase. 
 

The first term, )E(V c1 , is reduced by the presence 

in *
ke  of the regressor k1x  only, whereas the second 

term, )V(E c1 , gets reduced by both regressors, k1x  and 

k2x . These features seem logical under the survey 
conditions. An interesting question, which we leave 
unresolved here, is the jointly optimal choice for the 
two instruments, k1z  and kz . The simple standard 

choices are kk 11 xz =  and kk xz = . 
 

We comment briefly on the automated linearization 
in case (a). The outcome is also a variance of the form 

)V(E)E(V c1c1 + , with one residual for the first 
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component, )E(V c1 , and another residual for the 

second, )V(E c1 . But these residuals are somewhat 
different in (a) and (b). For (b), we stated earlier in this 
section the first component residuals as 

2211 BxBx T
k

T
kkk ye −−= , showing a removal of the 

influence of both k1x  and k2x , and those of the second 

component as *
11

* BxBx T
k

T
kke −= , showing a removal of 

the influence on BxT
k  (rather than on ky ) of k1x  alone. 

The same pattern holds for (a), in that both k1x  and k2x  

are removed in the first residual, and k1x  alone in the 
second. Cases (a) and (b) differ in the B-coefficients of 
the two kinds of residuals. The automated linearization 
of (a) readily reveals the form of these B -coefficients. 
We do not show them here. The important point is that 
the influence of the x-vectors is removed according to a 

common pattern, although the values of ke  and *
ke  are 

not the same. Thus we can expect that (a) and (b) will 
usually generate rather small differences in the variance 

of the corresponding CALŶ  estimators. This is confirmed 
by the simulations in Estevao and Särndal (2002). For 
unusual relationships between ky , k1x  and k2x , the 
differences can be more significant. Further studies are 
needed to examine this. 

4 Calibration estimation in two-stage sampling 

We start from the usual formulation of sampling in two 
stages. A sample of units is realized by two-stage 
selection from a population }...,,...,,2,1{ NkU =  
grouped into clusters. This design involves sampling 
from two distinct populations of interest: (i) the 
population of first stage clusters, 

}...,,...,,2,1{ INiU I = , and (ii) the population of 

second stage units }...,,...,,2,1{ NkU = . For 
simplicity, we refer to them as the population of 
clusters and the population of units respectively. The 
population }...,,...,,2,1{ NkU =  is the union of all 

the units iU , IUi ∈  in the IN  clusters. 
 

First, we draw a sample of clusters Is  from IU , 

with known first-stage inclusion probabilities i1π . The 

first-stage sampling weights are iia II /1 π=  for Isi ∈ . 

At the second stage, we sample units within each of the 
selected clusters. From iU , we draw a sample is  of 

units, with known second-stage probabilities ikπ  

conditional on is . The conditional sampling weights 

are ikika π/1=  for isk ∈ . Thus, ikik aaa I=  is the 

overall sampling weight for unit k, and U
Isi

iss
∈

=  is the 

sample of units. The value ky  of the variable of interest 

is observed for all units sk ∈ . We want to estimate the 
total Y =∑U ky , but more efficiently than with the 

simple unbiased ∑= s kk yaŶ = )(
I I ks s iki yaa

i
∑ ∑ . 

 
In general, auxiliary information exists for both the 

units and the clusters. We denote by iIx  an auxiliary 

vector value associated with cluster i, and by kx  an 
auxiliary vector value associated with unit k. We 
consider the following information to be available: 
 
(i) The cluster population vector total ∑

I IU ix  is 

known.  
(ii) For every Isi ∈ , the cluster vector iIx  is known. 

(iii) The unit population vector total ∑U kx  is known.  

(iv) For every sk ∈ , the unit vector kx  is known. 
 

If iIx  is known for every IUi ∈ , then (i) and (ii) 

are met. This occurs, for example, in area sampling 
where each cluster is a geographical entity for which 
we have a useful auxiliary measurement vector, for 
example, the surface area and/or the number of 
inhabitants. On the other hand, it is unlikely that we 
would have information kx  about every unit Uk ∈  in 
a survey where the absence of a list frame of units 
precludes single stage sampling and forces us to use 
two-stage sampling. But conditions (iii) and (iv) are 
met if kx  is recorded for all sampled units and the total 

∑U kx  can be “imported” from an accurate outside 

source, a census or a census projection, as it is, for 
example, in the Canadian Labour Force survey. This 
section examines calibration estimators derived from 
some or all of the information (i) to (iv). 
 

The information is somewhat different when there 
is a known value kx  for every unit iUk ∈ , where iU  is 

a selected cluster, Isi ∈ . This case is covered by (i) to 
(iv) and we need not consider it, because the known 
cluster total ixt ∑=

iU kx  for Isi ∈  can then be entered 

into iIx  in (ii), assuming ∑
IU ixt ∑= U kx is also 

known. 
 

Surveys involving sampling of clusters often have 
the double objective of computing estimates of totals 
for both the population of units U (referred here as unit 
statistics) and the population of clusters IU  (cluster 
statistics). Then, we observe both the value of a cluster 
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variable of interest, iyI  for Isi ∈ , and the value of a 

unit variable of interest, ky  for sk ∈ . For example, if 

households are clusters, iyI  may be the value for 

household i of the variable Iy = household income; and 

if units are persons in the households, ky  may be the 
value of the variable of interest y = employment status 
(0 if employed, 1 if unemployed). 
 

The totals to be estimated are then =IY ∑
I IU iy  for 

statistics on household income, and ∑= U kyY  for 

statistics on individuals’ employment. We thus examine 

the calibration estimators CALY ,Î = is i yw III
∑  and CALŶ = 

ks k yw∑  with cluster weights iwI  satisfying  

 ∑∑ =
II III U iis iw xx  (4.1) 

and unit weights kw  satisfying 

 ∑∑ = U kks kw xx . (4.2) 

 
We also allow for the fact that many two-stage 

designs call for some form of integrated weighting. Its 
objective is to impose a simple relation between a 
cluster weight iwI  and the weights kw  for the selected 

units k of that cluster. The interest in integrated 
weighting is promoted by Eurostat in its efforts to 
harmonize the estimation methods used by the member 
states of the European Union. Also, integrated 
weighting schemes are of interest for the further 
development of generalized estimation systems such as 
Bascula, CLAN and GES. We examine two options for 
integrated weighting: 
 
(1) iis k wNw

i I=∑  for every Isi ∈ , where iN  is the 

known size of cluster i. 
(2) iikk waw I=  for the selected units k in cluster 

Isi ∈ . 

 
Each option imposes a simple relationship between 

the kw  and the iwI . Depending on the option selected, 

we can write (4.1) and (4.2) in terms of either kw  or 

iwI . We assume that the resulting set of equations is 

consistent. Depending on the choice, there is some 
effect on the precision of the resulting calibration 
estimates, as discussed in this section. Option (1) is 
based on the requirement that the estimated number of 
units within any group of clusters must be the same 
whether the cluster weights or the unit weights are used 
to create that estimate. Option (2) preserves the 

conditional design weights. One can argue that option 
(2) is slightly simpler than (1) but it actually imposes 
more severe restrictions on the unit weights. As we see 
later, this has implications on the variance of the 
estimators. 
 

A special case of (2) that has drawn considerable 
attention occurs for single stage cluster sampling, see 
for example Lemaître and Dufour (1987), Andersson 
(1997), and Nieuwenbroek (1993). Since all k in cluster 
i are observed, 1=ika  and (2) implies ik ww I= . It is 

practical to assign the same weight to all units in a 
cluster, for the calculation of unit statistics, and this 
common weight is the cluster weight for cluster 
statistics. The approach of Lemaître and Dufour (1987) 
differs from ours. They find kw  to satisfy (4.2) but in 

such a way that the known auxiliary vector value kx  is 
replaced by one and the same constructed value, 

iU k N
i

/∑ x , for every k in cluster i. By contrast, we 

keep the individual kx  and use one of the integrated 
weighting options to set up the calibration problem, 
leading to integrated kw  and iwI . The calculation of 

the weights of the calibration estimators CALŶ = ks k yw∑  

and CALY ,Î = is i yw III
∑  is described below. 

 
(a) Non-integrated calibration: Starting from iaI , 

compute cluster weights iwI  for Isi ∈ , calibrated 

to the cluster information in the manner of (4.1); in 
an independent second calibration, starting from 

ikik aaa I= , compute unit weights kw  for sk ∈  

calibrated to the unit information as stated in (4.2). 
 
(b) Calibration with integration option (1): In (4.1), 

replace iwI  by is k Nw
i

/∑ , making that equation a 

function of the kw . Assign the “equal shares” 

value iiki N/Ixx =  to every selected unit k in 

cluster i. Then starting from ikik aaa I= , compute 

unit weights kw  for sk ∈ , calibrated to satisfy 











=









∑

∑
∑

U k

U i

k

ki
s kw

x

x

x

x
I I . Then compute the cluster 

weights as iwI = is k Nw
i

/∑ . 

 
(c) Calibration with integration option (2): In (4.2), 

replace kw  by iik wa I , making that equation a 

function of the iwI . Starting from iaI , compute 

cluster weights iwI  for Isi ∈ , calibrated to satisfy 
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









=










∑

∑
∑

U k

U i

i

i

s iw
x

x

t

x

x

I

I

II
I ˆ , where ixt̂ ∑=

is kika x is 

the sample-weighted, unbiased estimator of 

ixt ∑=
iU kx . Then compute the unit weights as 

iikk waw I= . 

 
The procedures for (a), (b) and (c) are summarized 

in Table 1. All three cases reduce to a weight 
calculation of the form (2.1), just as in single-stage unit 
sampling. That is, despite the two stages of sampling, 
the point estimation does not become any more 
complex than in single-stage unit sampling. A software 
programmed to compute formula (2.1), such as 
CLAN97 or GES, can be used to compute the 
calibration estimators in (a), (b) and (c). However, the 
two-stage design leads to a more complicated variance 
than in section 2. The variance has two components, 
one for each stage of selection, as shown later in the 
section. 
 
We have three cases, (a) to (c), and for each, both 
cluster statistics and unit statistics are examined. There 
are thus 623 =×  situations to examine. For each of 
these, the approximate variance of the calibrated 
estimator (which equals the variance of the linearized 
statistic) has the form )V(E)E(V c1c1 + , where )E(V c1  

is the first stage variance component and )V(E c1 the 
second stage variance component. The latter is zero if 
there is no sampling at the second stage, that is, all units 
in selected clusters are observed (single stage cluster 
sampling). It is straightforward to carry out the 
automated linearization in the 6 situations. This leads to 
the expression for the residuals, one for each 

component of variance. These residuals are summarized 
in Table 2. 
 

Consider case (b) for unit statistics. The total to 

estimate is ∑= U kyY . The weights for ks kCAL ywY ∑=ˆ  

are computed for sk ∈  as )1( k
T
skk aw zλ+=  with 

1

II

−












































−








= ∑

∑

∑

∑

∑
s

T

k

ki
kk

T

s kk

s kik

U k

U iT
s a

a

a

x

x
z

x

x

x

x
λ , 

where kz  is any valid instrument, and iiki N/Ixx =  for 

every selected unit k in cluster. The estimator of the 

total for units, is ks kCAL ywY ∑=ˆ . Automated 

linearization gives RYY linCALCAL += ,
ˆˆ , where R is the 

lower order term 

)ˆ(I I BB
xx

xx
−











−
−

−=
∑ ∑

∑∑
T

s U kkk

U is kik

a

a
R  

with ( )∑∑

−























=











= s kkks

T

k

ki
kk yaa z

x

x
z

B

B
B

1

2

1

ˆ

ˆ
ˆ , and 

the linearized statistic is 



















+=

∑

∑
∑

2

1I
,

Iˆ
B

B

x

x
T

U k

U i
ks klinCAL eaY . (4.3) 

 
The second term on the right hand side is a 

constant, and the preceding random term, ks kea∑ = 

∑ ∑
I

)(Is s kiki i
eaa , has the residuals 

Case Integrated 
Weighting 

Option 

Method Calibration Equation(s) 

(a) None Using iaI  as starting weights, compute iwI  to 

satisfy (4.1). Independently, using ka  as 

starting weights, compute kw  to satisfy (4.2). 

∑∑ =
II III U is iiw xx  

∑∑ = U ks kkw xx  

(b) 
iis k wNw

i I=∑  
In (4.1), replace iwI  by is k Nw

i
/∑ . With ka as 

starting weights, compute kw  to satisfy both 

(4.1) and (4.2). Then compute the iwI . 










=









∑

∑
∑

U k

U i

k

ik
s kw

x

x

x

x
I I  

(c) 
iikk waw I=  

In (4.2), replace kw  by iik wa I . With iaI  as 

starting weights, compute iwI  to satisfy both 

(4.1) and (4.2). Then compute the kw . 











=










∑

∑
∑

U k

U i

i

i

s iw
x

x

t

x

x

I

I

II
I ˆ  

Table 1. Summary of Calibrated Weighting Methods for Two-Stage Estimation. 
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















−=

2

1

B

B

x

x
T

k

ki
kk ye  with 

( )∑∑

−






















=








= U kkU

k

ki
k yz

x

x
z

B

B
B

1

2

1 . (4.4) 

 

By conditioning on Is , and using )ˆ(Var ,linCALY  = 

)V(E)E(V c1c1 + , we find 

iU iU jiji

linCALCAL

aeeF

YY

V

)ˆ(Var)ˆ(Var

II IIII

,

∑∑∑ +=
≈

 (4.5) 

where 

















−== ∑

2

1I
I B

B
t

x

x

T

i

i
iyU ki tee

i
 

and ∑∑=
iU kiki eeF

ll
V  with 1−=

ik

iik

ik a

aa
F

l

l

l
 and 

1
I

II
I −=

ji

ji
ji a

aa
F . 

 
The residual ieI  in the first component )E(V c1  = 

∑∑
I IIIU jiji eeF  equals the cluster total of the residuals 

ke  in the second component =)V(E c1 iU ia V
I I∑ . Both 

ieI  and ke  have their magnitude reduced by both the 
cluster auxiliary and the unit auxiliary. The regressor is 

),( I
T

i
T
i xtx  in ieI  and ),( T

k
T
ki xx  in ke . In particular, in 

single stage cluster sampling, 0V =i  for all i, and only 
the first variance component remains. 
 

Consider now case (b) for cluster statistics. The 

total ∑=
I II U iyY  is estimated by =CALY ,Î is i yw III

∑ , 

where the iwI  are computed from the already available 

kw  as is ki Nww
i

/I ∑= . We can write CALY ,Î  as a sum 

of unit values =CALY ,Î kis k yw∑ , if we define 

iiki Nyy /I=  for all k in cluster i. To obtain its 

variance, we simply change the variable of interest in 
equations (4.3) to (4.5). We replace ky  by iky , keeping 

other quantities intact. Denote by =)(cB 









)(

2

)(
1

c

c

B

B
 the 

result of replacing ky  by kiy  in B of (4.4). The 

approximation to )ˆ(Var I,CALY  is then given by (4.5) 

with 

















−=

)(
2

)(
1

c

cT

k

ki
kik ye

B

B
x

x
 and 





















−=

)(
2

)(
1I

II c

cT

i

i
ii ye

B

B
t

x

x

. The residuals for unit and 

cluster statistics, are summarized in Table 2. 
 

Another issue of interest in case (b) is the choice of 
the instrument kz . The standard choice is to take 









=

k

ki
k x

x
z  for k in cluster i. But one can derive a 

0BB =  that minimizes (4.5), with a corresponding 

optimal 0
kk zz = . Some algebra shows that =0

kz  









∑ ∈

l

l

l l x

xi
U iki i

FaI + 









∑ ∈

j

j

Uj jiF
xt

x I
II

 for k in cluster i. It 

is no surprise that 0
kz  depends on the sampling design 

at both stages. Future work will examine when 0
kk zz =  

is a valid instrument and whether 0
kk zz =  gives any 

appreciable variance advantage over the simple 
standard kk xz = . If this advantage is minimal, the 

preferred choice in practice is the simple kk xz = . 
 

Consider now case (c). The calibrated estimator of 

the cluster total ∑=
I II U iyY  is is iCAL ywY II,I I

ˆ ∑= , with 

the cluster weights )1(
III i

T
sii aw zλ+=  for Isi ∈ , where   

1

I
I

I

III

I
I

I

I

I

I ˆˆ

−
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
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xxx t
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x
λ  

and ∑=
is kiki a xtx

ˆ . The calibrated estimator of the 

unit total ∑= U kyY  is CALŶ = ks k yw∑ , where the 

integrated unit weights for k in cluster i are 

iikk waw I= , using the computed iwI . We can use 

automated linearization on CALY ,Î  and CALŶ  to obtain 

the linearized statistic and the residuals that determine 
the two components of the approximate variance. The 
details of the derivations are omitted. The residuals, 
given in Table 2, are expressed in terms of the vectors 

=IB 




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




2I

1I

B

B
= ( )∑∑
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
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
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
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I

U iiU
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t
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 and 

)(
I
uB =














)(

2I

)(
1I
u

u

B

B
, where )(

I
uB  is obtained by replacing iyI  

in IB  by ∑=
iU kiy yt . 

 
The residuals given in Table 2 for case (a) are 

simple to explain. In case (a) for unit statistics, the 
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automated linearization of =CALŶ ks k yw∑  produces 

)()( 1
∑∑

−= U kk
T
kU k yzxzB , and the residuals in Table 

2 follow from case (b) for unit statistics by setting 
0I =ix  and 0=kix  for all i and k, because case (a) 

involves no cluster related information in estimating for 
units. For case (a) for cluster statistics, the automated 

linearization of =CALY ,Î is i yw III
∑  leads to =IB  

)()( I
1

I ∑∑
−

U ii
T
iU i yzxz , and the residuals follow from 

case (c) for cluster statistics by setting 0=kx  and 

0=ixt  for all i and k, because case (a) uses no unit 

related information in estimating for clusters. 
 
An examination of the residuals in Table 2 leads to 

some interesting conclusions. Let us first compare the 
residuals for unit statistics. In (b) and (c), the residuals 

ieI  are adjusted for both iIx  and ixt , but in (a) they are 

only adjusted for ixt . Thus (b) and (c) are better than 

(a) for the first component. The residual ke  is adjusted 
for both auxiliaries in (b), but not in (a) and (c), where 
it is only adjusted for kx . Thus (b) has the best 
potential for efficient estimation of unit statistics. 
Compare now the residuals for cluster statistics. In (b) 
and (c), the residual ieI  is adjusted for both iIx  and ixt , 

but in (a) it is only adjusted for iIx . By design, the 

residual ke  is always zero in (a). A particularly 

unfavourable situation for the second variance 
component arises for case (c), where the residual is 

2IBxT
k . Thus (a) or possibly (b) has the best potential 

for efficient estimation of cluster statistics. 

5 Summary and discussion 

The question of efficient weighting of the observed 
values has always been important in survey sampling 
theory. An important step was the formulation in 1952 
of the HT estimator, prescribing that the weight of each 
unit equals the inverse of the probability of its inclusion 
in the sample. Thus, in stratified simple random 
sampling (STSRS), the weight given to all units 
sampled from a stratum equals the inverse of the 
sampling rate in the stratum. Neyman’s convincing 
results in 1934 on optimal estimation under STSRS laid 
the foundation of what is now commonly called the 
design-based theory of estimation. Another important 
principle embodied in HT estimation is that the same 
weight system applies to all y-variables of interest in a 
multi-purpose survey. This preserves the design 
unbiasedness for every y-variable. Assuming no 
non-response, the sampling design alone determines 
once and for all the weighting and the construction of 
the point estimator. 
 

The principle of a single weight system extends to 
the calibration estimators in this paper. However, unlike 
the sampling weights ka , the calibrated weights kw  are 
calculated only after drawing the sample. They are 

Case Integrated 
Weighting 
Option 

Estimation 
of a total for 

Residual ieI  

 

Residual ke  

(a) None Units Btx
T

iyit −  BxT
kky −  

  Clusters 
III BxT

iiy −  0 

(b) 
iis k wNw

i I=∑  Units 
21I BtBx x

T
i

T
iyit −−  21 BxBx T

k
T
kiky −−  

  Clusters )(
2

)(
1II

cT
i

cT
iiy BtBx x−−  )(

2
)(

1
cT

k
cT

kikiy BxBx −−  

(c) 
iikk waw I=  Units )(

2I
)(

I1I
uT

i
uT

iiyt BtBx x−−  )(
2I
uT

kky Bx−  

  Clusters 
2I1III BtBx x

T
i

T
iiy −−  2IBxT

k  

Table 2. Summary of residuals in the Components of the Variance (4.5) for Two-Stage Sampling and 
Estimation. The notation is explained in the text. 
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usually more efficient (give a smaller variance) than the 

ka  for every single y-variable and they produce 
estimators with a negligible bias. 
 

The literature on calibration has been based on a 
model oriented construction of these estimators. Both 
the model assisted and model dependent approaches to 
calibration involve an explicit assumption of a linear 
superpopulation model between x and y. This model is 

of the form k
T
kky ε+= Bx  where it is assumed that 

0)( =kE ε  and 2)( σε kk cVar =  with 0>kc . In 
practice however, this model is often invalid. 

 
In our approach, the use of auxiliary information is 

not linked to model fitting. We define a 
parameterization of the calibration weights involving 
the instrument vector kz  and then apply the method of 
automated linearization to obtain a linear approximation 
of the calibration estimator. This linear approximation 
is a design-based function of a set of fixed but unknown 
population residuals determined implicitly without any 
modelling. The kw  are calculated using all or part of 
the available auxiliary information. We have shown 
how to do this for different designs including one-phase 
and two-stage designs. It is important to note that the 
construction of the point estimator has nothing to do 
with the y-variables; the same weights apply to all 
y-variables as is the case for the HT estimator. 
However, the calibration estimator can be considerably 
more efficient for some y-variables than others. This 
depends on the resulting population residuals. 
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