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1.0 Introduction 
   Two commonly used methodologies used in statistical 
agencies are systematic sampling to select probability 
samples and replication variance methodologies to 
measure the reliability of sample based estimates.  
   Systematic sampling is used because of its ease of 
implementation and because of its efficiency. It is 
considered efficient because the frame is partitioned 
into n groups, which act as n implicit strata, with one 
unit selected per group. If the variable of interest is 
relatively homogeneous within each group, one expects 
an efficient sample. However, systematic sampling is a 
cluster sample of size 1. As such, no unbiased variance 
estimator exists. A common assumption for variance 
estimation is that the intracluster correlation (i.e., the 
correlation between PSUs in the same sample) equals 0. 
Since the cluster size, n , can be large, this assumption 
can induce a large under or over estimate of the 
variance. This can happen because the total covariance 
generated from the true intracluster correlation may be 
very large (i.e., a large variance underestimation) or 
very small (i.e., a large variance overestimation). So 
care must be taken when ordering the frame to make 
sure that the extremes are avoided. 
   When hn is small relative to hN , it should not be 
difficult ordering the frame, so that the intracluster 
correlations are not extreme. However, when hn is large 

relative to hN , avoiding extreme intracluster 
correlations can be more difficult. As an example, with 
a good frame ordering, PSUs within an implicit stratum 
may be very homogeneous, since there will be very few 
PSUs in the implicit strata. This may produce a large 
negative intracluster correlation or a large negative total 
covariance. If the frame ordering is poor then the 
reverse may be true. Most statistical agencies have 

hn small relative to hN , so extreme intracluster 
correlations are not as likely. 
   Replication variance methodologies are also 
commonly used in statistical agencies. Such 
methodologies provide an easy way of measuring 
variances induced by the complex sample designs most 
agencies use. They also provide an easy way of 
measuring the variability of complex estimation 
procedures, such as nonresponse adjustments, post-
stratifications and raking. 
     Replication methodologies work best when it is safe 
to assume the first-stage sampling is done with 
replacement. As long as hn  is very small relative to 

hN , the with replacement assumption is generally 
considered reasonable. In these situations, all aspects of 
further nested complex sampling will be correctly 
reflected in the variance estimate. However, when hn  is 

not small relative to hN , there may be a need to reflect 
an appropriate first-stage finite population correction  
(FPC) in the variance estimate. Such FPCs can be 
reflected with replication methodologies by multiplying 

the replicate weights by FPC . For single stage 
sampling there are no problems with this approach. 
However, for multiple-stage sampling this adjustment 
gets applied to all other variance components. Since 
those components are correct without this adjustment, 
after this adjustment is applied all other variance 
components will be underestimated. 
   Since most statistical agencies use hn small relative to 

hN , there is no need to apply an FPC and replication 
methodologies provide very good estimates of their 
complex sample variances. 
   The National Center for Education Statistics (NCES), 
like many statistical institutions, selects its samples 
systematically, usually probability proportional to size 
(PPS), and uses replication methodologies to measure 
the sample estimate variances. NCES collects data on 
the U.S. school system, which is comprised of 
approximately 110,000 elementary and secondary 
schools and approximately 11,000 post-secondary 
institutions. These represent relatively small frames. 
Additionally, the U.S. school system for a large part is 
heavily influenced by State and local policies. 
Therefore, NCES often selects very large samples that 
are State representative. So many sample designs have 
large hn ’s relative to their respective hN ’s. This means 
that finding a frame ordering that avoids extreme 
intracluster correlations or extreme total covariances can 
be difficult. 
   In terms of replication variance estimation, many of 
NCES surveys need to reflect a first-stage finite 
population correction. In multi-stage surveys, applying 
such an FPC introduces a bias in the non-first-stage 
variance components. For this reason, it is not unusual 
to assume with-replacement first-stage sampling and 
avoid the need to introduce the first-stage FPC. 
   In many situations, this should overestimate the 
variance. However, no unbiased variance estimator 
exists for systematic sampling. So without further 
assumptions, it isn’t clear what an appropriate FPC or 
variance estimate should be. One common way of 
approximating these variance estimates is by treating 
the systematic sample as a deeply stratified sample; 
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thereby, assuming an intracluster correlation of zero. If 
some of the intracluster correlations are positive then 
this variance approximation may underestimate the 
variance, even if no FPC is applied. 
   Kaufman (2001) introduced a locally random 
assumption for the measures of size (MOS), along with 
the deep stratification assumption, which implicitly 
assumes an intrarcluster correlation of zero, to 
appropriately estimate the FPC for systematic PPS 
samples. Additionally, through a simulation study, the 
total covariance, induced by the true intracluster 
correlation, can be estimated. Since NCES frames have 
many variables, it is possible to estimate the total 
covariance for many domains and evaluate the frame 
ordering for extreme total covariances. 
   With an appropriate FPC, single stage sample designs 
can be adjusted for this FPC. Kaufman (2002) provided 
a bootstrap variance estimator that eliminates the bias in 
the non-first-stage variance components, when the first-
stage FPC is applied. It is now possible for NCES 
surveys to use an appropriate first-stage FPC for single 
and multiple stage samples, when using systematic PPS 
samples. It is still assumed that the total covariance is 
zero, but we now have the methodology to estimate the 
covariance before sample selection and modify the 
frame ordering to reduce the absolute total covariance, 
as necessary. 
   It should be noted that the zero assumption only refers 
to the first-stage intracluster correlation or total 
covariance induced by the systematic sampling; 
subsequent stage intracluster correlations are 
measurable with complex sample methodologies. 
   The variance estimators in Kaufman (2001, 2002) are 
implemented through a bootstrap estimator. One 
potential issue with the bootstrap methodology is that it 
may be unstable. The bootstrap methodology introduced 
by Kaufman can be implemented through a balanced 
half-sample replication (BHR) estimator, for a single-
stage variance; and a combination of balanced half-
sample replication (BHR) and the bootstrap, for 
multiple-stage designs. This may introduce additional 
stability. The goal of this paper is to investigate this 
possibility. 
   A simulation study will be performed using the single-
stage variance estimator using the locally random 
assumption. The study will implement the variance 
estimator using three different methodologies – the 
bootstrap methodology, described in Kaufman (2001); 
and a balanced bootstrap and BHR methodology, 
described below. These estimators will be evaluated in 
terms of: 1) relative mean square error (RMSE), 2) 
relative CV of the variance, 3) coverage rates, and 4) 
relative total covariance. 
2.0 Variance Estimates 

   Before describing the variance estimators, the 
definition of locally random measures of size (MOS) 
will be provided. 
2.1 Locally Random Assumption for MOS 
   The MOS im and jm for PSUs i and j are “locally-

random”, if there exists a partitioning of the frame, 
denoted by vsP , such that i and j vsP∈ imply that im and 

jm are generated from some random distribution with 

mean i j vsµ µ µ= = and variance 2 2 2
i j vsσ σ σ= = . 

Assuming PSUs are ordered in some way by im , before 
sample selection, the “locally-random” assumption means 
that PSUs within kP can be considered to be in a random 
order.  
   The locally random assumption can be justified through 
a response error model (i.e., if the MOS’s are obtained 
through a respondent collection then some sort of 
response error seems reasonable) or through a super-
population model.  
2.2 The Variance Estimator 
   It is also assumed that the total 
covariance, ˆ ˆ2cov( , )i j

i j

x x
≠
∑ =0, where ˆix and ˆ jx are the 

weighted estimate for the t hi  and thj  selected PSU, 
respectively.  
   Given these assumptions in 2.1 and 2.2 (see Kaufman 
(2001)), an unbiased sample variance estimator for a 

total, ŝyT , selected from systematic PPS sampling is:  
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 where: g is an implicit stratum, vs is a contiguous 

pairing of the g  (variance stratum), h  is one of 

H strata, gN is the number of frame PSUs in implicit 

stratum g  and vsN is the number of frame PSUs in 

partition vs , ip is the selection probability for PSU i  

and v̂sT is the weighted estimate of x within vs . 

2.3 The Three Simulation Variance Estimators 
   Kaufman (2001) describes a non-balanced bootstrap 

variance estimator, denoted by ˆ( )NBBV T . The stability of 
this estimator will be investigated by a simulation 
analysis discussed below. 

   Another estimator, denoted by ˆ( )BHRV T , can be 
obtained by observing that for each element of the sum 
in (1), the second term is the BHR variance estimator 
for variance stratum vs . So, a BHR estimator can be 
obtained by multiplying the BHR replicate weights 
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within vs  by 
2

2 2 2

1

( ) /( )g vs vs g
g vs g

N N N N
∈ =
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stability of this estimator will be discussed below. 

   A balanced bootstrap, denoted by ˆ( )BBV T , can be 

generated by remembering that two PSUs, i and i′ , are 
selected within each vs . The first step is to generate a 
non-balanced bootstrap sample, as described Kaufman 
(2001). Next, a complement sample is generated in the 
following way. Each time a PSU i vs∈ is selected in the 
non-balanced bootstrap sample generate a new bootstrap 
sample by placing its complement, i′ , in the new 
bootstrap sample. Repeat this process / 2B times to 
generate B bootstrap samples. Finally, determine a 
bootstrap sample size, so that the bootstrap expectation 
of the bootstrap variance estimator is (1) (see Kaufman 
(2001) for details). This estimator is balanced in the 
sense that the within vs variance is zero, so the average 
bootstrap estimate for a total should be much closer to 
the expected bootstrap estimate than without the 
balancing. 
   The balanced bootstrap is considered because it may 
be more stable than the non-balanced bootstrap. 
However, the non-balanced bootstrap has one desirable 
property that the balanced bootstrap does not. Namely, 
the non-balanced bootstrap exactly mimics the 
systematic selection process, using a bootstrap frame 
generated from the actual sample, while only half of the 
balanced bootstrap samples are so generated. There is 
no guarantee that the complementary bootstrap samples 
can actually be selected from the bootstrap frame, 
remembering that only a small number of samples are 
possible with systematic sampling. If this property is 
more important than the balancing then the balanced 
bootstrap may not perform well. 
3.0 Simulations 
   To measure the performance of the three variance 
estimators described above, a simulation study will be 
performed. The survey design of the simulation will be 
modeled after the NCES’s Schools and Staffing Survey 
(SASS) school survey.  
3.1.1 Selecting a Randomized Systematic Sample 
    To do the simulation, the locally random assumption 
must be simulated, so that the variance estimator will be 
unbiased, assuming the total covariance equals zero. To 
do this, a randomized systematic sample is chosen in the 
following way: 1) Order the frame in the desired way 
for a regular systematic selection. 2) Partition the frame 
into hn groups (implicit strata), so each group’s total 
measures of size are equal. 3) Consecutively pair the 
implicit strata to form variance-strata. 4) Some PSUs 
may have a positive selection probability in two 
variance-strata. Such PSUs will be split into two new 
PSUs by assigning a proportionally allocated measure 
of size to the new PSUs, so that the new PSUs are 

totally within the respective variance-strata. 5) The 
PSUs within each variance-stratum are now placed in a 
random order. This randomization within variance 
stratum induces the locally-random assumption. Finally, 
a classical systematic PPS sample is selected within 
strata.  
   In practice, one does not have to physically randomize 
the frame to use the randomized systematic PPS sample 
variance as a model for the nonrandomized systematic 
sample variance. It is used here solely for simulation 
purposes. However, one does need to assume, within 
variance-strata, the frame is randomized (i.e., locally 
random). Assuming the frame ordering takes this into 
consideration, this is not necessarily a difficult 
assumption to approximate. Kaufman (2001) describes 
the frame ordering considerations.  
    Whether one physically randomizes the frame or not, 
it is necessary to assume the total covariance is zero 

(e.g., ( )Cov T
)

=
 ( )

ˆ ˆ( , )i j
i j j i

Cov x x
≠

∑ ∑ =0). This may seem 

like a restrictive assumption; however, many variance 
estimators, under systematic sampling, make this 
assumption. 
3.2 Simulation Sample Design 
The simulation sample design is a stratified (State by 
school level) randomized systematic PPS sample of 
schools within the States in the West region. The 
measure of size is the square root number of teachers in 
the school. The frame ordering uses a serpentine 
ordering to: 1) make the original ordering look more 
locally random, 2) reduce the number of 

extreme ( )Cov T
)

 and 3) reduce the first-stage FPC. The 
variables used in the frame ordering are: Urbanicity, 
%minority in school, and number of teachers in the 
school. The simulation samples are State representative, 
so as much as 40% of a State’s schools may be in 
sample for some States. 
3.3 Simulation Estimates 
   To produce estimates for the simulation samples, 
variables of the school frame will be used. These 
variables are number of schools, number of teachers and 
number of students. Additionally, average number of 
teachers, average number of students and the pupil 
teacher ratio will be estimated. These six estimates are 
computed within the following domains: West Region, 
State, urbanicity, school level, and %minority. For each 
simulation sample, 144 estimates are computed. 
3.4 Simulation Variance Estimators 
   The three variance estimators described in section 2.3 
will be simulated using the locally-random assumption.  
3.5 Performance Statistics 
  The average of the estimated variances, denoted by 

( )NBBv T
)

, ( )BBv T
)

 and ( )BHRv T
)

 will be based on 48 sets 
of replicate weights and 300 simulations. To measure 
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their performance, the following statistics will be 
compared: 
3.5.1 Relative Error of the Standard Error 

eRESE = ( ( ) ( )) / ( )e t tv T V T V T∗ −
) ) )

, where ( )tV T
)

 is 

the simple variance of the simulation estimates of T
)

, sT
)

 

and ( )ev T
)

is the average of one of the variance 

estimators ( e = NBB , BHR  or BB ) across the 
simulation samples. 
3.5.2 Relative Total Covariances (Rcov) 
   Since ( )ev T

)

 is an unbiased estimate of the variance 
assuming the total covariance is zero an unbiased 

estimate of the Rcov is: ( ( ) ( )) / ( )t e tV T v T V T−
) ) )

. 

3.5.3 Relative Mean Square Error (RMSE) 

eRMSE = 2( ( )) ( ( ) ( )) / ( )e e t tV v T v T V T V T+ −
) ) ) )

, where 

( ( ))eV v T
)

is the simple variance of the ( )ev T
)

for a 

specific e across the simulation samples. ( ) ( )e tv T V T−
) )

 

and ( )tV T
)

 are computed across the non-balanced, 
balanced and BHR samples. 
3.5.4 CV of the Variance 

eCVV = ( ( )) / ( )e tV v T V T
) )

 

3.5.5 Coverage Rate 
    The coverage rate is the percent of the time that the 
true estimate is within the 95% confidence intervals 
across the simulation samples. 
4.0 Results 
4.1 Relative Error of the Standard Error 
   All three variance methodologies are designed to have 
the same expectation. This can be verified from table 1. 
The percent in each category across the different 
methodologies are all roughly equal. 
4.2.1 Relative Total Covariances (Rcov) 
   From table 3, 22 percent of the Rcovs are greater than 
20 percent and 5 percent are less than –20 percent. This 
demonstrates that assuming Rcovs are zero in the 
variance estimators, for this particular sample design, 
clearly is not correct. The 22 percent with Rcov greater 
than 20% is a more serious situation because it implies 
the variances can be large underestimates. For each 
variance methodology, this is verified in table 1, where 
at least 24 percent of the estimates are underestimated 
by at least 10 percent. 
4.2.2 Locally Random Assumption 
   Given the way the locally random assumption is being 
simulated, it becomes possible for a few PSUs to be 
selected twice in different variance strata. This will 
introduce a positive component to the total covariance.  
If the frame is actually randomized this way before 
sample selection, then this can introduce a large 
inefficiency into the sample estimates. It is not 
recommended, in practice to randomize the frame this 

way. The locally random model used in the simulation 
is used for simulation purposes only, so that the locally 
random assumption will be true.  
   If the survey designer wanted to introduce some 
randomization into the frame before sample selection 
then one could avoid this problem by randomizing PSUs 
within variance strata, leaving PSUs with positive 
probability in multiple variance strata in fixed 
contiguous locations. In this situation, it is no longer 
possible to select these PSUs multiple times; so there 
will no longer be the positive contribution to the total 
covariance described above. We will call this 
randomization a conditional vs randomization 
   For variance estimation purposes, one could assume 
the conditional vs randomization. This would reduce the 
relative covariance. However, since the frame isn’t 
completely randomized within each vs , the randomized 
FPC is not correct, although, it is likely a reasonable 
approximation. This means that estimation of the 

relative total covariance, using ( ( ) ( )) / ( )t e tV T v T V T−
) ) )

, 
will be biased. This issue can be avoided by using an 
appropriate super-population model. 
   In a preliminary study, the relative total covariances 
were estimated using the conditional vs randomization, 
for the sample design described here. The results show 
that the number of Rcovs greater than 20% dropped 
from 22% to 2%; and the number of Rcov less than –
20% increased from 5% to 16%. This switches the 
covariance problem from a large number of positive 
covariances to a large number of negative covariances. 
4.3 Relative Mean Square Error (RMSE) 
   The bootstrap variance estimators’ RMSE will be 
measured relative to the BHR estimator’s RMSE. Table 
2 provides the percent distribution of the difference 
between the non-balanced bootstrap (NBB) RMSE and 
the BHR RMSE. Also provided is the distribution of the 
difference between the balanced bootstrap (BB) RMSE 
and the BHR RMSE. 
   The NBB estimator is better than the BHR estimator 
50.6 percent of the time. So, in terms of RMSE, the 
NBB estimator performs as well as the BHR estimator. 
The NBB estimator performs slightly better in the 
extremes with 18% of the RMSE differences less than   
-5 percent, while only 13.3% are greater than 5 percent. 
   The BHR estimator is better than the BB estimator 
69.4 percent of the time. One might have hoped that the 
balancing of the bootstrap would have improved the 
RMSE. However, this is not the case. I would speculate 
that there are two reasons for this: 1) the inclusion of the 
complementary samples implicitly introduces a 
correlation between the sample and its complement; 
and/or 2) some of complementary samples may not be 
possible to select from the bootstrap frame using the 
systematic sampling procedure. Both situations could 
decrease the stability of the BB variance estimator. 
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4.4 Coverage Rates 
   Table 4 provides the coverage rates for the three 
variance methodologies. Since each methodology 
assumes that Rcov is zero, when the Rcov is positive, it 
is expected that the coverage rates will be low; and 
conversely, high when the Rcov is negative. Given the 
wide range of the Rcov, from table 2, it is necessary to 
analysis the coverage rates by the magnitude of the 
Rcov. For estimates which have an absolute value of 
Rcov less than 10%, 16% and 20%, table 4 provides the 
coverage rate distribution for each variance 
methodology. 
   The results in table 4 are consistent across the 
different values for covR . This can be seen by looking 

at the percent of the time the coverage rates are in the 90 
to 97% category. The NBB estimator is always better 
then either the BHR and BB methodologies. As an 
example, when covR <10%, the NBB has 100% of its 

coverage rate estimates in the 90 to 97 % category, 
while the BHR has 94.5% and the BB has 98.1%. 
    Additionally, in the covR <10% categories the BB 

performs better than the BHR. However, in all other 
covR  categories the BHR performs better. 

   Another point is that the NBB has fewer extreme 
coverage rates. This can be seen looking at the 

covR <20% categories, where more extreme coverage 

rates are expected. Here, the NBB has no coverage rates 
in the LT 85% category, while the BHR has 0.9% and 
the BB has 3.1%, in this category. Additionally, the BB 
has some coverage rates larger than 97%, while the 
other methodologies do not. 
   Table 5 provides the coverage rate distribution for all 
144 estimates. From this table, it can be seen how the 
number of extreme Rcovs have affected the coverage 
rate distribution and overpowered the performance of all 
the estimators. Now, none of the estimators performs 
well. The NBB still performs best with the largest 
percent in the 90 to 97% category, with 79.2%; and the 
smallest percent in the extreme categories, with 5.5% 
(3.5+2.0).  Now, the NBB and the BHR estimators 
perform about equally.  Given the discussion in 4.2.2, 
results from table 4 may be more reflective of what will 
happen in practice. 
4.5 Number of Replicate Weights 
  For these simulations, each variance estimate is based 
on 48 sets of replicate weights. From table 6, most of 
the CVs of the variance are between 20 and 40 percent, 
irrespective of the variance methodology. Clearly, 48 
sets of replicate weights are not sufficient. If there were 
200 sets of replicate weights, most of variance CVs 
would be between 10 and 20%. This would provide a 
much better distribution. So, whether the bootstrap or 

BHR methodologies are used 200 sets of replicate 
weights would be a much more reasonable number. 
5.0 Conclusions 
   The introduction points out when hn is large relative 

to hN a number of issues can arise with respect to 
systematic sample selections and replication variance 
estimation. One of which is that extreme intracluster 
correlations or total covariances can occur. The results 
in section 4.2 show that the simulation sample design 
produces a high percentage of extreme relative total 
covariances. If one completely randomizes within 
variance stratum, 22% of the Rcovs are greater than 
20%; while if the conditional vs randomization is used, 
16% of the Rcovs are less than 20%. Either way, 
variance estimates can be very biased, when the 
variance estimator assumes Rcov equals zero. 
   Another issue concerning hn being large relative to 

hN  is that there is no unbiased FPC associated with 
systematic sampling, when one is definitely needed. 
Assuming the measures of size are locally random then 
an appropriate FPC can be determined. This FPC can be 
implemented through a BHR or bootstrap variance 
methodology. The main purpose of the paper is to 
measure the performance of these variance estimators. 
    In terms of RMSE, the nonbalanced bootstrap and the 
BHR variance estimator perform equally.  So, the BHR 
does not have an advantage over the nonbalanced 
bootstrap, as might be expected. The balanced bootstrap 
performs poorly relative to the BHR 
    In terms of coverage rates, the nonbalanced bootstrap 
coverage rates are better than the BHR coverage for 
each Rcov category, while the balanced bootstrap is 
only better than the BHR in the covR <10% category. 

So, the nonbalanced bootstrap has a clear advantage 
over the BHR, at least for the simulation sample design. 
   The final issue is how many sets of replicate weights 
are needed for a stable variance estimate. For each 
variance methodology, the 48 used clearly is an 
insufficient number. For this sample design, if one 
desires a more reasonable CV of the variance between 
10 and 20%, 200 sets of replicate weights would be 
required, irrespective of the variance methodology. 
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Table 1 -- Relative error % dist. of the standard error 

 
Categories 

Non-
Balanced 
Bootstrap 

 
BHR 

 
Balanced  
Bootstrap 

LT –15% 6 8 11 
-15 to –10% 19 16 20 
-10 to –5% 23 26 23 
-5 to 0% 28 24 24 
0 to 5% 15 13 12 

5% to 10% 5 8 6 
GT 10% 4 5 4 

 
 
 

 
 

 
Table 4 -- % distribution of 95% coverage rates for estimates with various absolute values of the relative total covariance 

Non-Balanced Bootstrap Balanced Half-Sample 
Replication 

Balanced Bootstrap  
 
 

Categories 
covR

<10% 

covR

<16% 

covR

<20% 

covR

<10% 

covR  

<16% 

covR

<20% 

covR

<10% 

covR

<16% 

covR

<20% 
LT 85% 0.0 0.0 0.0 0.0 1.2 0.9 0.0 2.5 3.1 

85 to 90% 0.0 2.3 7.6 5.5 6.9 10.2 1.9 6.2 9.3 
90 to 97% 100 97.7 92.4 94.5 91.9 88.9 98.1 88.9 85.6 
GT 97% 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.4 2.0 

 
Table 5 --% distribution of 95% coverage rates for all estimates 

 
Categories 

Non-Balanced 
Bootstrap 

Balanced Half-
Sample Replication 

 
Balanced Bootstrap 

LT 85% 3.5 3.5 6.9 
85 to 90% 15.3 18.8 25.7 
90 to 97% 79.2 75.7 62.5 
GT 97% 2.0 2.0 4.9 

 
Table 6 – Distribution of the CV of the variance  

 
Categories 

Non-
Balanced 
Bootstrap 

 
BHR 

 
Balanced  
Bootstrap 

0 to 20% 12.5 14.6 6.9 
20 to 40% 68.1 61.1 68.8 
40 to 60% 12.5 15.3 17.4 
60 to 80% 3.5 4.2 3.5 
80 to 100% 0.7 1.4 0.7 
GT 100% 2.7 3.4 2.7 

 
                                                 
1 This paper is intended to promote the exchange of ideas among researchers and policy makers.  The views 
expressed in it are part of ongoing research and analysis and do not necessarily reflect the position of the U.S. 
Department of Education. 

Table 2 -- % Distribution of RMSE differences 

 
Categories 

 
NBB-BHR 

 
BB-BHR 

LT –10% 9.7 10.4 
-10 to –5% 8.3 4.2 
-5 to 0% 32.6 16.0 
0 to 5% 36.1 45.8 
5 to 10% 12.5 20.8 
GT 10% 0.8 2.8 

Table 3 -- % distribution of relative total covariance 

Category LT –20% -20 to –10% -10 to 0% 0 to10% 10 to 20% GT 20% 
Percent 5 3 18 23 29 22 
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