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1.  INTRODUCTION1 
The Annual Capital Expenditures Survey (ACES) collects 
information about the nature and level of capital 
expenditures in non-farm companies, organizations, and 
associations in the United States.  ACES uses a one-stage 
stratified simple random sample without replacement (SRS-
WOR) design, and sampling fractions in several strata are 
larger than 0.20.  ACES performs weight adjustment for unit 
non-response and does not perform imputation for item non-
response.  Section 2 describes the ACES sample design and 
estimation methodology.   
 
From the collection year 2000 data onward, ACES began 
using the U.S. Census Bureau’s Standard Economic 
Processing System (StEPS) as its post-data-collection 
system (Ahmed and Tasky, 2000).  While the existing StEPS 
estimation module software easily accommodated the ACES 
estimators, variance estimation enhancements were required.  
In prior collections periods, ACES used a sampling theory 
formula (S2) variance estimator with non-response adjusted 
weights in place of sampling weights, so that the ratio-
adjusted weights were treated as constants in the production 
variance estimates.  StEPS is a generalized system, which 
lends itself more to replication variance estimation methods.  
Thus, the primary purpose of this study was to determine 
whether replicate variance estimation could be used to 
estimate ACES variances.   
 
By 2000, StEPS included variance estimation software for 
the method of random groups. This variance estimation 
method is quite popular with many of the U.S. Census’ 
business surveys for theoretical and for operational reasons.  
Theoretically, random group variance estimates of expansion 
estimators are nearly unbiased for stratified SRS-WOR 
samples with small sampling fractions [the most-commonly 
used design for our non-manufacturing business surveys].  
Operationally, surveys that incorporate births (new 
businesses) into ongoing samples can easily and correctly 
include the new units in the variance estimations by 
assigning new units to random groups as they are selected.  
Moreover, random group estimation requires fewer 
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computer resources than other more popular methods such 
as the stratified jackknife:  K replicate estimates or replicate 
weights, where K is the number of random groups versus 
one replicate estimate or replicate weight per respondent for 
the stratified jackknife.   
 
Random group variance estimation has two drawbacks.  
First, it can be unpredictable when applied to SRS-WOR 
samples because the random group estimator “tends to 
estimate the variance as if the sample were selected with 
replacement” (Wolter, 1985, p.43).  The second drawback is 
the instability of the random group variance estimates, 
especially when the number of sampled observations in each 
random group is small or when there is a high rate of unit 
non-response.  Because of these drawbacks, we investigated 
the delete-a-group jackknife variance estimator.  This 
method can be applied to the same types of sample designs 
as the random group method and should yield more stable 
variance estimates, since replicates are constructed from 
more sample units.  Moreover, since StEPS already had 
random group estimation capability, we knew that that the 
number of delete-a-group replicates or replicate weights 
would not pose an operational problem.  Kott (2001 and 
1998) reports excellent results using the delete-a-group 
jackknife for several of the National Agricultural Statistics 
Service (NASS) programs with a variety of sample designs 
(including stratified SRS-WOR) for expansion, ratio, and 
restricted regression estimators.  Smith (2001) also reports 
some success with the delete-a-group jackknife variance 
estimator for New Zealand’s labor force survey.   
 
Our investigation specifically examined how to modify 
random group and delete-a-group jackknife variance 
estimators for without replacement samples with non-
negligible sampling fractions and whether the non-response 
adjustment procedure should be repeated in each replicate.  
The first issue is discussed in Sections 3 and 6, and the 
second issue is discussed in Sections 4 and 5.  Section 4 
provides our empirical results for three key capital 
expenditures characteristics using 1999 ACES data.  The 
results from this empirical estimation motivated the 
simulation study described in Section 5.  Section 6 describes 
an appropriate way to use these replication methods to 
obtain variance estimates for combined ratio or trend 
estimates for survey designs with non-negligible sampling 
fractions.  Section 7 provides our conclusions. 
 
2. ACES SAMPLE DESIGN AND ESTIMATION 

METHODOLOGY 
The ACES universe contains two sub-populations: employer 
companies and non-employer companies. Different forms 
are mailed to sample units depending on whether they are 
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employer (ACE-1) companies or non-employer (ACE-2) 
companies.  New ACE-1 and ACE-2 samples are selected 
each year, both with stratified SRS-WOR designs.  The 
ACE-1 sample comprises approximately seventy-five 
percent of the ACES sample (roughly 45,000 companies 
selected per year for ACE-1, and 15,000 selected per year 
for ACE-2).   
 
The ACE-1 frame is stratified first by primary industry 
activity found in the Census Bureau’s Business Register.  
Five separate strata are formed within industry: one certainty 
stratum consisting of companies with 500 or more 
employees, and four non-certainty strata determined using a 
modified Lavallee-Hidiriglou method with payroll as a 
measure of size (Slanta and Krenzke, 1996).  Sampling 
fractions in the noncertainty ACE-1 strata can be quite high: 
in the 1999 design, 113 of the 514 strata had sampling 
fractions greater than 0.20.    
 
Unlike the ACE-1 design, sampling fractions in all ACE-2 
strata are quite low (all less than 0.01 in the 1999 design).  
Two of the ACE-2 strata are post-stratified using updated 
information from the Business Register after data collection.   
 
The ACE-1 and ACE-2 non-response weight procedures 
follow the adjustment-to-sample models described in Kalton 
and Kasprzyk (1986), i.e., all sampling weights in a 
weighting class l are multiplied by a factor derived from data 
corresponding to sample units.  The ACE-1 non-response 
adjustment procedure controls sampling weights to 
independently obtained estimates of payroll; that is, the non-
response weighting adjustment factor for a weighting cell l is 
the sum of the sample-weighted payroll estimates for units in 
the weighting cell divided by the sum of the sample-
weighted payroll estimates for all responding units in the 
weighting cell.   Under complete non-response in a certainty 
stratum or complete non-response in the large company 
stratum, the two strata are combined into one weighting cell 
(within the sample industry).  Presently, there is no 
collapsing procedure in place for complete non-response in 
the three remaining non-certainty strata.  The post-stratified 
ACE-2 estimates are controlled to sample counts within 
strata; that is, the non-response weighting adjustment factor 
for a weighting cell l is calculated as the number of sampled 
units in the weighting cell divided by the number of 
responding units in the weighting cell [Note:  since ACE-2 
performs non-response adjustment within strata, the sample 
weights cancel out].  Thus, the final weight for survey v 
(Wh(adj)v) is given by 
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where h indexes the stratum, v indexes the survey, j indexes 
the sample unit, ph is the estimated payroll in stratum h, nh is 
the sample size of stratum h,  Wh =  Nh/nh (the sampling 
weight), and rhj is a variable indicating the response status of 
sample unit j.  See Caldwell (1999a) for more details on the 
ACE-1 and ACE-2 non-response weighting adjustment 
procedures 
 
ACES publishes expansion estimates for all characteristics.  
Technically, these estimates are non-linear because of the 
ratio non-response weight adjustment procedure.  
Additionally, ACES publishes year-to-year trend estimates. 
 
3.  VARIANCE ESTIMATION METHODOLOGY 
This section describes our considered variance estimation 
procedures.  Our non-replicate variance estimator for 
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See Caldwell (1999b).  Using 2

hijx to estimate 2
hs  when a 

stratum contains one respondent allows the stratum to 
contribute to the variance computation (however poorly).  Its 
use is not theoretically justified. 
 
Notice that formula 3.2 directly incorporates the finite 
population correction (fpc).  Wolter (1985, Ch.2) provides 
modifications for random group and delete-a-group 
jackknife estimators for stratified samples with non-
negligible sampling fractions, specifically suggesting using 

hhh WfW −= 1* in place of Wh, where Wh is the stratum 
final weight and fh = nh/Nh is the stratum sampling fraction.  
We used this adjustment in all of the replicate procedures 
described below. 
 
The random group method begins by splitting the non-
certainty portion of the survey sample into K random groups 
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using the survey’s sampling methodology (Wolter, 1985, pp. 
31-32).  Each random group’s sample is then reweighted to 
represent the full sample, either by simply multiplying the 
random group estimate by K (simple reweighting) or by 
developing K replicate weighting factors within each stratum 
(strata-specific reweighting).  The strata-specific replicate 
factors for stratum h and random group k are k

hh mn / , 

where k
hm  is the number of sample units in stratum h 

assigned to random group k.   Developing strata-specific 
replicate weighting factors yields replicate estimates that are 
conditionally unbiased.  Such replicate weighting factors 
may, however, increase the variance of the estimated 
variances since they differ by strata.  Certainty units are 
included in each random group. These cases (or their 
associated replicate weights) are not multiplied by K or any 
adjustment factor.  Thus, K replicate weights are assigned to 
each sample unit j.  If unit j is in a non-certainty stratum, the 
kth replicate weight is zero unless unit j is in random group k. 
In a certainty stratum, all K replicate weights are equal to the 
sampling or final weight. 
 
The full sample estimation procedure is then applied to each 
of the replicate weights (e.g., non-response adjustments, 
post-stratification) or to the replicate estimates. The random 
group variance for any estimate iθ̂  is  
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RGkiθ is the random group k replicate estimate and 

i0̂θ is the full-sample estimate.  If the replicate weights used 

incorporate the fpc adjustments described above, then i0̂θ and 

iθ̂ (the tabulated full-sample estimate) will not be 
equivalent.   
 
For delete-a-group jackknife variance estimation, again the 
non-certainty portion of survey sample is divided into K 
random groups.  However, the delete-a-group jackknife 
replicate estimate is computed for each replicate k by 
removing the kth random group from the full sample.  
Replicates are obtained either by multiplying each replicate 
estimate by K/(K-1) or by developing stratum-specific 
replicate weights.  The strata-specific replicate factors for 
stratum h and delete-a-group jackknife replicate k are 

)./( k
hhh mmn −  Certainty units are included in each delete-a-

group jackknife replicate estimate.  Thus, for delete-a-group 
jackknife replication, K replicate weights are assigned to 
each sample unit j.  If unit j is in a non-certainty stratum, the 
kth replicate weight is zero when unit j is in random group k.  
In a certainty stratum, all K replicate weights are equal to the 
sampling or final weight. 
 
Since jackknife replicate sample sizes are larger than the 
corresponding random group replicate sample sizes, delete-

a-group jackknife variance estimates are often more stable, 
at least for smooth statistics.  The delete-a-group jackknife 
variance for an estimate iθ̂ is 
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DAGkiθ  is the replicate k delete-a-group jackknife 
estimate. 
 
As stated earlier, we also wanted to investigate the statistical 
properties of replicating the non-response adjustment 
procedure (i.e., independently performing the non-response 
adjustment procedure on each set of replicate weights).  This 
can be quite time-consuming and computer resource-
intensive, so we considered a “shortcut” approach, using the 
full sample non-response adjusted weights in all replicates.  
Institutional intuition held that both the sampling formula 
variance procedure and shortcut approach would 
underestimate the true variance by failing to explicitly 
account for non-response variance.  This intuition is 
somewhat supported in the literature: for example, Canty 
and Davison (1999) found replicating the calibrated 
weighting procedure reduced the degree of relative bias in 
their stratified jackknife variance estimates (from those 
using the “shortcut approach”) for a similar design.  On the 
other hand, Wolter (1985, pp. 83-84) cites results from two 
studies that showed the slight improvements in random 
group variance estimates using full replicate reweighting 
versus the shortcut approach did not offset the additional 
computing costs.  In a similar vein, Schindler (2002) found 
trivial differences between the variance computed with a 
fully-reweighted stratified jackknife procedure versus those 
obtained with a simple jackknife that used final weights in 
all estimates (shortcut procedure) for selected dual system 
estimates from the Census 2000 Accuracy and Coverage 
Enumeration Survey. 
 
We considered three different replicate weighting variations 
per replication method: 
 
Simple  Construct replicate weights from the full sample’s 

non-response adjusted weights (the shortcut).  Random 
group estimation uses K as the replicate adjustment 
factor; delete-a-group jackknife estimation uses K/K-1.  

Simple Reweighted  Construct replicate weights from the 
sample weights, then perform the non-response 
adjustment procedure on each set of replicate weights.  
Random group estimation uses K as the replicate 
adjustment factor; delete-a-group jackknife estimation 
uses K/K-1. 

Stratified Reweighted  Construct replicate weights from the 
sample weights, where non-certainty units’ adjusted 
weights in a given replicate are multiplied by strata-
specific replicate factors.  Perform non-response 
adjustment on each set of replicate weights. 

 
In subsequent sections, we use “RG” to indicate random 
group and “DAG” to indicate delete-a-group jackknife, 
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combined with “S” (simple), “SR” (simple reweighted), and 
“STR” (stratified reweighted).  Certainty cases are excluded 
from all of the discussed replicate variance estimates via the 
fpc-adjustment (all certainty cases have replicate weights of 
zero).  None of the replicate variance methods described 
account for the variance contribution due to non-responding 
certainty units.  This is consistent with ACES current 
production method. 
 
We used 15 random groups in all applications.  For a 
stratified SRS-WOR design, Kott (2001) proves that the 
delete-a-group jackknife variance estimator is approximately 
unbiased for the true variance when the sample size in each 
stratum is larger than the number of random groups and all 
sampling fractions are negligible (less than or equal to 1/5) 
and is biased upwards otherwise.  Thus, the 1999 design 
ACE-2 delete-a-group jackknife variance estimates are 
approximately unbiased.  This is not the case with ACE-1:  
there were twelve (of 514) ACE-1 strata that did not have 
sample in all fifteen random groups.  Moreover, the 
proportion of strata that are not represented in any random 
group is actually higher due to unit non-response. 
Consequently, the ACE-1 DAGSTR estimates are biased 
upwards.  The bound on this bias given by Kott (2001) – that 
is, (14/15)minh{1/(nh-1)} – is probably not applicable 
because such a high proportion of the ACE-1 sampling 
fractions are quite large. 
 
4.  EMPIRICAL DATA RESULTS 
Initially, we compared the six replicate variance estimators 
to the sampling formula approximation for three capital 
expenditure statistics (Total Capital Expenditures; Capital 
Expenditures on Structures; Capital Expenditures on 
Equipment); using 1999 ACES data.   
 
We found several interesting patterns.  First, the sampling 
formula (S2) standard errors were generally larger than 
corresponding replicate estimates.  We found this 
perplexing, having assumed that the S2 and simple replicate 
variance methods would consistently underestimate the 
variance since they do not explicitly account for the non-
response adjustment.  Second, performing non-response 
adjustment in each delete-a-group jackknife replicate – the 
simple reweighted (SR) or stratified reweighted (STR) 
methods -- usually reduced the estimated standard error 
from the corresponding simple replication estimate (again, a 
counter-intuitive result).  There is no consistent pattern with 
the random group estimates.  Finally, the simple reweighted 
jackknife estimates were less than or equal to the 
corresponding stratified reweighted jackknife estimates.  
This was reasonable, since the variable replicate factors used 
for stratified reweighting should increase the variability 
among the replicate estimates.  In contrast, using strata-
specific random group adjustment factors reduced the 
estimated standard errors for all ACE-1 characteristics and 
for three ACE-2 characteristics.  This did not seem 
reasonable.  This last difference could partially account for 
the variability in replicate factors for the RGSTR and 
DAGSTR methods.  As Table 1 shows, the strata-level 

random group adjustment factors were quite variable and 
were (on the average) quite different from their expected 
value, unlike the corresponding delete-a-group jackknife 
adjustment factors.  
  
Table 1: Strata-Level Adjustment Factors for 1999 ACES Data 
Frame Method Expected  

Mean 
Sample 
Mean 

Standard 
Deviation 

Minimum Maximum

RGSTR 15.00 15.59 3.38 1.00 29.00 ACE-
1 DAGSTR 1.07 1.07 0.03 1.03 2.00 

RGSTR 15.00 15.12 1.42 12.5 20.00 ACE-
2 DAGSTR 1.07 1.07 0.01 1.05 1.09 

 
The inconsistent empirical results for the ACE-1 random 
group estimates are partially explained by the replicated 
non-response adjustment procedures.  Table 2 presents the 
number of weight adjustment cells with complete non-
response by replication method for ACE-1 [Note:  the results 
are equivalent for the simple and stratified reweighted 
methods]. “Total 2A” refers to the large-size non-certainty 
within-industry strata, which are collapsed with industry 
certainty strata under complete non-response for weighting 
adjustments.  In all other ACE-1 strata, the weighting cell l 
is equivalent to the stratum h.   
 
With the random group methods, an overly high proportion 
of ACE-1 strata have no respondents in a replicate weighting 
cell.  This poses two problems.  The first is mechanical: 
except for ACE-1 Stratum 2A, ACES does not have a 
collapsing mechanism in place for non-certainty strata.  
Second, and far more important, the random group variance 
estimation method is not mimicking the full-sample 
estimation procedure.  In contrast, in all but one replicate, 
the delete-a-group jackknife replicates use the same 
weighting cells as the full sample. 
 
Table 2: ACE-1 Weighting Cells with Complete Non-Response 
Method  Replicate 
  

Full  
Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RG Total 2A 1 18 20 19 24 22 28 25 22 21 21 23 21 23 17 22
 Other  0 40 38 41 37 42 40 39 34 33 35 30 37 39 34 38
DAG Total 2A 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1
 Other 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 

Since approximately twenty-percent of the ACE-1 strata 
sampling rates are larger than 0.20, we were concerned that 
not incorporating the fpc into the replicate variance 
estimates could lead to substantial overestimates of variance.  
Table 3 presents ratios of unadjusted to fpc-adjusted 
replicate standard errors for the same three ACE-1 
characteristics [Note:  ACE-2 sampling fractions are all less 
than 0.01, so all standard error ratios are 1, as expected]. 
 
Table 3:  ACE-1 Standard Error Ratios (Without FPC/With FPC) 
 RGS  RGSR RGSTR DAGS DAGSR DAGSTR

 Total  1.02 1.01 1.02 1.02 1.02 1.03 

Structures 1.00 1.00 1.00 1.00 1.01 1.01 

Equipment 1.06 1.06 1.06 1.06 1.06 1.07 
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Failing to account for the non-negligible fpcs in the variance 
estimates leads to a six-percent overestimate of standard 
error for capital expenditures on equipment and consistently 
overestimates the SE for total capital expenditures (the 
primary statistic of interest) by approximately two-percent.  
There is no real difference between standard error estimates 
for capital expenditures on structures, but this is a fairly 
small characteristic.  The overestimation for the other two 
characteristics could affect coverage (in particular for capital 
expenditures on equipment), thus justifying the need for 
incorporating fpcs in the replication. 
 
The overly variable replicate factors for the stratified 
reweighted random group method concerned us.  The 
unrealistic non-response adjustment collapsing pattern with 
the two reweighted methods convinced us not to further 
pursue random group variance estimation methods with 
ACES data and to instead concentrate on delete-a-group 
jackknife variance estimation methods.  Of course, our 
empirical results still left us with four different sets of 
variance estimates and no “gold standard” against which to 
measure them.  So, we conducted a Monte Carlo simulation 
study to evaluate the properties of these four different 
variance estimators. 
 
5.  SIMULATION STUDY 
5.1 Creation of the Frame and Sample Selection  
Capital expenditures data are difficult to model.  First, they 
are often poorly correlated with auxiliary data such as 
payroll or employment, especially for small companies.  
Second, purchasing patterns are not necessarily consistent 
within an industry.  For example, in some industries, capital 
expenditures on structures and equipments are negatively 
correlated for small companies and positively correlated for 
large companies.  The multivariate correlation structure 
becomes more complicated when capital expenditures data is 
further cross-classified by new or used status.  
Consequently, we developed models only for non-certainty 
employer companies, using the actual reported sample data 
for certainty companies in eight sample NAICS industries 
provided by ACES methodologists.  These industries 
encompassed a variety of professional sectors: Utilities; 
Manufactures; Wholesale Trade; Retail Trade; Information; 
Professional, Scientific, and Technical Services; and 
Administrative Support, Waste Management, and 
Remediation Services.  This simulation study did not include 
the ACE-2 frame data, which represents approximately 25% 
of the total ACES sample universe but only approximately 
seven percent of the total estimated capital expenditures. 
 
In general, each sample industry required three separate sets 
of models: one for units that reported all capital expenditures 
on equipment; one for units that reported all capital 
expenditures on structures; and one for units that reported 
spending on both.  In the latter case, we modeled two of the 
three characteristics explicitly, deriving the remaining 
characteristic as the difference of the other characteristics.   
In each sample industry, we randomly applied the three sets 
of models to the frame data in the same proportions as in the 

(respondent) sample data: that is, first, we simulated total 
capital expenditures data in the same proportion as reported 
in the industry, then we applied our three different models to 
the units that had nonzero simulated capital expenditures 
data. 

We stratified this complete frame data using the ACES 
production programs.  After stratification, we used a 
missing-at-random model to assign response status in which 
the probabilities of non-response matched the ACES non-
response rates by stratum. Thus, we assumed a fixed set of 
non-respondents on the frame, adding bias to the estimator 
but allowing for different response patterns by sample.   

Finally, we selected 5,000 stratified SRS-WOR samples 
from this simulated population using the strata sampling 
rates from the ACES stratification and allocation programs.  
In 1,000 of the 5,000 samples, we assigned sample units to 
15 random groups.  Like the empirical study, not all strata 
contain all random groups: one of the 32 non-certainty strata 
contains ten sample units. 
 
5.2  Evaluation Criteria 
To examine the statistical properties of the four different 
variance estimation methods, we used our 5,000 stratified 
random samples to construct the empirical variance of each 
characteristic i in sample industry u as 
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where riuX̂ is the estimate of characteristic i in industry u in 

sample r, and iuX is the mean of the   riuX̂ .   
 
Next, we calculated four variance estimates (vmeth) per 
characteristic i in industry u from 1,000 of the 5,000 
samples.  We compared these variance estimates in terms of 
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Relative bias is a measure of the bias of the variance 
estimate as a proportion of the true variance.  The coefficient 
of variation (c.v.) measures the variance of the variance 
estimates; this statistic is called the “stability” in other 
publications (e.g., Rao and Shao, 1996).  With an “optimal” 
variance estimator, both the relative bias and the c.v. will be 
near zero.   
 
5.3 Results  
Table 4 presents the relative biases of the four variance 
estimation methods.  Statistically significant contrasts 
between biases (α = 0.05) are shaded.  To compare contrasts 
in relative biases between variance estimation methods 
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within industry for each characteristic, we used an ANOVA 
approach with the repeated measures model 

.)ˆ( ,, riumethiumethriumeth Xv εµ +=  
For each characteristic/industry, we first tested the “omnibus 
hypothesis” (H0:  µS2,iu = µDAGS,iu = µDAGSR,iu = µDAGSTR,iu).  
Since we rejected H0 for all characteristics in all industries, 
we tested the contrasts in variance estimate means.  Pairwise 
differences between relative biases are statistically different 
when the contrasts between the corresponding variance 
estimate means are significantly different (i.e, p ≤ 0.05). 
 
Table 4:  Relative Biases of Variance Estimators 

Relative Bias Contrasts (Relative Biases)  Ind. 
 S2 DAGS DAGS

R 
DAGS
TR 

BS2-
BDAGS 

BS2-
BDAGSR 

BS2-
BDAGSTR 

BDAGS-
BDAGSR 

BDAGSR-
BDAGSTR 

2213 -0.07 -0.03 -0.02 -0.02 -0.04 -0.05 -0.05 -0.01 0.00 

3253 0.03 0.04 0.06 0.11 -0.01 -0.03 -0.08 -0.02 -0.05 

3369 -0.20 -0.07 0.06 0.12 -0.13 -0.26 -0.32 -0.13 -0.06 

4220 -0.05 -0.03 -0.01 -0.01 -0.02 -0.04 -0.04 -0.02  0.00 

4480 -0.04 0.05 0.07 0.08 -0.09 -0.11 -0.12 -0.02 -0.01 

5112 -0.20 0.00 0.15 0.20 -0.20 -0.35 -0.40 -0.15 -0.05 

5415 -0.12 -0.12 -0.10 -0.09 0.00 -0.02 -0.03 -0.02 -0.01 

Total 
 

5619 -0.03 0.03 0.06 0.07 -0.06 -0.09 -0.10 -0.03 -0.01 

2213 0.00 0.01 0.03 0.03 -0.01 -0.03 -0.03 -0.02 0.00 
3253 0.07 0.05 0.10 0.11 0.02 -0.03  -0.04 -0.05 -0.01  
3369 -0.21 -0.17 -0.09 -0.06 -0.04 -0.12 -0.15 -0.08 -0.03 
4220 -0.01 -0.02 -0.01 -0.01 0.01 0.00 0.00 -0.01 0.00 
4480 -0.06 -0.06 -0.04 -0.04 0.00 -0.02 -0.02 -0.02 0.00 
5112 -0.06 -0.02 0.05 0.08 -0.04 -0.11 -0.14 -0.07 -0.03 
5415 -0.12 -0.12 -0.11 -0.10 0.00 -0.01 -0.02 -0.01 -0.01 

Structures 

5619 -0.04 -0.04 -0.02 -0.02 0.00 -0.02 -0.02 -0.02 0.00  
2213 -0.14 -0.11 -0.09 -0.09 -0.03 -0.05 -0.05 -0.02 0.00 

3253 0.04 0.04 0.06 0.12 0.00 -0.02 -0.08 -0.02 -0.06 
3369 -0.16 -0.03 0.09 0.16 -0.13 -0.25 -0.32 -0.12 -0.07 
4220 -0.11 -0.07 -0.05 -0.03 -0.04 -0.06 -0.08 -0.02 -0.02 
4480 -0.02 0.07 0.09 0.10 -0.09 -0.11 -0.12 -0.02 -0.01 
5112 -0.20 0.00 0.15 0.19 -0.20 -0.35 -0.39 -0.15 -0.04 
5415 -0.12 -0.11 -0.10 -0.09 -0.01 -0.02 -0.03 -0.01 -0.01 

Equipment 

5619 -0.02 0.04 0.07 0.07 -0.06 -0.09 -0.09 -0.03 0.00 

 
There is very little evidence of difference between the two 
reweighted delete-a-group jackknife variance estimates 
(DAGSR and DAGSTR).  Otherwise, the majority of 
contrasts are significantly different.   
 
The relative bias results can be summarized as follows: 
 
!  S2 relative biases are negative for all characteristics in all 

but one industry.  On the average, this variance 
estimation method underestimates the true variance; 

! For characteristics in industries with significant 
differences between the S2 and DAGS relative biases, the 
DAGS method generally yields variance estimates whose 
relative bias is closer to zero (4 of 6 for total capital 
expenditures; 3 of 3 for structures; 4 of 6 for equipment); 

! DAGSR relative biases are always larger than 
corresponding DAGS relative biases.  Some of this bias 
increase (between DAGS and DAGSR) could be caused 
by having one stratum that is not represented in all 
random groups. 

 

To summarize, Table 4 shows clear gains in relative bias 
using either the DAGS or DAGSR method over the S2 
method, but does not identify a clearly superior method in 
terms of bias.  Table 5 presents the c.v.s of the variance 
estimates for each characteristic for each variance estimation 
method.    
 
Table 5: C.V.s of the Four Variance Estimation Methods 
 Industry S2 DAGS DAGSR DAGSTR 

2213 1.37 1.43 1.45 1.45 

3253 0.93 1.04 1.08 1.15 

3369 0.79 1.09 1.50 1.75 

4220 1.21 1.25 1.27 1.29 

4480 0.76 0.89 0.93 0.99 

5112 0.65 0.85 1.15 1.33 

5415 1.14 1.16 1.16 1.27 

Total 
 

5619 0.93 1.10 1.14 1.17 

2213 1.70 1.75 1.79 1.79 

3253 1.67 1.72 1.85 1.88 

3369 1.59 1.82 2.09 2.10 

4220 1.70 1.67 1.69 1.69 

4480 1.67 1.64 1.67 1.68 

5112 2.05 2.25 2.45 2.52 

5415 1.16 1.18 1.18 1.23 

Structures 

5619 3.55 3.41 3.45 3.45 

2213 2.09 2.16 2.19 2.19 

3253 0.97 1.09 1.13 1.19 

3369 0.93 1.29 1.70 1.93 

4220 0.53 0.62 0.66 0.98 

4480 0.86 1.01 1.05 1.07 

5112 0.66 0.86 1.15 1.33 

5415 1.11 1.14 1.14 1.28 

  
Equipment 

5619 0.92 1.08 1.13 1.15 

 
Across the board, the S2 variance estimates are the least 
variable.  Of course, the S2 estimator does not explicitly 
account for the variance component due to unit non-response 
and does not incur an additional resampling variance 
component.  Reasonably, the variability of variance 
estimates increases with replication:  all of the delete-a-
group jackknife c.v.s are higher than the corresponding S2 
c.v.s.   The variability of the variance estimates further 
increases when replicating the non-response adjustment (c.f. 
the DAGS to the DAGSR and DAGSTR stabilities), 
especially in the transportation manufacturing (3369) and 
software publishers (5112) industries.  Finally, using the 
strata-specific adjustment factors (DAGSTR) instead of 
constant adjustment factors (DAGSR) increases the variance 
of the variance.  Consequently, with our data sets, there is no 
advantage to the DAGSTR method: it yields overly variable 
variance estimates, its variance estimates are not statistically 
different from the DAGSR method, and it requires the most 
computer resources. 
 
With these results, we have two almost equally good 
replicate variance estimators for ACES: DAGS and 
DAGSR.  Both have very similar statistical properties. 
Moreover, in most samples, the two sets of variance 
estimates were very close. 
 
We expected the DAGS estimates to consistently 
underestimate the true variance.  This did not happen in our 
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sample data: 49-percent of the DAGS variance estimates are 
larger than the DAGSR estimates for Total Capital 
Expenditures; 37-percent for Capital Expenditures on 
Structures; and 49-percent for Capital Expenditures on 
Equipment.  This pattern is consistent with our empirical 
results. 
 
Here, the slight relative bias improvements of the DAGSR 
method over the DAGS method do not completely offset the 
worsening stability measures (i.e., increased cv(vmeth)) of the 
DAGSR method.  Moreover, the DAGS method is much 
faster and is less computer-resource intensive than the 
DAGSR method.  Finally, as mentioned in Section 4, the 
ACE-1 non-response adjustment procedures only provide 
collapsing criterion for two of the five within-industry strata. 
By design, complete non-response in the remaining three 
strata is highly unlikely.  However, we cannot guarantee that 
will always happen if we use DAGSR variance estimation 
for ACES, and we want to avoid the type of collapsing 
problem seen in Section 4 with random group estimation.  
For these reasons, ACES methodologists elected to use the 
DAGS method. 
 
6.  COMPUTING VARIANCES OF COMBINED 

RATIO AND TREND ESTIMATORS 
The literature supports using jackknife-type variance 
estimates for ratio estimators when sampling fractions can 
be ignored (e.g., Kott 2001, Rao and Shao 1996).  When 
sampling fractions are large, directly replicating the variance 
of a combined ratio estimate can yield large overestimates.  
To see this, consider the simple example of a SRS-WOR 
design.  For any estimator iθ̂ , 

VarSRS-WOR )ˆ( iθ ≈ (1-f)VarSRS-WR )ˆ( iθ                                             (6.1) (6.1) 

Our DAGS estimator multiplies each replicate weight k by 
the square-root of each unit’s fpc.  For expansion estimators, 
the DAGS estimate is 
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With h > 1 strata, this fpc-adjustment to the DAGS replicate 
weights gives unbiased variance estimates for linear 
estimators  (see Kott 2002, pp. 523-524, replacing thj with 
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For ratio estimates, however, the DAGS estimate from a 
SRS-WOR design is 
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Obviously, such cancellation does not occur with a stratified 
SRS-WOR design unless it is self-weighting.  By extension 
though, our replicate weighting procedure will overestimate 
the variance of combined ratio estimates.   Furthermore, it 
can be shown that there are only two survey designs for 
which applying the square-root-fpc correction to only the 
numerator replicate weights will yield correct combined 
ratio estimates:  SRS-WOR and self-weighting stratified 
SRS-WOR.  This technique will provide correctly adjusted 
estimates for separate ratio estimators under (unrestricted) 
stratified random sampling. 

The ACES publishes year-to-year trend estimates.  Like 
combined ratio estimators, trend estimators use estimates 
constructed from the full sample in both the numerator and 
the denominator (a trend estimate is the difference of the 
current and prior period estimates of characteristic i divided 
by the prior period estimate of characteristic i).  Direct 
replication using  square-root-fpc adjusted replicate weights 
is inappropriate, as illustrated at time t for a SRS-WOR 
design:
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where f1 is the sampling fraction for the current sample and 
f2 is the sampling fraction for the prior sample.  This is an 
obviously poor approximation:  if  f1 < f2, the ratio of the 
two fpc’s is larger than one, and consequently the estimated 
SRS-WOR variance is larger than the SRS-WR, which 
should be impossible.  Moreover, even with this simple 
design, it is difficult to come up with a strategy that 
appropriately combines the two fpc adjustments (the 
geometric mean might be an option).  
 
To avoid this problem, we use Taylor Series methods to 
estimate trend variances (Wolter, 1985, Ch. 6).  The Taylor 
Series approximation for the variance of the trend estimator 
is given by 
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where the variance and covariance estimates are 
appropriately adjusted DAGS variance estimates for the 
expansion estimates [Note:  the choice of replicate method is 
not particularly important].  With ACES, the covariance 
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term is zero because of the independently-selected samples 
(Foreman, 1991, p.249).  For non-independent samples, the 
covariance term can be obtained via subtraction. 
     
7.  CONCLUSION 
We present results of a study comparing the statistical 
properties of two different replicate variance estimators 
(random group and delete-a-group jackknife) for a survey 
that uses a one-stage SRS-WOR design with non-negligible 
sampling fractions in several strata.  We also examine the 
effects of fully replicating the non-response adjustment 
procedure versus a shortcut approach of using the full-
sample’s non-response adjusted weights to construct each 
replicate.  Much of our study focuses on linear estimators, 
although we discuss applications of our methods to 
combined ratio and trend estimators.  Our empirical data 
comparisons led us to eliminate the random group variance 
estimator from consideration for ACES.  Our simulation 
study focused on the benefits of replicating the non-response 
adjustment procedure in delete-a-group jackknife replicates. 
 
The simulation study results demonstrated some statistical 
advantages of both the simple delete-a-group-jackknife 
(DAGS) and the simple reweighted delete-a-group jackknife 
(DAGSR) methods over the approximate sampling formula 
method formerly used by ACES.  They also provided 
evidence against using strata-specific replicate weighting 
factors recommended by Kott (2001):  there were few – if 
any – relative bias improvements with this method over the 
others, coupled with increased variability of the variance 
estimates.  Ultimately, the choice between the DAGS and 
DAGSR methods for ACES was not obvious in terms of the 
studied statistical properties.  Thus, administrative 
considerations such as computer resources and production 
run time were the deciding factors leading us to recommend 
using the simple delete-a-group jackknife variance estimator 
for ACES, at least initially.   
 
After choosing our variance estimator, we examined how to 
calculate replicate variances of non-linear estimators such as 
combined ratio estimators or year-to-year trend estimators 
for stratified SRS-WOR designs with non-negligible 
sampling fractions.  For these estimators, we show that using 
replicate weights that incorporate the fpc to construct 
replicate estimates, then directly replicating combined ratio 
or trend variance tends to overestimate the variance [Note: 
this also applies to random group estimation under the same 
conditions].  Using Taylor linearized variance estimates 
reduces this overestimation. 
 
Prior to this study, we assumed that directly replicating the 
non-response adjustment procedure was statistically 
preferable.  Our results did not support this hypothesis. We 
used one sampling design and one non-response adjustment 
methodology, and we studied a survey that traditionally has 
a very high unit response rate (approximately 75%).  While 
our results support conclusions cited in Wolter (1985) and 
Schindler (2002), more variations on both sample design and 

weight adjustment methodology are required before making 
any general recommendations.   
 
Delete-a-group jackknife variance estimation is one of a 
variety of jackknife estimators.  This particular estimator 
was appealing for anecdotal and production reasons.  
Examining alternative jackknife estimators such as the 
stratified jackknife for surveys with similar designs is an 
area of future study. 
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