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1 Introduction 
Surveys frequently have questions that ask subjects 

to "pick any" or "choose all that apply" from a set of 
items.  Variables that summarize this type of data are 
called multiple-response (pick any/c) categorical 
variables.  An example where multiple-response 
categorical variables (MRCVs) arise comes from the 
Kansas farmer data discussed in Bilder and Loughin 
(2004).    Farmers were instructed to pick all sources of 
veterinary information that they use from among 
professional consultant, veterinarian, state or local 
extension service, magazines, and feed companies and 
representatives.  Farmers were also instructed to pick all 
swine waste disposal methods they use from among 
lagoon, pit, natural drainage, and holding tank.  Table 1 
of Bilder and Loughin (2004) summarizes the 
responses.  In this setting, it may be of interest to test for 
independence between the two MRCVs.  Agresti and 
Liu (1999) first called this a test for simultaneous 
pairwise marginal independence (SPMI).  The usual 
Pearson chi-square test for independence should not be 
used because of farmers’ contributing multiple 
responses.  The purpose of this research is to investigate 
and develop model-based procedures to test for 
marginal independence between two multiple-response 
categorical variables.  

Little research has been done on testing for 
independence between two MRCVs.  Non-model-based 
approaches using extensions of Pearson chi-square tests 
have been proposed  by Thomas and Decady (2000) and 
Bilder and Loughin (2004). Agresti and Liu (1999, 
2001) briefly suggest using generalized loglinear 
models fit by maximum likelihood estimation or the 
multivariate binomial logit-normal models of Coull and 
Agresti (2000).  These model-based approaches are 
fully investigated in this paper.  Approaches proposed 
here include using the alternating logistic regression 
model of Carey, Zeger, and Diggle (1993) and a new 
way to marginally fit the generalized loglinear model.    

2 Notation 
Consider the case of two MRCVs generically 

denoted as W, with r items, and Y, with c items.  For 
example, W corresponds to waste storage (4 items) and 
Y corresponds to sources of veterinary information (5 
items).  Survey respondents contribute a vector of 
binary responses for both MRCVs indicating the items 
that are selected.  For a randomly selected subject, s, let 
Ws = (Ws1,…, Wsr)′ denote the responses for W and Ys 
= (Ys1,…, Ysc)′ denote the responses for Y where the 
individual item response random variables are Wsi = 0 
or 1 and Ysj = 0 or 1 according to whether that item is 
selected by the subject (1 denotes the item is selected).  
Let mab(ij) denote the number of (Wi= a, Yj=b) responses 
where a = 0 or 1 and b = 0 or 1.  The E(mab(ij)) is 
denoted by µab(ij).  The corresponding marginal 
probability of an a or b response is P(Wi=a, Yj=b) = 
πab(ij), and this is equal to µab(ij)/n where n is the number 
of subjects.   

Table 1 shows the Kansas farmer data organized 
corresponding to this notational format.  For example, 
there are m11(11) = 34 farmers who use professional 
consultant as their source of veterinary information and 
use lagoon as their waste storage method.  Note that 
each (Wi, Yj) combination forms a 2×2 marginal sub-
table of responses to these items.   

Bilder and Loughin (2004) examine the hypothesis 
of SPMI.  This specifies the simultaneous pairwise 
independence of two groups of binary random variables 
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and is the extension of the concept of independence 
from single-response categorical variables to the MRCV 
case.  Specifically, the hypotheses for a test of SPMI are 

Ho: πab(ij) = πa•(i•)π•b(•j) for i=1,…,r, j=1,…,c, a=b=0,1 

Ha: At least one equality does not hold,   
where P(Wi=a) = πa•(i•) and P(Yj=b) = π•b(•j).  The 
hypotheses can also be written in terms of odds ratios.  
SPMI exists if ( ) ( )WY,ij 11(ij) 00(ij) 10(ij) 01(ij)OR = π π π π  = 1 
for i=1,…,r and j=1,…,c.  In the context of Table 1, 
SPMI represents simultaneous independence in each of 
the rc 2×2 sub-tables.   

3 Modeling MRCVs and Testing for SPMI  

3.1 Generalized Loglinear Models  
To model association between Wi and Yj, separate 

loglinear models could be fit to each sub-table.  
However, it is more appropriate to fit one model across 
all sub-tables since simultaneous inference about the rc 
sub-tables is of the main interest.  The loglinear model 
under SPMI is 

ji Y (WY)W (WY)WY
ab(ij) ij a (ij) b(ij)log( )  µ = λ + λ + λ   

where the  terms control the sample size to be n in 
each sub-table,  the  terms control the row 
marginal counts in each sub-table, and the  
controls the column marginal counts in each sub-table.  
Appropriate restrictions are made on the model 
parameters to ensure identifiability.  Fitting this model 
to a data set represented like the one in Table 1 creates 
predicted sub-table counts whose margins match those 
for the observed sub-tables.  Furthermore, the predicted 
sub-table counts all have odds ratios of 1.         

WY
ijλ

iW (WY)
a(ij)λ

jY (WY)
b(ij)λ

3.1.1 Maximum Likelihood Estimation  
There are a few different choices for fitting the 

model.  First, the model can be fit using maximum 
likelihood estimation with the generalized loglinear 
model methodology presented in Lang and Agresti 
(1994).  These models are fit to a cross-classification of 
the multinomial counts for all possible Ws and Ys.  
Bilder and Loughin (2004) refer to this cross-
classification as a joint table.  Pearson and likelihood 

ratio goodness-of-fit statistics can then be used to test 
for SPMI.   

With two MRCVs, the number of multinomial 
counts is 2r+c and each of the corresponding multinomial 
probabilities need to be estimated under a set of model 
constraints.  When r and/or c are not small, this can 
result in a large number of parameters that needs to be 
estimated.  For example, there are 24+5 = 512 parameters 
that need to be estimated for the Kansas farmer data 
example.  Furthermore, joint tables can be very sparse.  
For example, the Kansas farmer data example has 434 
of its 512 observed multinomial counts equal to 0.  As 
suggested in Agresti and Liu (2001) for a model under 
SPMI, the large dimension of the multinomial 
distribution with observed count sparseness can cause 
model convergence problems.  These convergence 
problems are demonstrated in Section 5. 

3.1.2 Marginal Estimation 
To avoid fitting a model to the multinomial counts, 

the generalized loglinear model can be fit using a 
marginal modeling approach.  In this case,  the model is 
fit directly to the data as displayed in Table 1 without 
regard to the correlated counts among the sub-tables.  
This is similar to what Haber (1985, p. 2852-3) does for 
a different problem.  Table II in Haber (1985) can be 
thought of as containing two of the four possible sub-
tables.  The estimated expected frequencies, ab(ij)ˆ ,µ  from 
the model here are found through solving the usual 
likelihood equations of ˆ′ ′X X mµ = , where µ̂  and m 
are 4rc×1 vectors of the corresponding  and mab(ij)µ̂ ab(ij) 
quantities and X is a matrix of 0’s and 1’s relating the  
model specified expected counts to the observed counts.  
Since the usual likelihood equations are being used, the 
model fitting can be performed using software such as 
PROC GENMOD in SAS or the glm function in R.  
Parameter estimates are called “pseudo” maximum 
likelihood estimates by Rao and Scott (1984) in a 
similar problem because the true likelihood equations 
are not used.  The parameter estimates are consistent 
since they are functions of ab(ij)π̂  = mab(ij)/n which is a 
consistent estimator for πab(ij).        
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Since the individual counts from Table 1 are not 
multinomial counts, the usual loglinear model 
goodness-of-fit statistics (Pearson and likelihood ratio) 
do not have asymptotic χ2 distributions.  Instead they 
are distributed as linear combinations of independent 

 random variables.  Rao and Scott (1984) specifically 
discuss the asymptotic distributions for these types of 
goodness-of-fit statistics.  The Pearson statistic is 

2
1χ

( )2

ab(ij) ab(ij) ab(ij)a,b,i, j
ˆ ˆm −µ µ∑  where  results from 

fitting the model under SPMI.  
ab(ij)µ̂

This statistic is the same 
as the modified Pearson statistic derived in Bilder and 
Loughin (2004) since  = m m /n and the 
statistic has the same asymptotic distribution.  

ab(ij)µ̂ a•(i•) •b(•j)

 
First and second-order Rao-Scott (1984) adjustments 

to the Pearson and likelihood ratio test statistics create 
new statistics whose first and/or second moments are 
the same as a χ2 random variable.  Bilder and Loughin 
(2004) find that the first-order adjusted Pearson statistic 
does not hold the correct size in the SPMI test when 
there is strong pairwise association among the items of 
the same MRCV.  They also find that the second-order 
adjusted Pearson statistic performs satisfactorily most of 
the time, but not quite as well as bootstrap procedures.  
Because of these findings, we propose a new bootstrap 
procedure to estimate the sampling distribution of the 
goodness-of-fit statistics.  The resampling involves 
generating new vectors of binary responses using the 
algorithm of Gange (1995).  Let  be the Pearson or 
likelihood ratio goodness-of-fit statistic.  A bootstrap 
estimate of the statistic’s sampling distribution under 
SPMI requires generating new vectors of data, say, 

2X

s
∗W  

and  satisfying SPMI.  Resampling the observed 
(W

s ,∗Y
s, Ys) vector pairs together would not guarantee the 

resampling is being performed under SPMI.  In the 
Gange algorithm, only marginal table representations of 
multinomial counts  are needed in order to generate data 
from the full multinomial distribution.  Thus, the 
following bootstrap procedure can be used to estimate 
the distribution of  under SPMI:  2X

1. Find  through using the usual likelihood 
equations and calculate    

µ̂
2X .

2. Find the observed 2×2 tables for each (Wi, Wi′) 
(i<i′) and (Yj, Yj′) (j<j′) response pair.   

3. With the predicted and observed counts from 1. 
and 2., use the algorithm of Gange (1995) to 
simulate B resamples of  and s

∗W s
∗Y  for 

s=1,…,n.  
4. Fit the model again to each resample and 

calculate the goodness-of-fit statistic, say 2
bX ,

∗

 
for b=1,…,B. 

5. Calculate the p-value as  
where I(⋅) is the indicator function. 

B1 2
bb 1

B I(X X
∗−

=
≥∑ 2 )

Notice that the proposed procedure does not rely on 
the multinomial counts being available, but rather all 
pairwise marginal count tables between items, both 
within and across W and Y.  This is helpful in situations 
where only the pairwise marginal tables are available 
for analysis.  Furthermore, the proposed resampling 
procedure is more general than the resampling 
procedure discussed in Bilder and Loughin (2004) 
because it can be used with models without the SPMI 
restriction.  These types of models are to be discussed in 
a future manuscript.   

The Gange algorithm performs the resampling under 
a special case of SPMI called joint independence (see 
Bilder and Loughin, 2004).  Through simulations 
described in Section 5 and from past research where 
resampling has been done under joint independence (see 
Bilder, Loughin, and Nettleton, 2000; Bilder and 
Loughin, 2002; and Bilder and Loughin, 2004), there 
does not appear to be any detrimental effect due to 
resampling under a special case of the null hypothesis.     

When there is a deviation from the model, the 
examination of standardized Pearson residuals can 
provide insight to where the deviation occurs.  The 
standardized Pearson residuals can be derived in a 
similar manner as to what is outlined in Rao and Scott 
(1984, p. 49) with minor modifications similar to those 
given in Haber (1985, p. 2852).  The details are 
excluded from here due to space constraints.  

3.2 Marginal Logit Models Fit by GEE 

Methodology 
Another way to avoid having to estimate the entire 

multinomial distribution is to fit marginal logit models 
using generalized estimating equation (GEE) 
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methodology.  This model is somewhat similar to the 
one proposed by Agresti and Liu (1999, p. 937) for the 
multiple marginal independence problem.  The 
specification of SPMI here involves pairwise 
probabilities for Wi and Yj.  Therefore, instead of 
modeling only the marginal expectations of Wi and Yj, 
the associations for Wi and Yj pairs must also be 
modeled.     

There have been many proposals for how to model 
the marginal expectations and pairwise associations of 
random variables using GEE methodology.  See 
Pendergast et al. (1996, Section 5) for a review.  We 
choose the alternating logistic regression model of 
Carey, Zeger, and Diggle (1993) for the SPMI problem.  
This procedure is easier to implement when there are a 
large number of binary responses than other procedures 
such as the one proposed by Prentice (1988).   

For the SPMI testing problem, the alternating 
logistic regression model simultaneously estimates 
logit(π1•(i•)) = βi and logit(π•1(•j)) = αj where βi denotes 
the effect of Wi and αj denotes the effect of Yj.  The log 
odds ratios for each pairwise combination of items are 
also estimated.  This involves odds ratios for each Wi 
and Wi′ pair (i<i′), each Yj and Yj′ pair (j<j′), and each 
Wi and Yj pair.  A Wald statistic is constructed to test 
whether log(ORWY,ij) = 0 for all Wi and Yj pairs.  If 
SPMI is rejected, the individual estimates for the 
log(ORWY,ij) can be examined to determine which item 
pairs deviate from SPMI.   

As for the log odds ratios for the Wi and Wi′ pairs 
and Yj and Yj′ pairs, the most nonrestrictive assumption 
is to estimate each of them individually.  This means a 
total of r+cC2 log odds ratio parameters are estimated.  
Because only rc odds ratios are needed for the Wi and Yj 
pairs, various assumptions about the other odds ratios 
could be made.  For example, the odds ratios for each 
Wi and Wi′ pair could be set to be equal and those for 
each Yj and Yj′ pair could also be set to be equal.  This 
assumption reduces the number of parameters that are 
estimated and can help reduce the frequency of model 
convergence problems (to be discussed in Sections 4 
and 5).  In many realistic situations, however, these 
odds ratios actually are unequal.  Applying false 

assumptions may adversely affect the fit of the model 
and the quality of the resulting test.   

The marginal logit model can be fit in SAS (version 
7 or higher) using PROC GENMOD.  The ALRCON8 
SAS/IML module (available at http://ftp.sas.com/ 
techsup/download/stat/alrcon8.html) can be used to 
perform the SPMI test.    

3.3 Other Modeling Approaches  
Agresti and Liu (2001) suggest that the multivariate 

binomial logit-normal model of Coull and Agresti 
(2000) could also be used to test for SPMI.  A (r+c)×1 
vector of random effects can be used for the r items of 
W and the c items of Y.  The null hypothesis model 
under SPMI specifies the correlations between the W 
and Y random effects to be 0.  The alternative 
hypothesis model does not specify the correlations.  
Using maximum likelihood estimation, the fit of these 
two models can be compared with a likelihood ratio test 
statistic to test for SPMI.  The main advantage for using 
this type of random effects model over simpler ones is it 
allows for negative dependence to occur between item 
responses.  However, this needed advantage makes the 
model more difficult to fit.  Test data sets with r=c=2 
were simulated and the multivariate binomial logit-
normal model was fit using PROC NLMIXED in SAS.  
In every case, the Gauss-Hermite quadrature procedure 
had extreme difficulty performing the four-dimensional 
integration.  Coull (personal communication, 2002) has 
had similar difficulties with fitting this type of model to 
MRCV data.  Future research could look into other 
numerical integration techniques that would allow the 
model to be fit.   

Another modeling approach involves fitting a 
loglinear model to a joint table where the rows are 
considered one single-response variable representing  all 
possible combinations of Wi responses and the columns 
are considered one single-response variable representing 
all possible combinations of Yj responses.  In this 
setting, suppose the row variable is denoted by R with 2r 
levels and the column variable is denoted by C with 2c 
levels.  Using the common loglinear model notation, the 
model (R, C) could be fit to the data in this form.  A test 
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for independence between R and C can be constructed 
using a likelihood ratio test comparing the fit of this 
model to (RC).  The resulting test is for joint 
independence which is discussed in Section 2 of Bilder 
and Loughin (2004).  Joint independence is a special 
case of SPMI so it is possible to reject joint 
independence while satisfying SPMI.  Thus, this 
procedure is not recommended for testing SPMI.        

4 Application to the Kansas Farmer Data 
The modeling procedures discussed in Sections 3.1 

and 3.2 are applied to the Kansas farmer data set and 
tests for SPMI are performed.  Convergence for the 
generalized loglinear model fit by maximum likelihood 
estimation is not obtained after 150 iterations.  To help 
alleviate possible problems with the 0 multinomial 
counts, 0.5 was added to each cell of the joint table and 
the generalized loglinear model was refit to the data set; 
however, convergence was still not obtained.  The 
convergence criterion used is the difference in 
likelihood ratio test statistics for successive iterations 
being less than 0.001 and the norm of the difference 
between estimated joint table cell counts for successive 
iterations being less than 0.001.   

The generalized loglinear model fit using the 
marginal modeling approach did not have the same 
convergence problems.  The parameter estimates 
converged and the resulting Pearson goodness-of-fit 
statistic was  62.31.  The bootstrap p-value was 0.0002 
using B=10,000 resamples and the second-order Rao-
Scott adjusted p-value is 3.07∗10-5.  Both procedures 
show strong evidence against SPMI.  The likelihood 
ratio test statistic produced similar results.  To 
investigate the cause of the deviation from SPMI, the 
standardized Pearson residuals are calculated and given 
in Table 2.  The (Wi, Yj) pairwise combinations that 
show deviations from SPMI are highlighted in the table.  
The largest deviation from SPMI occurs in the lagoon 
and professional consultant sub-table.   

For the marginal logit model, there are 9C2 = 36 
different log odds ratios to estimate for the item pairs.  
Unfortunately, the parameter estimation procedure does 
not converge.  To reduce the number of parameters to 

be estimated, the odds ratios for each Wi and Wi′ pair 
are set to be equal and each Yj and Yj′ pair are set to be 
equal.  This reduces the number of log odds ratios to 9C2 
- 4C2 - 5C2 + 2 = 22 where the 2 represents the one log 
odds ratio for all Wi and Wi′ pairs and one for all Yj and 
Yj′ pairs.  The observed odds ratios for each Wi and Wi′ 
pair are between 0 and 0.34.  The observed odds ratios 
for each Yj and Yj′ pair are between 0.71 and 2.73 with a 
few 95% confidence intervals for the true odds ratios 
not overlapping.  This suggests that the assumption of 
equality of odds ratios may not be valid, but it is made 
here to illustrate the method.  The Wald test p-value is 
approximately 3.3∗10-7 indicating evidence against 
SPMI.  To investigate the cause of the deviation from 
SPMI, individual Wald tests and the corresponding p-
values using a 2

1χ  approximation are calculated.  Using 
a 0.05 significance level, the significant pairwise 
combinations are the same as those found with the 
standardized Pearson residuals in Table 2.  If a 
Bonferroni adjusted significance level of 0.05/20 = 
0.0025 is used instead, only the lagoon and professional 
consultant pair has a smaller p-value.   

5 Simulation Study 
To investigate how well the model-based approaches 

test for SPMI, a simulation study is performed.  The 
data is simulated using the data generation algorithm of 
Gange (1995).  Under SPMI, all  are to set to 1.  
Odds ratios between each W

WY,ijOR
i and Wi′ pair (i<i′) denoted 

by W,iiOR ′  and each Yj and Yj′ pair (j<j′) denoted by 

Y, jjOR ′  are controlled as well, but not necessarily at a 
level of 1.  For each set of simulation settings, 500 
simulated data sets are generated and the testing 
procedures are applied to each data set using a 0.05 
significance level.  These simulated data sets are the 
same as those used for the simulation study in Bilder 
and Loughin (2004).  The proportion of times a test 
rejects SPMI is recorded to estimate the type I error 
rate.  The number of resamples used with the bootstrap 
is 1,000.   

Table 3 gives the estimated type I error rates.  Model 
convergence rates are also given for the models where 
convergence was not always obtained.  The estimated 
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type I error rates are always calculated conditionally on 
the data sets where convergence is obtained.  The 
approximate 95% expected range of estimated type I 
error rates for testing procedures holding the correct size 
is 0.05±1.96 0.05(1 0.05) / C−  where C is the number 
of simulated data sets for which a test is performed.  For 
the testing procedures where convergence is always 
obtained, C = 500 provides a 95% expected range of 
(0.031, 0.069).      

For the generalized loglinear model fit by maximum 
likelihood estimation, the same convergence criterion as 
described in Section 4 is used here.  In the r=c=2 
simulations, 0.5 is added to each cell of the joint table 
for the first 10 iterations to help with convergence.  The 
convergence rates are between 87% and 99%.  Adding 
0.5 to each cell for all iterations improves the 
convergence considerably, but the estimated type I error 
rates are even more conservative than those given in 
Table 3 so they are not shown here.  Only the likelihood 
ratio test statistic results are given in Table 3 since it 
had estimated type I error rates within the 95% expected 
range more often than the Pearson statistic; however, 
the estimated type I error rates are still lower than the  
95% expected range for the smaller sample size 
simulations.  For the r=c=5 simulations, the model is fit 
to a test set of twenty simulated data sets using ORW,ii′ = 
ORY,jj′ = 2 and n = 500.  For each simulated data set, 
convergence is not achieved.  Due to these problems, 
the entire set of r=c=5 simulations are not performed 
and maximum likelihood estimation should be avoided 
in this setting.  

 For the generalized loglinear model fit through the 
marginal modeling approach, the estimated type I error 
rates are all within the expected range.  This suggests 
the procedure is holding the correct size.  Additional 
simulations (not shown) where the joint independence 
hypothesis was not satisfied were also performed since 
the resampling is performed under joint independence 
(the special case of SPMI).  Again, the procedure 
appears to hold the correct size for these simulations.   

Convergence problems are also evident for the 
marginal logit models.  Whenever a table summarizing 
the pairwise responses between two items has a 0 cell 

count in it, the model which tries to estimate all r+cC2 
log odds ratio parameters does not converge.  This is 
true not only for Wi and Yj response pairs, but also for 
Wi and Wi′ pairs and Yj and Yj′ pairs.  Similar to what 
was done in Section 4 for these models, the odds ratios 
for each Wi and Wi′ pair are set to be equal and each Yj 
and Yj′ pair are set to be equal to reduce the number of 
parameters estimated.  In the r=c=2 simulations, the 
number of log odds ratios estimated is unchanged by 
this strategy, but the number estimated for the r=c=5 
simulations is reduced from 10C2 = 45 to 10C2 - 5C2 - 5C2 
+ 2 = 27.  This helps to increase the convergence rate, 
but achieving convergence still is a problem for n≤300.  
For the models that did converge in the r=c=2 
simulations, the estimated type I error rates are close to 
the nominal level except for the smaller sample sizes.  
For most of the r=c=5 simulations, the method does not 
hold the correct size.  Since the model assumes equality 
of each association for the Wi and Wi′ pairs and Yj and 
Yj′ pairs, additional simulations (not shown) for r=c=5 
marginal tables are also performed with ORW,ii′ = ORY,jj′ 
= 2 for eight of the odds ratios and ORW,ii′ = ORY,jj′ = 25 
for twelve of the odds ratios to examine sensitivity to 
the false odds ratio assumption.  Estimated type I error 
rates are similar to those where the odds ratios are the 
same for each Wi and Wi′ pair and each Yj and Yj′ pair.   

6 Discussion 
This paper shows some of the common approaches 

for modeling correlated binary data have limited use 
when one wants to test for SPMI.  Of the models 
presented here, only the generalized loglinear model fit 
using a marginal modeling strategy appears to provide a 
general method for fitting the model and testing for 
SPMI.  Both this modeling approach and the non-
model-based approaches recommended in Bilder and 
Loughin (2004) consistently work and hold the correct 
size for the SPMI test.    
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Table 1.  Pairwise responses for the Kansas farmer data.   
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Table 2.  Standardized Pearson residuals for the 
loglinear model fit through marginal modeling.  

 
 
 

Table 3.  Estimated type I error and model convergence 
rates using the same simulation settings as in Bilder and 
Loughin (2004);  the marginal probabilities are (π1•(1•), 
π1•(2•))′ = (0.4, 0.5)′ and (π•1(•1), π•1(•2))′ = (0.2, 0.3)′ for 
r=c=2 and (π1•(1•), …, π1•(5•))′ = (π•1(•1), …, π•1(•5))′ = 
(0.1, 0.2, 0.3, 0.4, 0.5)′ for r=c=5. Shaded cells 
correspond to estimated type I error rates outside of the 
95% expected range. 
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12  0.015 0.046 0.085  0.936 0.142 
25  0.033 0.054 0.074  0.904 0.648 
50  0.062 0.064 0.044  0.966 0.964 

2 

100  0.065 0.058 0.052  0.992 0.998 

12  0.005 0.056 0.097  0.872 0.062 

25  0.034 0.062 0.025  0.954 0.318 

50  0.056 0.064 0.060  0.962 0.704 

2 

25 

100  0.049 0.054 0.056  0.970 0.958 

100   0.040 0.556   0.468 

300   0.040 0.137   0.946 2 

500   0.062 0.060   0.990 

100   0.050 0.735   0.544 

300   0.042 0.172   0.940 

5 

25 

500   0.048 0.109   0.990 
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