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1. Introduction

This paper discusses the use of auxiliary information
with estimators of two-phase samples.  More
specifically, we discuss calibration estimators for two-
phase sample designs.  The goal of calibration
estimators is to use the available auxiliary information
to create weights that improve upon the original design
based weights.  Here the improvement is with respect to
design mean squared error.  Calibration weights do this
because their solution aims to make the sample
weighted totals consistent with the universe totals of the
auxiliary information.

Hidirouglou and Särndal (1998) suggested a two-
phase calibration estimator that calculates the
calibration weights in two steps.  Estevao and Särndal
(2003) expanded the notion of calibrating two-phase
samples using two steps.  They considered ten different
possible calibration estimators for a two-phase sample
design.  For each of these estimators they suggested a
two-step solution.  Dupont (1995) also suggested
several two-phase regression estimators, each with two
steps.

This paper considers using a one-step calibration
solution instead of the two-step solution.  Within this
one step we calculate the two calibration weights – one
for each phase – with two different sets of auxiliary
information.  In this way both sets of auxiliary
information are made to work together at once. 

Because we solve for the two weights at once, both
weights turn-out to be functions of both sets of auxiliary
information.  We call these estimators Simultaneous
Calibration Estimators (SCE).  These estimators differ
from the estimators based on the two-step approach in
that we put both steps that would be minimized
separately into one minimization.  To illustrate the
general idea of a SCE we consider three cases where the
following types of auxiliary information are available:

first phase and overall>
second phase and overall>
first and second phase.>

Here overall refers to auxiliary information that we can
use across both the first and second phase samples.

For all three cases the calibration constraints we use
also define estimators similar to QR-estimators (Wright
1983).  We make this connection in a manner analogous
to Deville and Särndal (1992).  We use the general QR-
estimator version of the SCE to examine two special
cases: the ratio and regression estimator.  Lastly we
consider variance estimators for all three of the SCEs.

For our discussion we will only consider the
Generalized Least Squares distance function.  See
Deville and Särndal (1992), Huang and Fuller (1978),
and Singh and Mohl (1996) for alternative distance
functions that can be applied to calibrating sample
weights.  For all of the estimators in this paper we do
not consider the problems of being overconstrainted
which may produce negative weights or whether the
inverses exist.  For our discussion we assume that all of
the matrices for which inverses are required are
nonsingular and that negative weights are not produced.

1.1.  Notation
Let the universe and sample of the population be

denoted as U and s, respectively.  For the first phase, we
index the units as i and sometimes refer to them as
Primary Sampling Units (PSUs).  Let the universe and
sample of the first phase sample units be denoted as U1

and s1, respectively.  Likewise let the second phase
universe and samples within a given PSU i be denoted
as U2i and s2i , respectively.  We index the units of the
second phase as k.

Let di and dk represent the first and second phase
design weights  and d P k sk = ∈

−
( )1

1

.  More simply, we say the design( )d P k sk i k i i/ /= = ∈
− −

π
1

2

1

weights are equal to the inverse of the selection
probabilities.  We write k instead of k / i to simplify the
notation, although it is always assumed.  Similarly we
define wi and wk as the first and second phase
calibration weights, respectively.

Let yk be the variable of interest and xk be a vector of
known auxiliary variables.  The total of the variable of
interest is and can be estimated withTy ykU iU= ∑∑

21
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the design weights as .  Using the$Ty di d k yks is= ∑∑
21

auxiliary variable xk  note that we will sometimes
express the total of PSU i as and itsx xi kU i= ∑

2

estimator as as .  For estimators of a$x xi d k ks i= ∑
2

PSU total involving two or more terms, we will use a $T

with an additional i subscript, e.g.,
.  We use a tilda (~) on top of$

,Tx xyq i d k ks i yk qk= ∑
2

the T to denote estimators of the first phase sample

units only, e.g., .  ~
$ $Txz x z= ∑ di is i1

1.2.  Review of Calibration Weights for a Uni-stage
Sample Design

The idea of calibration weights is that we have some
auxiliary information that we know for all units in the
universe.  It would then be desirable to have weights
whose sample estimate of the total for the auxiliary
information is exactly equivalent to the universe total,
i.e., for a uni-stage sample design we want  = wk ks

x∑
.  We narrow the choice of wk by necessitatingx kU∑

that the weights be not much different than the original
design weights.  Calibration weights are then the
solution that minimizes some distance between wk and
dk subject to the constraint that the weighted totals equal
the unweighted totals for the auxiliary information.  We
build the constraint of equal sample and universe totals
into the minimization using Lagrange multipliers.

For all of the estimators we consider, we express our
calibration equations more generally by including a
term qk that is consistent with QR-estimators (Wright
1983) and (Deville and Särndal 1992).  We will apply a
different q to each of the two sets of auxiliary
information.  

For background, note that the QR-estimator for an
uni-stage sample design can be defined as

(1)( )$
,

$ $ /Ty QR y k ks rk= + −∑Tx xβ β

( )[ ]= + −

=

∑ ∑∑

∑

1 / / $r
k k

r
ks kUs

y k

w
ks

y k

x x β

where .( ) ( )$β =
′

∑
−

∑q k k ks q k k y ksx x x
1

The QR-estimator can be derived as a calibration

estimator since , which in turn defines wk, is the$β

solution that minimizes subject to( )w d qk ks k−∑
2

/

the constraint want  =  .  Here qk iswk ks
x∑ x kU∑

used to weight the term ( wk - dk )
2 for each unit in (1).

Since we are interested in design based estimators,
we assume that 1 / rk = dk and qk always involves the
product of dk and some other quantity – in fact we write
dk separately from qk , i.e., q’k = qk dk.  Including qk will
be useful when we discuss two special cases of each of
the SCEs:  the ratio and regression estimator.    

1.3.  Auxiliary Variables for Two-phase Samples
For our discussion we say that we can have three

types of known auxiliary variables.  We define them by
the set of units for which the auxiliary variable is
known.  The three types are:

(a)  xk for all k U∈
(b)  xi for all i U∈ 1

(c)  xk for all k U i∈ 2

Case (a) is what we have referred to as the overall. 
Here we can sum the variables over the entire universe
and the first and second phases samples.  Case (b) is
when we only have the first phase auxiliary information
available.  For case (c) we only have the auxiliary
information for the units of the second phase sample. 
This may arise when there’s a wealth of within PSU
data available but obtaining it is prohibitive because of
cost or effort.  So instead of obtaining the auxiliary
information for all PSUs, we only obtain it for the units
of the second phase sample.

When we have two different sets of auxiliary
information, we will use xk and zi to explicitly denote
each.  The auxiliary variables of xk and zi are allowed to
have different dimensions and also different variables. 
Note that if a given variable is used for both the first
phase and the overall, we include the values in both
vectors xk and zi. 

2. Simultaneous Calibration Estimators for Two-
phase Samples

We now discuss SCEs that consider (or constrain) any
combination of the two parts of the two-phase sample
design.  Proofs of all results are available upon request.

Proposition 2.1.  A SCE for Calibrating Overall and
First Phase Auxiliary Information

Let xk be a vector of values that we know overall and
zi be a vector of values that we know for all units of the
first phase.  We suggest that the estimator with weights
that minimize of Table 1 also calibrate the totals forφ1

the overall and first phase simultaneously, i.e., 
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Table 1: Constraints for Simultaneous Calibration Estimators

Phases of Sample
Design Calibrated Constraint of the Simultaneous Calibration Estimators

Overall and First  

 
( )[ ] ( )[ ]

( ) ( )
φ

λ γ

1
1
2

2

21
1
2

2

1

21 21 1 1

= −∑∑ + −∑

− ∑∑ − ∑∑
′

− ∑ − ∑
′

wk wi d k di d k q ks is wi di di q
i

s

wk ks is kU iU wi is iU

*
/ /

*
x x z z

Overall and Second

 
( )[ ] ( )[ ][ ]

( ) ( )
φ

λ γ

2
1
2

2

21
1
2

2

21
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− ∑ −∑ ∑ −∑
′

− −∑
′

∑ 



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*
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*
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*
x x z z
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φ
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3
1
2

2

1
1
2
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/
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$
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Here wi is the weight for the first phase and wk
* is the

overall weight for unit k – representing both the first
and second phase, i.e., wk

* = wi wk .  In Table 1,   and λ
 are vectors of Lagrange multipliersγ

The third and fourth terms of  formalize that weφ1

want the sample estimates to equal the universe totals
for each of the sets of auxiliary information.  The
second term requires that the first phase weight be close
to the original first phase design weight.  Although the
first term is not strictly conditional on the first phase, it
requires that the overall weight be close to the product
of the first phase weight we are minimizing in the
second term and the original design weight of the
second phase. 

We also see that both weights are functions of both
sets of auxiliary information.  This is different than the
Hidirouglou and Särndal (1998) weights for which the
first step weights are only a function of the first set of
auxiliary information that is calibrated.

Proposition 2.2. A SCE for Calibrating Overall and
Second Phase Auxiliary Information
Let xk be a vector of values that we know for the overall
and zk be a vector of values that we know for all units of
the second phase.  We suggest that the estimator with
weights that minimize  of Table 1 also calibrate theφ2

totals for the overall and second phase simultaneously,
i.e., 
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The third and fourth terms formalize that we want
weights that are consistent for the totals of the  overall
and the second phase auxiliary information,
respectively.  The second term requires that the second
phase weights be close to the original second phase
design weight.  Here each PSU’s difference is weighted
by it’s original first phase design weight.  The first term
requires that the overall weights be close to the product
of the second phase weight that’s minimized in the
second term and the original first phase design weight. 
This first term links the minimization of the overall and
second phase calibrations.

Here we again see how both sets of auxiliary
information contribute to each of the weights.  The third
term of wk

* is interesting since it adjusts the overall
weight for a given unit according to the difference in the
estimated and universe PSU totals for all PSUs.

Proposition 2.3. A SCE for Calibrating First and
Second Phase Auxiliary Information

Let xk be a vector of values that we know for all
units of the first phase and zk be a vector of values that
we know for all of the units for the second phase.  We
suggest that the estimator with weights that minimize

of Table 1 also calibrate the totals for the first andφ2

second phase simultaneously, i.e., 
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3. Calibration Estimators as Regression Estimators

Deville and Särndal (1992) showed how regression
estimators can be derived from calibration estimators
for uni-stage sample designs.  We can similarly derive
QR estimators from calibration estimators.  We now
interpret our calibration estimators as QR-estimators. 
We get the regression estimator when we let the q-term
equal 1.0.  The analogous regression estimator for all of
our SCEs then is the same as in Results 3.1, 3.3, and
3.4, respectively, where the q-term is simply dropped
from the expressions for B.

Result 3.1.  The Overall and First Phase Sample SCE
as a Regression Estimator

The regression estimator associated with can beφ1

expressed as 
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Note that Result 3.1 follows directly from Proposition
2.1.  Similarly we will see that Result 3.3 and 3.5 follow
directly from Propositions 2.2 and 2.3, respectively.

We say that (2) and (3) are regression estimators
because they have a form that is similar to the uni-stage

regression estimator, i.e., .  In (2) we$ $ $B Txx
1

Tx= ′
−

y

have  analogous to and the expression in$C1
$Txx′

parentheses analogous to .  We can similarly argue$Txy

that (3) also has a form that is analogous to the solution
of the uni-stage regression coefficient.
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An important special case of the QR estimator is the
ratio estimator.  The ratio estimator arises when the
auxiliary information is univariate and the q-term is
equal to the inverse of the auxiliary information.  The
next result discusses the estimator  under$

,Ty φ1
analogous uni-stage ratio estimator assumptions for the
ratio estimator.

Result 3.2.  The Overall and First Phase Sample SCE
as a Ratio Estimator

Let qi = zi 
-1 , qk = xk 

-1,  xk = xk , and zk  = zk , i.e., let
x and z both be univariate.  After some simplification
we can express (1) as
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If additionally the ratio and product estimators
involving both sets of auxiliary information are equal,
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We therefore conclude that if there is no difference in
ratio versus the product estimates, then the estimator
reduces to a simple ratio estimator, only adjustmenting
for the overall auxiliary information.

Result 3.3.  The Overall and Second Phase Sample SCE
as a Regression Estimator

The regression estimator associated with can beφ2

expressed as 
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Here i* indexes the summation over the first phase
sample for the third term of both (1) and (2).

Result 3.4.  The First and Second Phase Sample SCE as
a Regression Estimator

The regression estimator associated with the SCE
associated with , can be expressed as φ3
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Result 3.5.  The First and Second Phase Sample SCE as
a Ratio Estimator

Let qk = xk 
-1 , qk = zk 

-1,  xk = xk , and zk  = zk , i.e., let
x and z be univariate.  After some simplification we can
express (4) as 
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If additionally the ratio and product estimators
involving both sets of auxiliary information are equal,

i.e.,  and  , we see
~
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We therefore conclude that if there is no difference in
ratio versus the product estimates, the estimator reduces
to a simple ratio estimator with two adjustments – one
for the first phase and another for the second phase.

4. Variance Estimation

To estimate the design variances we suggest using the
two-phase variance estimator for regression estimators
as suggested by Hidirouglou and Särndal (1998), i.e., 

( )$ $
, $ $

$ $

v Ty reg i j ijs w i e i w j e j

i k ks i w k e k w es

= −
−



∑∑

+
−

−
−



∑∑









∑

1 1 1 1
1

1 1 1 1 1

1
1

1 2 2 2
1

2 2 2 2 21

π π π

π π π πl l l l

2003 Joint Statistical Meetings - Section on Survey Research Methods

399



Here denotes the first phase second order selectionπ 1ij

probability, i.e., .  Similarly( )π 1 1ij P i j s= ∈, π 2 kl

denotes the second phase second order selection
probability, i.e., . ( )π 2 2k iP k sl l= ∈,

The w1i and w1j are the first phase weights and the
w2k and  are the second phase weights as defined inw2l

§2.  The ê1i and ê1j are the first phase residuals and the
ê2k and are the second phase residuals.   $e2l

For the estimator associated with  we suggestφ1

defining the residuals as
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and for the estimator associated with we suggestφ2

defining the residuals as
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For the estimator associated with  we suggestφ3

defining the residuals as
(9)( )$ $ $ $ $ $e i yi i i1 = − ′ + ′x B x z B z

(10)( )$ $ $e k yk i k2 = − ′ + ′x Bx z B z

We define the regression coefficients of (5)-(10) as
we did in §3.

A problem with the variance of the regression
estimator associated with is that we don’t have anφ2

expression for wi .  We only have wk
* and wk , where we

assume that wi is implicitly included for wk
* .  An

unsatisfying solution to this problem is to use  wi
+ and

wk
+ calculated from wk

* and wk to estimate variances
where wi

+ = median{ wk
* / wk  } and  wk

+ =  wk
* /  wi

+ .

6. Summary / Discussion 

We think it is important that the solution makes both
sets of auxiliary information work together.  We see this
because both sets of weights are functions of both sets
of auxiliary information.  This is in contrast to the two-
step approach where the first weight only accounts for
one of the sets of auxiliary information and the second
weight accounts for the second set of auxiliary
information, conditional on the first weight having
already been calculated.

Although we believe that the SCE will make better
use of both sets of auxiliary data than the two-step
approach, at this time we do not know the conditions
under which this would be true.  It is a difficult question
to answer because several conditions impact both of the
estimators including:

the associations between the variable of interest yk>
and each of the auxiliary variables xk and zk

the association between xk and zk>
the sample designs for each of the two phases.>

More research is needed to clarify this point.
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