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1. Introduction

This paper discusses the use of auxiliary information
with estimators of two-phase samples. More
specifically, we discuss calibration estimators for two-
phase sample designs. The goal of calibration
estimators isto use the available auxiliary information
to create weights that improve upon the original design
based weights. Here the improvement iswith respect to
design mean squared error. Calibration weights do this
because their solution aims to make the sample
weighted totals consistent with the universe totals of the
auxiliary information.

Hidirouglou and Sérndal (1998) suggested a two-
phase calibration estimator that cal culates the
calibration weightsin two steps. Estevao and Sérndal
(2003) expanded the notion of calibrating two-phase
samples using two steps. They considered ten different
possible calibration estimators for a two-phase sample
design. For each of these estimators they suggested a
two-step solution. Dupont (1995) also suggested
several two-phase regression estimators, each with two
steps.

This paper considers using a one-step calibration
solution instead of the two-step solution. Within this
one step we cal cul ate the two calibration weights — one
for each phase — with two different sets of auxiliary
information. In thisway both sets of auxiliary
information are made to work together at once.

Because we solve for the two weights at once, both
weights turn-out to be functions of both sets of auxiliary
information. We call these estimators Simultaneous
Calibration Estimators (SCE). These estimators differ
from the estimators based on the two-step approach in
that we put both steps that would be minimized
separately into one minimization. To illustrate the
general idea of a SCE we consider three cases where the
following types of auxiliary information are available:
> first phase and overal
> second phase and overall
> first and second phase.

Here overal refersto auxiliary information that we can
use across both the first and second phase samples.

For al three cases the cdibration constraints we use
also define estimators similar to QR-estimators (Wright
1983). We make this connection in a manner analogous
to Deville and Sérndal (1992). We use the general QR-
estimator version of the SCE to examine two special
cases: theratio and regression estimator. Lastly we
consider variance estimators for al three of the SCEs.

For our discussion we will only consider the
Generalized Least Squares distance function. See
Deville and Sérndal (1992), Huang and Fuller (1978),
and Singh and Mohl (1996) for aternative distance
functions that can be applied to calibrating sample
weights. For al of the estimators in this paper we do
not consider the problems of being overconstrainted
which may produce negative weights or whether the
inverses exist. For our discussion we assume that all of
the matrices for which inverses are required are
nonsingular and that negative weights are not produced.

1.1. Notation

L et the universe and sample of the population be
denoted as U and s, respectively. For the first phase, we
index the units as i and sometimes refer to them as
Primary Sampling Units (PSUs). Let the universe and
sample of the first phase sample units be denoted as U,
and s,, respectively. Likewiselet the second phase
universe and samples within agiven PSU i be denoted
asU, and s, , respectively. Weindex the units of the
second phase as k.

Let d, and d, represent the first and second phase

design weights d, = P(kis) " and
d,, =p,, =P(k1's,)"". Moresimply, we say the design
weights are equal to the inverse of the selection
probabilities. We write k instead of k/ i to simplify the
notation, although it is aways assumed. Similarly we
define w, and w, as the first and second phase
calibration weights, respectively.

Let y, be the variable of interest and x, be a vector of
known auxiliary variables. The total of the variable of

interest is Ty = éuléuzi ¥ and can be estimated with

1 This paper reports the results of research and analysis undertaken by Census Bureau staff. It has undergone
a Census Bureau review more limited in scope than that given to official Census Bureau publications. Thisreport is
released to inform interested parties of ongoing research and to encourage discussion of work in progress.
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the design weightsas Ty = &s &s,, didyyy . Using the
auxiliary variable x, note that we will sometimes
expressthetotal of PSU i as x; = &u,,; x) andits

estimator as asx; = éSZi dyx, - For estimators of a

PSU total involving two or more terms, we will usea T
with an additional i subscript, e.g.,
Tuyqi = &8sy dxgyiay - Weuse atilda (~) ontop of

the T to denote estimators of the first phase sample
unitsonly, eg., Ty, = &5 d %7 .

1.2. Review of Calibration Weights for a Uni-stage
Sample Design

Theideaof calibration weightsis that we have some
auxiliary information that we know for all unitsin the
universe. It would then be desirable to have weights
whose sample estimate of the total for the auxiliary
information is exactly equivalent to the universe total,

i.e., for auni-stage sample design we want WXy =
a o Xk - We narrow the choice of w, by necessitating

that the weights be not much different than the original
design weights. Calibration weights are then the
solution that minimizes some distance between w, and
d, subject to the constraint that the weighted totals equal
the unweighted totals for the auxiliary information. We
build the constraint of equal sample and universe totals
into the minimization using Lagrange multipliers.

For all of the estimators we consider, we express our
calibration equations more generally by including a
term g, that is consistent with QR-estimators (Wright
1983) and (Deville and Sarndal 1992). We will apply a
different g to each of the two sets of auxiliary
information.

For background, note that the QR-estimator for an
uni-stage sample design can be defined as

Ty,QR =Tyb + as(yk - xkb) g

@

-1

A o ¢ o
where b = (asquka ) (asqukyk) .
The QR-estimator can be derived as a calibration
estimator since b , which in turn defines w,, is the
solution that minimizes § S(wk - dk)2 /q, subjectto
theconstraint want § w,x, = § ,x, . Hereqis
used to weight the term ( w, - d, )? for each unit in (1).
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Since we are interested in design based estimators,
we assumethat 1/ r, = d, and g, always involves the
product of d, and some other quantity —in fact we write
d, separately from g, , i.e., ', = q, d,. Including g, will
be useful when we discuss two special cases of each of
the SCEs: theratio and regression estimator.

1.3. Auxiliary Variables for Two-phase Samples

For our discussion we say that we can have three
types of known auxiliary variables. We define them by
the set of units for which the auxiliary variableis
known. Thethreetypesare:

(@ x foral kT U

(b) x foral itu,

(©) x foral kT u,,

Case (@) iswhat we have referred to as the overall.
Here we can sum the variables over the entire universe
and the first and second phases samples. Case (b) is
when we only have the first phase auxiliary information
available. For case (c) we only have the auxiliary
information for the units of the second phase sample.
This may arise when there’ s awealth of within PSU
data available but obtaining it is prohibitive because of
cost or effort. So instead of obtaining the auxiliary
information for all PSUs, we only obtain it for the units
of the second phase sample.

When we have two different sets of auxiliary
information, we will use x, and z; to explicitly denote
each. Theauxiliary variables of x, and z are allowed to
have different dimensions and also different variables.
Note that if a given variable is used for both the first
phase and the overall, we include the values in both
vectors x, and z.

2. Simultaneous Calibration Estimatorsfor Two-
phase Samples

We now discuss SCEs that consider (or constrain) any
combination of the two parts of the two-phase sample
design. Proofs of all results are available upon request.

Proposition 2.1. A SCE for Calibrating Overall and
First Phase Auxiliary Information

Let x, be avector of values that we know overal and
z; be avector of values that we know for al units of the
first phase. We suggest that the estimator with weights
that minimize f | of Table 1 also calibrate the totals for

the overall and first phase simultaneoudly, i.e.,
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w, =d;d,

é ~ ¢A_1 ~ - 5 U
gl+(TX TX) Cy @;i ) sz% zqu 'ﬂq' +quk 3
e T g
é oo, €197 TagT 7
§+(TZ TZ) T a8 g
é e T oug
g §§?<. T;(Zq] qu] ngl Xy Ay (;,HB

¢ \
e e u
é1+(TX - -::x) Cq (Xi - T)?z(Iququzi )q. + i
é = )%-1 -1, u
é(Tz - Tz) Tzqu’ZI - Tzf«q (Xi - Tiz(t] zqu ) ]g
- —-1 = -1
Tesg * Txag - T)”(z(IququTzf(dq]
Here w; isthe weight for the first phase and w, isthe
overall weight for unit k — representing both the first
and second phase, i.e., w, =w, w, . InTablel, | and

g arevectors of Lagrange multipliers

where &, =

The third and fourth terms of f . formalize that we

want the sample estimates to equal the universe totals
for each of the sets of auxiliary information. The
second term requires that the first phase weight be close
to the original first phase design weight. Although the
first term is not strictly conditional on the first phase, it
requires that the overall weight be close to the product
of the first phase weight we are minimizing in the
second term and the original design weight of the
second phase.

We also see that both weights are functions of both
sets of auxiliary information. Thisis different than the
Hidirouglou and Sérndal (1998) weights for which the
first step weights are only afunction of the first set of
auxiliary information that is calibrated.

Proposition 2.2. A SCE for Calibrating Overall and
Second Phase Auxiliary Information

Let x, be avector of values that we know for the overall
and z, be avector of values that we know for all units of
the second phase. We suggest that the estimator with
weightsthat minimize f , of Table 1 also calibrate the

totals for the overall and second phase simultaneously,
ie,

*
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Table 1: Constraints for Simultaneous Calibration Estimators

Phases of Sample
Design Calibrated

Constraint of the Simultaneous Calibration Estimators

Overdl and First
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The third and fourth terms formalize that we want
weights that are consistent for the totals of the overall
and the second phase auxiliary information,
respectively. The second term requires that the second
phase weights be close to the original second phase
design weight. Here each PSU’s difference is weighted
by it's original first phase design weight. Thefirst term
requires that the overall weights be close to the product
of the second phase weight that’s minimized in the
second term and the original first phase design weight.
Thisfirst term links the minimization of the overall and
second phase calibrations.

Here we again see how both sets of auxiliary
information contribute to each of the weights. The third
term of w,” isinteresting since it adjusts the overall
weight for agiven unit according to the differencein the
estimated and universe PSU totals for al PSUs.

Proposition 2.3. A SCE for Calibrating First and
Second Phase Auxiliary Information

Let x, be avector of values that we know for all
units of the first phase and z, be a vector of values that
we know for al of the units for the second phase. We
suggest that the estimator with weights that minimize
f , of Table 1 also calibrate the totals for the first and

second phase simultaneoudly, i.e.,
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3. Calibration Estimator s as Regression Estimators

Deville and Sérndal (1992) showed how regression
estimators can be derived from calibration estimators
for uni-stage sample designs. We can similarly derive
QR estimators from calibration estimators. We now
interpret our calibration estimators as QR-estimators.
We get the regression estimator when we let the g-term
equal 1.0. The analogous regression estimator for all of
our SCEsthen isthe same asin Results 3.1, 3.3, and
3.4, respectively, where the g-term is ssmply dropped
from the expressions for B.

Result 3.1. The Overall and First Phase Sample SCE
as a Regression Estimator
The regression estimator associated with f ; can be

expressed as

Tygy = &8sy wievk
) e ¢ 1)
=Ty (- 1) B+ (12 ) e,
where
e . @
Bx =C1 \Teyq ™ Txyg = Tz T2z T29q
ey , @
€T T 9
S - (
B, —Tzzqqé( _ 1 R )U
&\"sva ~ Txzt Tz 299 = Ty JUl

Note that Result 3.1 follows directly from Proposition
2.1. Similarly we will seethat Result 3.3 and 3.5 follow
directly from Propositions 2.2 and 2.3, respectively.

We say that (2) and (3) are regression estimators
because they have aform that is similar to the uni-stage

regression estimator, i.e.,, B = T, i

wxdixy + 1N (2) we

have€, analogousto T,,and the expression in

parentheses analogous to -i—xy . We can similarly argue

that (3) also has aform that is analogous to the solution
of the uni-stage regression coefficient.
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An important specia case of the QR estimator is the
ratio estimator. Theratio estimator arises when the
auxiliary information is univariate and the g-term is
equa to the inverse of the auxiliary information. The

next result discusses the estimator fyfl under

analogous uni-stage ratio estimator assumptions for the
ratio estimator.

Result 3.2. The Overall and First Phase Sample SCE
as a Ratio Estimator

Letg=z",q=%" X=%,andz =z,i.e,let
x and z both be univariate. After some simplification
we can express (1) as

. . AP
Ty'fl = Ty + (TX - TX)C]_
A, 7)F Yy - (1 re f+(f ffr)
z'zZ y \'x 1|y x9/z - x'y ' 'z
f+(f -fz/f)
X ;(2/2 X z

If additionally the ratio and product estimators
involving both sets of auxiliary information are equal,

=TxTy/Tzand T, =T, /T,, then

where cl =

TM
i.e., 9!z

Tyt = (TX 1Ty )Ty.
We therefore conclude that if there is no differencein
ratio versus the product estimates, then the estimator
reducesto asimple ratio estimator, only adjustmenting
for the overal auxiliary information.

Result 3.3. The Overall and Second Phase Sample SCE
as a Regression Estimator
The regression estimator associated with f , can be

expressed as

.16, R R a1 u

& Xy Ty 'sz‘hl 2%, qulH

e

L xzqh,i

zz‘b| zyql

Herei" indexes the summation over the first phase
sample for the third term of both (1) and (2).

Result 3.4. The First and Second Phase Sample SCE as
a Regression Estimator

The regression estimator associated with the SCE
associated with f , can be expressed as

A I3 o *
Tyf, = S5 3y WiV

) ¢ e 4
:Ty+(Tx Tx) Byx +(Tz Tz) B,
where
L1 . e
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Result 3.5. The First and Second Phase Sample SCE as
a Ratio Estimator

Letg=%",q=2z" X =%, ,andz =z,ie,let
x and z be univariate. After some simplification we can
express (4) as
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If additionally the ratio and product estimators
involving both sets of auxiliary information are equal,

-2 =
[} —
ie,T, Syix ?z yﬂ/T and T =T, /T, ,wesee

22 /x
that Ty’f3 =Ty (T, /TX)(TZ /TZ) _

We therefore conclude that if there is no differencein
ratio versus the product estimates, the estimator reduces
to asimpleratio estimator with two adjustments — one
for the first phase and another for the second phase.

4. Variance Estimation

To estimate the design variances we suggest using the
two-phase variance estimator for regression estimators
as suggested by Hidirouglou and Sarndal (1998), i.e.,
v(Ty'reg) =3a aslgi- P qj plj plij gwli €y le elj

+ 3 -1e, , a8 -16 N L0
asPy g2 aspi gt PakP2rP ok 5ok k220 g
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Here p; denotes the first phase second order selection

probability, i.e, py =P(i,jTs,). Similalyp,,
denotes the second phase second order selection
probability, i.e, p,,, = P(k,(T s, ).

The w;; and wy; are the first phase weights and the
wy and w,, are the second phase weights as defined in

§2. The €, and &; are the first phase residuals and the
& and é,, are the second phase residuals.

For the estimator associated with f | we suggest
defining the residuals as

&, =9 - (XF:I%X+ZFI§Z’i) 5
€ = Y - (X%Bx * Zﬁéz,i) O
and for the estimator associated withf , we suggest
defining the residuals as

éll =

R C A NG

y| - @FBX +asldi* Zi¢kBﬂ’i* - aSldi* Z?kBZZYi*ﬂ

€k =

e s deaima 0 ©

yk - XﬁBX + S-I-d|* Z%Bz]_’i* - S-I-d|* Z%Bzzyi*g

For the estimator associated with f 5 We suggest
defining the residuals as
&y = ;i - (fqtéx + 2&“‘32) ©
é2k =Yk - (xfl:éx + z%éz) (10)

We define the regression coefficients of (5)-(10) as
wedidin §3.

A problem with the variance of the regression
estimator associated with f , isthat we don’t have an

expression for w, . We only havew,” and w, , where we
assume that w; isimplicitly included for w, . An
unsatisfying solution to this problem isto use w;* and
w," calculated from w,” and w; to estimate variances
wherew;* = median{ w, / w, } and w," = w, / w*.

6. Summary / Discussion

We think it isimportant that the solution makes both
sets of auxiliary information work together. We see this
because both sets of weights are functions of both sets
of auxiliary information. Thisisin contrast to the two-
step approach where the first weight only accounts for
one of the sets of auxiliary information and the second
weight accounts for the second set of auxiliary
information, conditional on the first weight having
already been calculated.
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Although we believe that the SCE will make better
use of both sets of auxiliary data than the two-step
approach, at this time we do not know the conditions
under which thiswould betrue. It isadifficult question
to answer because several conditionsimpact both of the
estimators including:
> the associations between the variable of interest y,

and each of the auxiliary variables x, and z,
> the association between x, and z,
> the sample designs for each of the two phases.

More research is needed to clarify this point.
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