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ABSTRACT: Selective Multiple Imputation of
Keys (SMIKe) is a tool for statistical disclosure con-
trol (SDC) in microdata. It is model-based with
emphasis on satisfactory protection, low-level infor-
mation loss and valid statistical inferences. SMIKe
releases multiple sets of the modified data, rather
than just one set as in data swapping and post ran-
domization (PRAM). This article compares these
three SDC techniques in a simulation study. The
results suggest that SMIKe is a more efficient SDC
technique than data swapping and PRAM: informa-
tion loss on statistical inferences in SMIKe can be
reduced to a low level and the provided protection
on sensitive cases is superior to that in data swap-
ping and PRAM. Valid statistical inferences can be
obtained from SMIKe-modified data using Reiter’s
(2003) corrected combining rules, while data swap-
ping and PRAM give estimates of parameters with
large biases and incorrect coverage probabilities.

1. Introduction

Selective multiple imputation of keys (SMIKe)
(Little and Liu, 2003a; Liu and Little, 2002) is a
form of probabilistic imputation of categorical key
variables. It bears some resemblance to data swap-
ping methods where the key variables of paired cases
are switched. However, simple data swapping has
two obvious shortcomings: relationships between
swapped and nonswapped variables are distorted by
swapping, the method offers only limited protection.
SMIKe has some similarity to PRAM as well, since
both methods change the values of categorical key
variables probabilistically. However, the probability
matrix that PRAM uses is the same for all cases
and entries in that matrix are chosen by the data
producer. In contrast, SMIKe employs empirically-
based probabilities that differ from case to case. In
SMIKe, only the values of key variables in a sub-
set of cases — namely, sensitive cases mixed with
a subset of nonsensitive cases — are imputed (sen-
sitive cases are defined as cases in cells formed by
the key variables with < s cases, where s is called

the sensitivity threshold, the corresponding cells are
called sensitive cells; nonsensitive cases come from
nonsensitive cells with size > s). Thus, instead of
releasing samples of the imputed population data
set, we release the sample data with values of key
variables for some cases replaced by multiple impu-
tations. The selective aspect of SMIKe limits infor-
mation loss, and reduces sensitivity of inferences to
misspecification of the imputation model. SMIKe
method can also be extended to handle microdata
with both continuous and categorical key variables
(Little, Liu and Raghu, 2003).

Besides SMIKe, we have developed another
Bayesian SDC method called multiple and stochastic
swapping of keys (MaSSK). MaSSK is based on the
same principles as SMIKe, but replaces imputation
by switching to preserve the original key cell counts.
Specifically, MASSK swaps key information between
selectively paired cases according to some swapping
probabilities that are derived from a Bayesian model
on the original data and releases multiple swapped
data sets. For more details on the MASSK method,
see Liu (2003). This article focuses on the compar-
ison of disclosure control by SMIKe, data swapping
and PRAM in a simulated microdata set.

2. SMIKe

Basically, there are five steps in SMIKe: 1) selection
of sensitive cases and a mixing set of nonsensitive
cases for which the values of the key variables are
deleted and imputed, 2) construction of an imputa-
tion model for keys, 3) multiple imputation of keys,
4) statistical inferences based on the SMIKed data
and assessment of information loss and protection,
5) release of the imputed data sets. Here, we elab-
orate these steps with continuous Y, for details in
general situations, see Little and Liu (2003a).

2.1 Selection

For each sensitive case i, a mixing set M; is se-
lected of nonsensitive cases that have similar values
of the nonkey variables based on some suitable mea-
sure. (Little and Liu, 2003a) describe some alterna-
tive methods for selecting mixing sets. We use here a
version called local selection, which selects a nonsen-
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sitive cell that is close to a sensitive case in terms
of the non-key variables, and then randomly picks
Nmix cases from that selected cell. The closeness of
sensitive case i to nonsensitive cell k is measured by
the Mahalanobis distance (¥ — yi)1 S (¥ — ¥i),
where S—! is the sample within-cell covariance ma-
trix. This is a natural measure if the nonkey vari-
ables are approximately normal; other measures can
be developed for non-normal variables. If the closest
cell does not contain enough cases, cases from other
close cells are including in M;. For simplicity, the
size of mixing set n,ix is the same for all sensitive
cases, but it can be varied according to the level of
sensitivity of the sensitive case. After selection a
mixing set for each of the sensitive case, the values
of key variables are deleted for the set M consisting
of all the sensitive cases and their mixing sets (K*
cells and n* cases).

2.2 Construction of the Imputation Model

The general location model (Olkin and Tate, 1961)
is one possible imputation model for categorical X
and continuous Y. The model is defined in terms of
the marginal distribution of z and conditional dis-
tribution of Y given x

indep

p(Yilz:) ~~

*

N(p)(um,E) fori= 1,...,n .

For the local selection method described above, p(x)
and p(Y|z) can both be estimated using the data in
M. However, since the selection of mixing sets is
based on z, p(Y|z) can also be estimated without se-
lection bias using the larger set (say C with K* cells
and n** cases ) of sensitive cases and all nonsensitive
cases from the cells in the mixing sets, yielding im-
proved model efficiency. The general location model
requires the assumptions of normality and constant
covariance of Y given z. A transformation on Y
might improve the fit of the model if the assump-
tions are not satisfied. Another possible model is the
extended general location model (Liu and Rubin,
1998), where covariance matrix does not have to be
constant across cells and normal distribution may be
replaced by other (like t) distributions. If the cases
in a data set are not independent, as in multistage
samples, we may need to modify the above model to
incorporate the correlations.

2.3 Imputation of Keys

Denote the parameters in the model by 8 =
{1y ooy TR —1, 1, -, g+, 2} and suppose set C
is used for model building. If Jeffreys’ priors are

Tk, wherek:l,...,K*;Zmc =1
k

used,

K ITR
p(O)O(HTrk |Z| 2 )
k=1

then the posterior distributions of 6 is

1
3)
[Z|m, z,y] ~ Inv — Wishart(S,n** — K*)

(|7, 2,2, 5] ~ Nopy (P, 2/np") for k=1,..., K*,

1
[7r|z,y] ~ Dirichlet(n] + 30 , e +

where m = (7‘-17 .- '77rK*)T7 MKy = (,Ullm B ;Npk)T; S
is the pooled sample covariance matrix of n** cases,
and ¥, is the sample mean of y in cell £ from C. The
full conditional posterior predictive distribution of Z;
for case i = 1,...,n* is given by

7Tlc:exp(wik) (2)

p(ii=k|07$7y) = =
Eﬁ:l ’/Tk’emp(/lﬁbik’)

where
k = 1,...,K"
b =

The imputation process involves drawing @ from dis-
tributions in Eqn. (1) and imputing & given drawn
6 and Y from Eqn. (2). As with multiple impu-
tation in missing data problems, there are proper
and improper versions of SMIKe. In proper SMIKe,
a new set of @ is drawn for each set of Z; In im-
proper SMIKe, only one set of @ is drawn for D
sets of . Proper SMIKe is theoretically superior to
improper SMIKe since it correctly propagates uncer-
tainty about 6 in the imputations. We show simula-
tion results for proper SMIKe here, although results
for improper SMIKe were similar.

_ 1 _
yi S e = SH ST

2.4 Statistical Inferences and Information
Loss

Statistical inferences, information loss and disclosure
risk can be based on D multiply-imputed data sets.
For inferences for a scalar parameter of interest ¢,
let ¢4 denote an estimate of ¢ from the d* imputed
datg set and V; denote an estimate of the variance
of ¢pg, (d=1,...,D). Then the MI estimate of ¢ is

D
$=>_ ¢a/D, 3)
d=1
and the MI estimate of the variance of ¢ is given by
T = W+ %B, where (4)
D D
W = ) Vu/D,and B=) (¢a—¢)*/(D—1),
d=1 d=1
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where T, W and B are respectively called the total,
within and between variance of ¢, and 1/D is a cor-
rection factor for small D. Note that the combining
rule for T in Eqn. (4) differs from the rule for miss-
ing data, namely T = W + (1 + 5)B (Rubin, 1987).
The reason for the difference is that in SMIKe the
parameters are drawn from the complete data prior
to masking rather than the incomplete data with val-
ues of x masked. Since the posterior distribution of
the parameters is based on more information than in
standard missing-data application of MI, the stan-
dard combination rule overestimates the variance
of ¢ and results in conservative inferences. Reiter
(2003) derives Eqn. (4) for the situation where all the
values of a subset of variables are multiply imputed.
The method remains valid in our case, providing the
MI predictive distribution takes into account the se-
lection of mixing sets. The corresponding measure
of information loss v is given by:
B/D
=T ©)

2.5 Disclosure Risk and Protection

Assessment of disclosure risk is difficult since it
requires conjectures about the behavior of data
intruder. In SMIKe the difficulties are com-
pounded by the release of multiple imputed data
sets. Little and Liu (2003a) proposes two methods
to measure disclosure risk in SMIKed data. For sim-
plicity, we use the simpler one here, though results
from the more complex measure are similar. It mea-
sures disclosure risk R?(smike) the d** imputed data
set, then takes an average to get an overall measure
of R =, R%smike)/D. The relative gain in pro-
tection is then given by

P =1 — R(smike)/R(ori), (6)

where R(ori) is the disclosure risk in original data
set. The larger P is, the greater the reduction in
disclosure risk.

3. Data Swapping and PRAM

Data swapping is a model-free SDC technique that
switches key information between a pair of cases. We
consider two versions of data swapping. The first is
what people usually refer to as data swapping, and
we call it random data swapping (RDS). In RDS,
a swapping rate r% is pre-specified and n x r% of
the total cases are randomly picked from the data to
be swapped with another randomly picked n x r%
cases. Sanil, Gomatam and Karr (2002) suggest r%
between 1 ~ 10%. In our setting, 7% = s», that is,
the fraction of cases under swapping goes up with the

amount of sensitivity in the data. Obviously, RDS
leaves some sensitive cases unprotected due to the
random selection of cases for swapping. For full pro-
tection on sensitive cases, we also consider an alter-
native version, deterministic data swapping (DDS),
where all sensitive cases are required to be swapped
into different cells.

PRAM is another model-free SDC technique
that transforms categorical key information of ev-
ery case according to some pre-specified Makov
matrix. For PRAM, the Markov matrix A
is chosen according to the method proposed in
Gouweleeuw, Willenborg and de Wolf (1998). With
K categories in the key, A is a K x K matrix. Entry
ag for k,1 =1,... K represent the probability that
a case whose orilginal key is k is transformed to cat-
egory I, thus ) ;" , a = 1 given k. A does not have
to be symmetric and is constant for all cases. Let
T (k) denote the frequency of cases in cell k in origi-
nal data and assume without loss of generality that
Tk)>T(K)>0fork=1,...,K, (thus T(K) =1
in this simulation) then as suggested by the authors,
a simple choice of A is:

o= { S7 TV
OT(K)/ (K ~ DT (k)

1=k
i1 £k, ()

where k is the original key of a case in the data set,
I(=1,...,K) is the candidate cell after transforma-
tion. With T'(K) = 1 and § € (0, 1), the probability
that cases in cell k¥ remain in their original cell is
agr, = 1 — H/T(k) If T(k) =1, then ag, = 1 - 6.
Therefore, if we want to obtain good protection for
unique cases, then the likelihood of the uniqueness
being transformed out of their original cells should
be high and 6 should be close to 1. The probability
that cases remain in original cell £ increases with
T'(k). For an instance, with § = 0.999 for cases in
a 3-case cell, the probability of remaining in origi-
nal cell is 0.667, which we think is unsatisfactorily
high. Hence, PRAM focuses more on the protection
of unique cases than on non-unique cases. In this
study, we fix § = 0.999 for all eight sensitivity lev-
els; a value close to its upper limit of 1 seems needed
to provide adequate protection under this method.

4. Simulation Scenario

Each of the 500 simulated data set has sample
size n = 750, four categorical key variables X =
{X1,X1,X3,X4} and two continuous nonkey vari-
ables Y = {y1,y1}. The probabilities of population
key cells are presented in Table 1 (these are the pre-
dicted probabilities from a loglinear model with four-
way interaction fitted to the right panel of the table
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Table 1: Population Key Cell Structure (- 100)
X3 1 2 3
X1 Xo Xy 1 2 1 2 1 2

1 1 2.64 1.38 2.17 1.64 1.61 0.93
2 2.37 2.43 0.86 1.33 0.44 0.83

2 1 1.33 0.85 0.43 0.13 0.64 0.07
0.36 0.56 0.20 0.15 0.14 0.07

3 1 3.26 3.23 1.15 1.03 0.80 0.60
2 2.10 2.56 0.33 0.38 0.11 0.17

4 1 2,95 4.53 141 1.69 1.35 0.97
2 1.64 4.08 0.70 1.41 0.34 0.65

5 1 2.556 1.75 0.73 0.68 1.02 0.39
1.40 1.14 0.40 0.45 0.32 0.24

6 1 4.76 3.28 1.06 0.49 1.02 0.11
2.01 2.44 0.42 0.36 0.32 0.10

7 1 3.03 1.70 1.08 0.69 0.69 0.30
1.27 091 0.69 0.58 0.30 0.27

in page 160 in the book by Agresti (1990)). Each
case is independently simulated from the following
general location model:

z; ~ multinomial (7,...,7g), where K =84

yilti ~ Ney(p,,,2),

where z; = {1,..., K =84}, i =1,...,n and ¥
is the covariance matrix with o7 = 1.0, 03 = 1.44
and 012 = 1.02 (the values of 84 sets of mean p =
(p1,pu2)t are not presented here).

We vary the assumed level of sensitivity in the
data by applying the SDC methods with eight dif-
ferent values of s (s = 3,4,5,6,7,8,9,10). For each
values of s, the sensitivity level of a sample is mea-
sured using two indices: s; = proportion of sensitive
cells among all key cells, s, = proportion of sensi-
tive cases in sample data. Increasing s results in
more sensitive cases and more modifications of the
data by SMIKe and the other two SDC techniques.
Parameters of interest are the coefficients from two
multiple linear regressions: y; on (X,y2) and y2 on

(X:yl)

5. Results

The measures of protection are presented in Table 2.
The first two rows under “Sensitivity Index” are the
averaged s; and s, over the 500 simulated data sets.
In DDS, P =1, since all sensitive cases are swapped
to some other-than-their-original cells. From the ta-

ble, we can see that RDS and PRAM are inferior to
SMIKe in protection, across all sensitivity levels.

Results on estimated bias and confidence interval
coverage are shown for 4 regression coefficients out
of 24 for simplicity, results for the other parame-
ters are given in Liu (2003), and are similar. Esti-
mated bias, averaged over the 500 simulated data
sets, is plotted in Figure 2(a). SMIKe produces
small estimated bias, as expected since by MI the-
ory the method yields consistent estimates under
a correctly-specified model. Data swapping (either
RDS or DDS) has the most severe estimated bias,
and PRAM also has much larger estimated bias com-
pared to that in SMIKe. In SMIKe and data swap-
ping, estimated bias goes up with (s1, s2), and differ-
ent parameters response differently to the increasing
sensitivity level.

Figure 2(b) presents (CP(SDC)-CP(original)),
where CP denotes empirical coverage rate of the
95Data swapping and PRAM have coverages far be-
low the nominal 95biased estimation and the failure
to reflect imputation uncertainty in the variance.
In data swapping, CP can be close to zero, yield-
ing CP(swap)-CP(original) ~ 0 — 0.95 = —0.95, as
seen in the plots. In contrast, SMIKe with the ad-
justed MI estimate of variance gives coverages close
to the nominal 95Level. Note estimated bias and CP
for PRAM are the same for eight sensitivity levels,
since varying sensitivity level actually does not affect
PRAM - all cases have their keys transformed at all
levels of s according to a fixed transformation matrix
A (the parameter 6 is fixed at 0.999 in Eqn. (7)).

Information loss is shown only for SMIKe, since
equivalent measures are not available for data swap-
ping and PRAM. Figure 1 displays the information
loss in SMIKe of the 4 parameters across the 8 sen-
sitivity levels. We conclude that information loss
increases with the sensitivity threshold, but is gen-
erally small.

6. Conclusion

In this paper, we have discussed SMIKe as an SDC
tool in microdata and compared it with two model-
free approaches — data swapping and PRAM. From
MI theory and the simulation results, it can be seen
that model-based SMIKe provides valid statistical
inferences if the imputation model is well- specified
and the imputation process is proper. SMIKe makes
good use of the original information, and limits the
imputation task by modifying only part of the origi-
nal data. It provides a tool for balancing the gain in
disclosure control against the loss of information. In
contrast, data swapping and PRAM do not measure

2500



2003 Joint Statistical M eetings - Section on Survey Resear ch M ethods

Table 2: Protection in Data Sets Modified by SMIKe, RDS, DDS and PRAM

Sensitivity Index

SDC 510 0.253 0325 0.388 0.446 0497 0.543 0.584 0.619
Technique 35;: 0.054 0.088 0.123 0.162 0.202 0.243 0.284 0.324
SMIKe 0.921 0.904 0.884 0.882 0.883 0.888 0.893 0.898
DDS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
RDS 0.755 0.708 0.677 0.664 0.661 0.669 0.681 0.697
PRAM 0.629 0.640 0.638 0.628 0.630 0.625 0.599 0.577

or propagate this information loss, and some infer-
ences based on the modified data are invalid. While
more work is needed on developing SMIKe for real-
istic survey data sets, we think the method is also
feasible in practice. Data users are provided with a
set of imputed rectangular data sets that can be an-
alyzed using standard statistical software, and final
inferences can be combined using the comparatively
simple adjusted MI methods of analysis.

References

Agresti, Alan (1990), Categorical Data Analysis,
New York: John Wiley: 160.

Gouweleeuw, P.K., Willenborg, L.C.R.J. and de
Wolf, P.-P. (1998), “Post Randomization for Sta-
tistical Disclosure Control: Theory and Imple-
mentation,” Journal of Official Statistics (14):
463-478.

Little, R.J.A. and Liu, F. (2003,a), “Selective Mul-
tiple Imputation of Keys for Statistical Disclosure
Control in Microdata,” to be submitted

Little, R.J.A. and Liu, F. (2003,b), ”Multiple and
Stochastic Swapping of Key Variable for Statisti-
cal Disclosure Control in Microdata,” to be sub-
mitted

Little, R.J.A., Liu, F. and Raghunathan T.E. (2003)
”Statistical Disclosure Techniques Based on Mul-
tiple Imputation,” to be submitted

Liu, F. (2003), ”Bayesian Methods for Statistical
Disclosure Control in Microdata,” Ph.D. Disser-
tation, Department of Biostatistics, the University
of Michigan, Ann Arbor.

Liu, F. and Little, R.J.A. (2002), “Selective Mul-
tiple Imputation of Keys in Microdata — an In-
trodution,” 2002 Proceedings of the American Sta-
tistical Association, Section of Survey Research
Methodology [CD-ROM], Alexandria, VA: Amer-
ican Statitical Association.

Liu, C.H. and Rubin, D.B. (1998), “Ellipsoidally
Symmetric Extensions of the General Location
Model for Mixed Categorical and Continuous
Data,” Biometrika, 85(3): 673-688.

Olkin, I. and Tate, R.F. (1961), “Multivariate Corre-
lation Models with Mixture Discrete and Continu-
ous Variables,” Annals of Mathematical Statistics,
(32): 448-465

Reiter, J.P. (2003), “Inferences for partially Syn-
thetic, Public Use Microdata Sets,” Unpublished
manuscripts.

Rubin, D.B.(1987), Multiple Imputation for Non-
response in Survey, New York: John Wiley and
Sons.

Sanil, A., Gomatam, S. and Karr, F. A.(2002),
“NISS WebSwap: A Web Service for Data Swap-
ping,” Technical report for Digital Government
Project as National Institute of Statistical Sci-
ences.

0.18

[] parameter 1
0 paameler2
A
A parameter 3 N
A parameter 4 4
0.12 ‘
@ ' J
A
g .
c
% A 8 8
£ . ’
2 0
£ [
A 0
0.061
8
A A
N A A
A s s

0.0-

[ T T T T T T 1
3 4 5 6 7 8 9 10

s (sensitivity threshold)

Figure 1: Information Loss for the Estimation of 4 Pa-
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