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1. Introduction
1.1.  Linear editing
An editing problem of numerical data from a survey/
census is generally defined by a set of linear edits in the
following form:

, (1.1a)a x bi
i≤ i m= 1 2, ,...,

where is the coefficient vector ofa a ai i
n
i= ( ,..., )1

the ith edit, and ( denotesx x xn
T= ( ,..., )1 T

transpose of a matrix) is the data record vector with

positivity constraints for variables :x j

(1.1b)x j nj ≥ =0 1, ,...,
In (1.1a) the inequality sign may represent either
inequality or equality. In matrix notation, the above linear
edit system is written as 

(1.2)Ax b≤
    x ≥ 0

where , having rows , isA m n,  × a i mi , ,...,= 1
the coefficient matrix of (1.1a), and =b

is the right-hand-side vector of (1.1a).( ,..., )b bm
T

1

Data editing so specified is called linear editing.
Additional constraints may be added to the above basic
setting to define various linear editing problems. A data
record is a passing record with respect to a linear edit
system if the record satisfies all edits in the system.
Otherwise, the record is a failed one. A passing record is
also called feasible, and a failed record infeasible. All data

points that satisfies a linear edit system form thex Rn∈
feasible area of the system. Denote it as , thusS
        .      (1.3)S x R Ax b xn= ∈ ≤ ≥{ : , }0
As by convention, we do not distinguish the linear edit

system (1.2) and its feasible area (1.3), and use toS S
denote both the edit system and its feasible area. A linear
edit system is completely described by its feasible area.
Two linear edit systems are considered equivalent if they

have the same feasible area.   
We are actually in the setting of linear programming

(Gass, 1985; Luenberger, 1984; Nemhauser and Wolsey,
1988; Schrijver, 1986). Linear editing problems are
generally related to solution of a linear program. Linear
programming techniques have been used to address linear
editing problems (Giles, 1989; Houbiers, 1999; Quere,
2000; Quere and De Waal, 2000; Rubin, 1975; Schiopu-
Kratina and Kovar, 1989; Tanahashi and Luenberger,
1971).  

1.2.  Fellegi-Holt theory on linear edits 
Fellegi and Holt (referred as F-H) (1976) established the
fundamental theory of automatic editing and imputation.
They introduced the following basic concepts for the
theory, leading to their profound theoretical results
(Theorem 1 and the corollaries) of the F-H methodology.
For a insightful review of the F-H methodology, see
Winkler (1999) and Winkler and Chen (2002).  

An edit that is logically implied by some other 
edits, is called an implied edit of the other edits. Those
other edits are called the generating edits of the implied
edit. An implied edit is said to be an essentially new
implied edit if it does not involve all the fields explicitly
involved in the edits that generated it. A field that is
eliminated in generating an essentially new implied edit is
called a generating field of the implied edit. A set of edits
together with all essentially new implied edits that can be
generated from them forms a complete set of edits (with
respect to the essentially new implied edits). Two sets of
edits are called equivalent, if they imply each other, that
is, each edit in one set is implied by some edits of the
other set (for linear edits, just have the same feasible area).
Editing problems with respect to two equivalent sets of
edits are considered the same.

For linear edits, positive linear combinations of linear
edits generate implied edits. In the context of linear
editing, the generation of essentially new edits and
derivation of a complete set of edits take explicit form, as
given by F-H (1976), Theorem 3.

1.3.  Reduction of linear edits

In a linear edit system , the linear edits merely provideS
a description of . The set of linear edits originally usedS
to define may not be the simplest in the sense that theS
system may be replaced by another equivalent system
containing fewer edits or involving fewer variables. Any

specification for  that is logically implied by otherS
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specifications in is considered not necessary, orS
redundant, and can be removed from the system without
changing the feasible area. 

In application, to enter an automatic linear editing
system, the set of linear edits needs to be “minimal” with
all redundances removed. In linear editing, edit analysis is
conducted to identify redundances. Giles (1989) described
the types of edit analysis to determine the minimal set of
edits required to define the feasible area of the system, and
intuitively justified the methods used for edit analysis.
However, the analysis does not provide insight into the
structure of the linear system, nor further characterization
of the redundance besides the descriptive definition. 

Characterization and identification of redundance in
different forms with a linear edit system is the issue of
reduction of linear edits. This paper develops reduction
techniques of linear edits. A systematic approach, called
the facet approach, is developed to reach the minimal
representation of a linear edit system, based on the
representation theory of linear inequalities and using some
techniques developed in this paper.  

Section 2 of this paper reviews the representation
theory of linear inequalities. Section 3 discusses reduction
of a linear edit system by its equality set. The concept of
implicit equality is introduced, and linear-equation type
characterization is developed for implicit equalities.
Section 4 discusses reduction of the linear system in its
inequality set. The facet approach is proposed. For the
purpose of this paper, proofs of the theoretical results are
not contained here.                  

                                              
2. Minimal representation of linear edits
To clarify the notion of necessary description for the
feasible area of a linear edit system, we need some
mathematical knowledge of linear inequalities - the
polyhedral theory (Nemhauser and Wolsey, 1988). A

polyhedron is the set of points that satisfy aP Rn⊆
finite number of linear inequalities,  

(2.1)P x R Ax bn= ∈ ≤{ : }

where , , has rows , andA m n× a i mi , ,...,= 1

. In this context, the matrixb b bm
T= ( ,..., )1

is considered as a representation of . A( , )A b P

member inequality of might appear as ana x bi
i≤ P

inequality but actually be satisfied at equality by all points

of . We conceptually classify the two groups ofP
member inequalities of . The rows ofP ( , )a bi

i

, satisfying for all , consist in( , )A b a x bi
i= x P∈

the equality set of , denoted as . And theP ( , )A b= =

other rows of consist in the inequality set of ,( , )A b P

denoted as . This conceptual classification of( , )A b≤ ≤

equality and inequality sets is important in the
development of representation theory of polyhedra.  

A member inequality of represents aa x bi
i≤ P

face of , . Each faceP F x P a x bi
i= ∈ ={ : }

of is itself a polyhedron. A special kind of faces,F P
called facet, is of particular importance for the description

of . A face of is called a facet ifP F P
,  w h e r edim( ) dim( )F P= − 1 dim( )P

denotes the dimension of , which is determinedP Rn⊆
b y = ,  w h e r edim( )P n A b− = =rank( , )

denotes the rank of a matrix. Ifrank( )
, is of full-dimension.  If is a facetdim( )P n= P F

of , there exists some inequality in theP a x br
r≤

inequality set  representing . For each( , )A b≤ ≤ F

facet of , one member of the equivalence class ofF P
inequalities representing is necessary for theF
description of . The facets are also sufficient for theP
description of . An inequality in theP a x br

r≤
inequality set that represents a face of  of( , )A b≤ ≤ P

dimension less than is irrelevant to thedim( )P − 1
description of . P

The minimal representation theorem of polyhedra 
states that a full-dimensional polyhedron has a unique (to
within scalar multiplication) minimal representation by a
finite set of linear inequalities, each of which represents a

facet. When the equality set is not empty, is not full-P
dimensional, and the minimal representation of

consists of a maximal linearly independent subset ofP
the equality set, and a set of inequalities each of which
represents a facet. And, in this situation, a linear
combination of the equality edits may be attached to the
members in each equivalence class of inequalities of
facets.

We have a clear picture for a polyhedron . FacetsP
are essential in the description of . The equality setP
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of , if not empty, constrains to a lower dimensionP P
subspace and plays no essential role for the description

of in the sense that it only contributes some redundantP
members to each equivalence class of inequalities of
facets. The equality set thus represents the redundance in

dimension. With ,  therank( , )A b= = > 0

polyhedron in is not full-dimensional and can beP Rn

equivalently presented in a -dimensional subspace,h
where = , as ah P= dim( ) n A b− = =rank( , )
full-dimensional polyhedron. 

For a polyhedron , reduction related to the equalityP
set is to reduce the dimension of the space

where resides, to make full-dimensional. ReductionP P
related to the inequality set is to remove irrelevant
inequalities, that is, those representing a face of dimension

lower than , and keeps only one memberdim( )P − 1
for each equivalence class of inequalities representing a
facet. In the following we discuss the two aspects of
reduction respectively.

3. Reduction of edits by the equality set
For equality edits in the system, elimination by equality
(Weng,  2002) can be performed to reduce the linear edit
system to an equivalent system for which all the inequality
edits form a linear edit system of lower dimension.
 
3.1.  Implicit equality
The equality set has been, however, defined descriptively,
without indicating how to identify the equality set for a

given edit system . In application of obtaining minimalS
representation of a linear edit system, it is an issue to
identify the equality set. A member inequality might be

actually satisfied at equality by all points in . We callS
such a member implicit equality with respect to the set of
edits. The equalities originally presented in the system
may be called explicit equality.

In the following we give characterizations of implicit

equalities. We assume the system , as in (1.3), does notS
contain explicit equalities - their presence in the system

will hide the implicit equalities. Suppose is not empty.S
The following proposition, though simple, 

introduces the characterization of implicit equalities

through a nonnegative (row) m-vector .λ

PROPOSITION 1. The system contains implicitS
equalities if and only if there is a nonnegative

vector , , such that forλ ∈ +Rm λ ≠ 0 x S∈
        . (3.1)λ( )Ax b− = 0

We are looking for general characterization of
implicit equalities involving only the matrix representation

of . The following is one based on the duality( , )A b S
of linear programming.  
     

THEOREM 1.  The r-th inequality of thea x br
r≤

system is an implicit equality if and only if there is aS
nonnegative vector , such that λ ∈Rm λ ≥ 0

(3.2)λA ≥ 0
,λb = 0

and the r-th component of is strictly positive.λ

If we only need to confirm the existence of implicit
equalities in the system, but not necessary to identify
which ones, we need to show that the feasible area of the

following linear system in is not empty (except the nullλ
point ):0

(3.3)λA ≥ 0
λb = 0
   .λ ≥ 0

With the additional condition that none of the

variables is always zero on , which is generallyxi S
satisfied in practice, Theorem 1 can be enhanced to that
the first inequality of (3.2) becomes an equation, that is, a
linear equation characterization for implicit equalities, as
the next theorem states. 

THEOREM 2.  Suppose for the system none of theS
variables for all . Then the i-thx j = 0 x S∈

inequality of is an implicit equalitya x bi
i− ≤ 0 S

if and only if there is with satisfyingλ ∈ +Rm λi > 0
(3.4) λA = 0

.λb = 0
For any nonnegative vector satisfies λ ∈ +Rm

(3.4), the set identifies implicitI i iλ λ= >{ : }0
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equalities , . If we only need toa x bi
i≤ i I∈ λ

confirm the existence of implicit equalities in the system,
but not necessary to identify which ones, we need to show
that the feasible area of the following linear system

in is not empty (except the null point ):λ ∈Rm 0
        .λ λ( , ) ,A b = ≥0 0

In some situations we may limit the searching for
implicit equalities to a subset of the member inequalities
in the system, or conclude that there are no implicit
equalities in the system by simple criterion, as the
following corollary states.   

COROLLARY 1.  Under the condition of Theorem 2 of

implicit equality, if in the system , is nonnegative,S b
let , then only for , theI i bb i= ={ : }0 i Ib∈
inequality  is a candidate of implicit equality.a x bi

i≤
In particular, if (i.e., ), then the systemIb = ∅ b > 0
(3.3) does not contain any implicit equality.

If and there is a column of , for whichIb ≠ ∅ a j( ) A

the i-th element  for all , then thea j
i
( ) > 0 i Ib∈

system does not contain any implicit equality.

Corollary 1 can be extended to a subset of columns of

, if they have such a “covering property” as( , )A b
stated in the next corollary. 

COROLLARY 2.  Under the condition of Theorem 2 of
implicit equality, if there is a subset of the columns

of , say , having such( , )A b {~ , ,..., }( )a l tl = 1

property that is nonnegative, and let~
( )a 1

; is nonnegative on , andI i a i
1 1 0= ={ : ~ }( )

~
( )a 2 I1

let ; and so on, finally, I i I a i
2 1 2 0= ∈ ={ : ~ }( )

~
( )a t

is nonnegative on ,I i I at t t
i

− − −= ∈ =1 2 1 0{ : ~ }( )

and let . Then only forI i I at t t
i= ∈ =−{ : ~ }( )1 0

, the inequality is a candidate ofi It∈ a x bi
i≤

implicit equality. If , the system contains noIt = ∅
implicit equalities.

Corollary 2 opens the chance to considerably reduce

the candidate set of implicit equalities. If is identified,It

s o ,  t h e n  t h e  e q u a t i o nλi ti I= ∉0 for 

, or , reduces toλ( , )A b = 0 λi
i

i
i

m

a b( , )
=
∑

1

= 0

. In the set of linear edits for theλi
i

i
i I

a b
t

( , )
∈
∑ = 0

U.S. Census of Agriculture, the constants are usuallybi

nonnegative.

3.2.  Projective Algorithm for Feasibility Problem
If, after possible reduction, the candidate set of implicit
equalities can not be concluded empty, we need to solve
such a linear program 

      λ( . )A b c = 0
      λ ≥ 0

where is the candidate set of implicit equalities.( , )A b c

Such a linear programming problem is called the
homogeneous feasibility problem, generally stated as:

Let ,where ,Q0 = { : , }r R Gr rn∈ = ≥0 0 G

,  with . Find a raym n× rank( )G m=
or show that  (empty).r Q∈ 0 0\ { } Q0 0= { }

There is a projective algorithm available to solve the
linear program (see Nemhauser and Wolsey, 1988, I.6.4).

4. Reduction of edits in the inequality set

Suppose the linear system : , ,S Ax b≤ x ≥ 0
consists of only the inequality set, that is,

, as after elimination of all (explicit( , )A b= = = ∅
and implicit) equality edits. is thus of full rank. S

4.1.  Implied edit
First give a general characterization for implied edits in a
linear edit system based on the duality of linear
programming.
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PROPOSITION 2.  If the linear edit system is notS
empty, the edit is an implied edit for thea x br

r≤
system if and only if there is withλ ∈ Rm

 and  for (4.1)λr = −1 λi ≥ 0 i r≠
such that 

(4.2)λA ≥ 0
and

. (4.3)λb ≤ 0

Positive linear combinations of linear edits generate
implied edits. Such a notion has often been perceived as an
alternative to the descriptive definition of implied edits.
The following corollary gives an accurate statement.

COROLLARY 3.  If the system is not empty, then theS
edit is an implied edit for the system if anda x br

r≤
only if

, a x b a x br
r i

i
i

i r

− ≤ −
≠
∑ λ ( )

. (4.4)λi i r≥ ≠0,

(4.4) shows the implied edit is dominated bya x br
r≤

a linear positive combination of (or, linearly dominated
by) other inequality edits in the system.

4.2.  The facet approach  
S u p p o s e  t h e  l i n e a r  e d i t  s y s t e m

has its equality setS x R Ax b xn= ∈ ≤ ≥{ : , }0
empty. By the polyhedral theory, the inequalities are
classified into two categories: one for those that represents
a facet and the other for those that does not, according to
the dimension of the face the inequality represents

being or less.  dim( )S −1
We need to identify one representative inequality for

each facet and remove all other inequalities. We propose

an approach as follows. For each inequality a x bi
i≤

i n ,  i f  t h e  f a c e  i t  r e p r e s e n t s ,S
, is a facet, thenF x S a x bi

i
i= ∈ ={ : }

, sodim( ) dim( )F Si = −1 rank( , )A bF Fi i

= =

, that is, the equality set of face  contains only one= 1 Fi

member, the defining equality of the face. Otherwise, if the

equality set of contains other linearly independentFi

m e m b e r s  t h a n  t h e  d e f i n i n g  e q u a l i t y ,

then ,  is not a facet.dim( ) dim( )F Pi < −1 Fi

Here, again, identification of implicit equalities is
involved. We proceed in such way: first performing

elimination by the equality  for face anda x bi
i= Fi

then examine if the face contains any implicit equalities.
If not, then is a facet. We then further remove otherFi

inequalities in , if any, representing the same facet.S
If is not a facet, the inequality together withFi a x bi

i≤
all its multiplications is to be removed from the system
We call such an approach the facet approach. 

The facet approach directly classifies the faces for 
facet based on the polyhedral representation theory,
avoiding unnecessary involvement of other irrelevant
structures, for example, linear combinations of member
inequalities.
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